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Introduction 
 
Different simplified models for the analysis of dynamic 
response of foundations have been proposed and their further 
improvement have been done by various authors (Beredugo & 
Novak 1972, Novak et. al. 1978, Nogami et al. 1988, 1991a, 
1991b, 1992). In the model presented in this paper, the soil 
medium is treated as an assembly of a number of cells. Each 
cell (fundamental cell) is idealized as a system of closely 
spaced one-dimensional strip with distributed mass and the 
strips are interconnected by distributed springs along their 
vertical sides as shown in Fig. 1.  
 

In the lateral mode of foundation vibration, the strips deform 
laterally by shear. The difference in lateral deformation 
between the two adjacent strips activates the springs to produce 
the lateral normal forces acting on the side of the strips. On the 
other hand, in the vertical mode of foundation vibration, the 
strips deform axially. The difference in axial deformation 
between the two adjacent strips activates the springs to produce 
the vertical shear forces along the strip length. 
 
This method was used for foundations in homogeneous soils 
(Nogami et al. 2001, Nogami & Chen 2002). The present 
paper extends the approach further to foundations in non-
homogeneous soils. 
 
Formulation 
 

Differential Equations for Fundamental Cell 
  
Soil is assumed to be a visco-elastic medium. Its material 
properties are defined by complex Lamè’s properties (G* and 
λ*, where G* is the complex shear modulus) and unit mass 
(). A rectangular cell, as shown in Fig. 1, with the Cartesian 
coordinates  and  taken respectively in the horizontal and 
vertical directions, is considered in the soil medium.  
 
The complex moduli of the soil are 

     a a0G( ), ( ) 1 C( ) G( ), ( )           

As the moduli are assumed to vary linearly with depth so, 

   * *G ( ), ( ) (1 2 i ) G( ), ( )                     (1) 

where i=-1, G() and () = Lamè’s constants at;  
a and b = upper and lower ends of the cell in the  

coordinate, respectively and a and b  = left and right end of 
the cell in the  coordinate, respectively; γ = material 
damping parameter; C = constant and  
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where ν is the Poisson’s ratio. 
 
Here, the model is considered for plane strain condition. The 
displacement is assumed to be limited only in the direction of 
the load acting on the medium which means horizontal loading 
only produces horizontal displacements without making any 
vertical displacement and vice versa. Neglecting the vertical 
displacement, the equation of horizontal motion of the medium 
in slightly modified form is written in the frequency domain as     
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x z x zz z

x x z z
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                                                   2u( , ) 0mc x zw =           (3)          

where u = displacement amplitude; ω = circular frequency; 
and denoting mc = unit mass of soil.     

 

 

 

 

 

 

Abstract 
 
An approximate method is presented which can be used to formulate dynamic stiffness of embedded foundation. Earlier used  for 
homogeneous soil stratum,  the method is further extended to non-homogeneous soil stratum herein. Simple closed form solutions are 
obtained to calculate the stiffnesses for rigid strip foundations under lateral motion. Solutions require iterations. For the cases 
analyzed, very few iterations are found to be required for the convergence of the computations. Despite considerable simplifications, 
the developed formulations of the method produce results that are very close to those computed by rigorous methods. 
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Fig. 1  Fundamental cell 
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*
c ck ( ) G ( )kz z=                                                           (4a) 

( )* *
s sk ( ) ( ) 2G ( ) kz l z z= +                                     (4b) 

c cm mr=                                                                         (4c) 

with ck , sk and cm   are non-dimensional parameters where 

ck  and sk  are dependent only on  (Nogami & Leung 1990) 

and  = density of soil. It is noted that Eq. 3 is also the 
equation of motion of a strip in the system (as stated earlier) 
of closely spaced strips that are interconnected by distributed 
lateral springs along the side (Nogami & Leung 1990). kc and 
ks correspond respectively to the complex column stiffness in 
shear and the complex spring stiffness, and mc corresponds to 
the mass per unit length of the column.  These are related 
uniquely only with the material properties of the original 
continuous medium through Eqs. 4a~4c.   

The displacement is assumed to have the following form 

u( , ) X( )Z( )x z x z=                                                      (5) 

where X(0) = 1. Substituting Eq. 5 into Eq. 3 and denoting 
() as a weight function, the Galerkin method for weighted 
residual over  in the cell yields 

b

a
c

dZ( )d k ( ) X( ) ( )d
d d

x

x

zz x f x x
z V

ì üï ïæ öï ï÷çï ï÷çí ý÷ç ÷ï ï÷çè øï ïï ïî þ

+ò        

        
b

a

2

s 2
d X ( )k ( ) ( )d Z( )

d

x

x

xz f x x z
x

æ ö÷ç ÷ç ÷ç ÷ç ÷÷çè ø
+ò       

               
b

a
cm X( ) ( )d Z( ) 0

x

x
x f x x z

æ ö÷ç ÷ç ÷ç ÷÷çè ø
=ò                  (6) 

Integrating the first term by parts, Eq. 6 results in 
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                     a ab b( )p( , ) ( )p( , )f x x z f x x z-              (7) 

where a and b are left and right ends of the cell in the  
coordinate, respectively; p(a,b , ) is the traction acting at 
(a,b , ) expressed as 
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Similarly, substituting Eq. 5 into Eq. 3 and using ψ() as a 
weight function, the Galerkin method for weighted residual 
over  in the cell yields 
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where p(,  a,b) = traction acting at (,  a,b) expressed as  
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Eqs. 7 and 10 are the fundamental differential equations for a 
cell. The weight functions are selected as () = X() and ψ() 
= Z*(), in which Z*(z) is the complex conjugate of Z(z) 
(Nogami & Chen 2002). 
., 
Differential Equations for Secondary Cell  
 
A secondary cell is assumed to contain J non-homogeneous 
fundamental cells as shown in Fig. 2.  The coordinate  is 
assumed to be located at the left end of the secondary cell 
(i.e. x = ).  The compatibility condition between the jth and 
j+1th fundamental cells requires 

j j 1X( x ) X( x ) +=                                                        (12a)

aj j 1bZ( ) Z( )z z +=                                                      (12b)

and the equilibrium condition between the jth and j+1th 
fundamental cells does 

aj j 1bp( x, ) p( x, ) 0z z +- = or, 

{ }
J

a aj j j jb b
j 1

( ) p( x, ) ( ) p( x, )y z z y z z
=

- =å             

              - a aJ J 1 1b b( ) p ( x, ) ( ) p ( x, )y z z y z z            (13) 

where j = layer number. Thus with Eqs. 12a, 12b and 13, Eqs. 
7 and 10 for the fundamental cell lead to the differential 
equations for the secondary cell as, respectively 
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     Fig. 2  Secondary cell made of fundamental cells
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Boundary Value Problem 
 
A partially embedded rigid foundation is considered in the 
non-homogeneous soil as shown in Fig. 3.  Only the shaded 
area in the figure is considered for formulation.  Soil medium 
around the foundation is divided into three secondary cells 
(Cells I, II and III) as shown in Fig. 3.  The foundation is 
assumed to undergo the lateral translational motion of 
amplitude U.  
 
Functions X(x) and Z() 
 
The boundary conditions for each secondary cell are  
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where JA = number of fundamental cells in Cell III; and JB = 
number of fundamental cells in Cells I and II.  In addition, 
p(0, )j for j = 1~JB in Cell I and p(x, a) in Cell III are zero.   
Adding Eq. 14a for Cell I and Eq. 14a for Cell II together and 
applying the boundary conditions at the interface between 
Cells I and II lead to 
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and Eq. 14b for Cells II and III lead similarly to 
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where n = nI + nII; k = kI + kII; m = mI + mII; and JC = JA + 
JB.  With the boundary conditions associated with X(x) for 
Cells II and III, the solution of Eq. 16b is expressed as 

xII ,IIIX ( x ) e b-=                                                          (17a) (17a) 

using the polynomial form, the general solution (Mahbub 
2004) of Eq. 16a is 
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where aj and bj = unknown constants to be defined later; and  

C CJ J
2

j j j
j 1 j 1

K M / Nb w
= =

æ ö æ ö÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷÷ ÷ç çè ø è ø
= -å å                              (18a)

 

a a n a
j j j j j jn 3, n 2, n 1,a

n j
j

C D ( n 1) A
n( n 1)B

a a a
a - - -+ - -

=
-

 

 (Cj = 0 for n = 2~4 and Aj = 0 for n = 2)                         (18b)

 

b b n b
j j j j j jn 3 n 2 n 1,b

n j
j

C D ( n 1) A
n( n 1)B

a a a
a - - -+ - -

=
-

 

(Cj = 0 for n = 2 & 3 and Dj = 0 for n = 2)                        (18c)
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aj jB n'( )z=                                                                  (18e)

{ }aj j j jbC k'( ) k'( ) / hz z= -                                     (18f)

2
aj j jD k'( ) m'z w= -                                                 (18g)

where hj = thickness of the jth layer.  Imposing the 
compatibility between the soil and foundation to Eqs. 14a for 
Cell III and to X(x) for Cell I, the rest of the functions for the 
secondary cells are defined as respectively 

( )2 III III
j j jk( ) m Z( ) p(0, )z w z z- = -   j = 1 ~ JA      (19a)                         

IX( x ) 1=                                                                     (19b)

 
Constants aj and bj 
 
The conditions for Z()j  in Cells I and II can be stated as 
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with (a , b)j = (0 , hj) and (a , b)j = aJB(a , b)j, substituting  
Eq. 17b into Eqs. 20b and 20c result in, respectively 
 
 
 
 
 
 

Fig. 3  Soil medium divided into three secondary cells

JA layers

 

JB layers

dx      dx 

dz      III     

  
 I              II 

  

Foundation



UAP Journal of Civil and Environmental Engineering, Vol. 1, No. 1, 2005 66

-

= =

-

= =

é ùæ ö æ ö÷ ÷ê úç ç÷ ÷ç ç÷ ÷ê úç ç÷ ÷ç ç÷ ÷ì ü ê ú÷ ÷ç çï ï è ø è øï ïï ï ê úí ý ê úï ï æ ö æ öï ï ê ú÷ ÷ï ï ç çî þ ÷ ÷ç çê ú÷ ÷ç ç÷ ÷ç çê ú÷ ÷÷ ÷ç çè ø è øê úë û

+ - +

=

- +

å å

å å

b n 1 b n
n n

n 2 n 2

jj a n 1 a n
n n

n 2 n 2 j

1 n h h h
a' 1
b'

n h 1 h

a a

D
a a

               

                                                  
+ +

é ù
ê ú
ê úì üï ïê úï ïí ýê úï ïê úï ïî þê ú
ê úë û

j 1 j 1

j

1 0

a'
n(0 ) b'

0
n( h )

     (21a) 

-

= =

ì üï ïï ïï ïì üï ï ï ïï ïï ï ï ïæ ö æ öí ý í ý÷ ÷ç ç÷ ÷ç çï ï ï ï÷ ÷ç çï ï ï ï÷ ÷ï ïî þ ç çï ï÷ ÷÷ ÷ç çè ø è øï ïï ïî þ

=
- + +å å

B

B

a n b n 1
n nJ

n 2 n 2 J

                          1
a'

1 h /   h 1 hb' a a
             

                                                                                          (21b) (21b) 

where,  
= =

æ ö æ ö÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷÷ ÷ç çè ø è ø
= + + -å åa n b n

n nj
n 2 n 2j j

1 h 1 n hD a a      

                    b n a n 1
n n

n 2 n 2j j

h h n ha a
æ ö æ ö÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷÷ ÷ç çè ø è ø

-

= =
+ å å        (22) 

Therefore, starting with (a , b)JB given by Eq. 21b, (a , b)j 
can be computed from j = JB –1 through 1 successively by Eq. 
21a.  After (a , b)1 is computed, aJB is obtained to satisfy Eq. 
20a at the top (j = 1) in Cells I and II. Then, (a , b)j is 
computed from (a , b)j = aJB (a , b)j. 
 
Dynamic Stiffness for Partially Embedded Foundation 
 
When the force P is applied to the foundation, the equilibrium 
condition at the foundation is stated as 
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Evaluating the above expression with Eqs. 9a~9c and U = 1, 
the dynamic soil stiffness for this foundation (Kf) is 
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where dx = half-width of the foundation. 
 
In non-dimensional form,   
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Computational Procedure 
 
1. For any frequency ω, a value for the complex parameter β 

(e.g., [0.1, 0.1]) is first assumed. 
2.  Using β, the parameters n, k, m  are calculated using the 

expressions shown in Eqs. 9a~9c, Eq. 17a. 

3.  The series of parameters of a
n ja  and b

n ja for each layer 

of soil are calculated using the Eqs. 18b~18g. 
4. The parameters N, K, M  are calculated using the 

expressions shown in Eqs. 11a~11c, Eqs. 21a~21c and       
Eq. 17b for each layer of soil. Each parameter is then 
summed up respectively for all the layers of soil 

5.  New β using Eq. 18a is computed.  
6.  Newly computed β is compared with the previous assumed 

β, if the difference is beyond the tolerance (a tolerance of 
1% is found sufficient) then steps 2 to 7 are continued 
until the difference is within the tolerance.   

7.  Once the β is within the tolerance then it is normalized by 
multiplying with half-width of the foundation and 
normalized stiffness are calculated using Eq. 24.  

 
Computed Results 
 
The dynamic soil stiffnesses for rigid strip foundations are 
computed by the expression given by Eq. 24.  All parameters 
in the expression except are provided as inputs. The 
parameter to define X(x) and the constants (a, b)j to define 
Z()j are mutually coupled in the formulation.  Thus they are 
calculated iteratively in the process mentioned above. In the 
computations carried out below, the convergence in the 
iterations was achieved generally within 8 iterations for 
tolerance of 1%. 

A foundation of dx = 4m is assumed to rest on the surface of 
soil underlain by a rigid base at depth 2dx. The conditions 
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considered for the soil are: vs(z)= vs(0)(1+1.5z/dx) with vs = 
shear wave velocity of soil (or G(z) = G(0)(1+1.5(z/dx)

2);  = 
1/3; and γ = 0.08.  The soil is divided equally into 8 or 24 
homogeneous layers as shown in Fig. 4. It is also divided 
equally into eight non-homogeneous layers in which G(z) 
varies linearly with z within a layer. G(z) in the latter 
distribution is nearly equal to the original G(z). Soil 
stiffnesses computed for these three cases are shown in Fig. 
5. It is seen in the figure that even dividing soil stratum in 
significantly very high number (24 layers) of homogeneous 
layers is not sufficient to get stiffnesses closed to that divided 
in non-homogenous layers (8 layers). The accuracy of the 
method for non-homogenous layers is verified in Fig. 6 in 
which  = 0.25; and γ = 0.05. It is found that the stiffnesses 
(real) computed using this simplified method shows good 
proximity with those computed by accurate and elaborate 
method (Gazetas 1980). 

Then, in the same non-homogeneous soil profile, stiffnesses 
for the foundation without or with embedment (dz = 0 or 
0.5dx) is computed and plotted in Fig. 7. It is clear from the 
figures that not only the magnitude of the soil stiffnesses is 
affected by the foundation embedment but also the way of its 
frequency dependency is also affected.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Conclusions 
 
The approximate method enables us to formulate the soil 
stiffness under lateral loads for partially embedded strip 
foundations in non-homogeneous soils in a simple closed 
form. It requires iterations in computation. Sufficient 
convergence is generally observed within a very small 
number of iterations for the cases computed herein.  The 
developed formulation can calculate the dynamic stiffness 
very close to that computed by far more rigorous methods. 
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Fig. 5  Dynamic soil stiffnesses computed for three cases
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