Department of Civil Engineering Midterm Examination Fall 2015

Course # : CE-203 z Full Marks: 45 (4 X 15 = 45)		Course Title: Engineering Geology & Geomorphology Time: 1 hour				
	Answer any three (3) ques	stions of your choice out of the following four (4)				
1a)	What is geomorphology? Distinguish between sediment and sedimentary rock.					
1b)	Classify principal zones of the earth from geologic point of view. Write down the thicknesse					

5

5

2

3

9

4

2

9

3

5

4

3

- (no sketch required) of different parts of lithosphere.
- 1c) Give two examples of each type of primary rock and sediment.
- 1d) Mention (names only) different geomorphic processes based on origin.
- 2a) Distinguish between physical and chemical weathering processes. Also distinguish between $_{3+3=6}$ weathering and erosion.
- **2b)** For the following basin, find the value of θ that would create maximum runoff. Also calculate the FF and CC of the basin.

- 3a) Write down (no description required) the factors affecting runoff.
- 3b) Define precipitation and percolation.
- **3c)** Calculated Peak runoff (Q_p) for the conditions of the following facility is 4.15 m³/min. Calculate L (L is in yard). Consider intensity of rainfall for the whole area 1.25 in/hr and coefficient of runoff for concrete, asphalt and lawn areas 0.85, 0.75 and 0.25, respectively.

- 4a) Write down any three assumptions used in Rational Formula.
- **4b)** What is diastraphism? Write brief notes on different rock structures produced by diastraphic forces.
- 4c) With the aid of a neat sketch show different parts of a typical fold geometry.
- 4d) Classify fold and draw a neat sketch of any one of them.

University of Asia Pacific Department of Civil Engineering Mid Semester Examination Fall 2015 Program: B. Sc. Engineering (Civil)

Course Title: Numerical Analysis & Computer Programming Time: 1 hour Course Code: CE 205 Full Marks: 40 (= 10×4)

Answer any 4 (FOUR) of the following questions.

- 1. Find the cube root of 54 by Newton-Raphson Method using the initial approximation of $x_0 = 2$. Use the accuracy of 0.0001.
- 2. Find the root of the equation $x^3 3x + 1 = 0$ between the interval [1, 2] by Iteration Method using the accuracy of 0.0001.
- 3. Solve the following system of equations using Jacobi Method. Assume the initial values are x = 0, y = 0 and z = 0. Perform up to 12 iterations. 10

5x + 2y + z = 82x + 5y + 2z = 1x + 3y - 5z = 25

4. Fit a straight line (y = a + bx) to the following data using Principle of Least Squares. 10

\boldsymbol{x}	1	3	4	5	6	8
y	2	6	11	21	34	65

5. The following table gives the distances in nautical miles of the visible horizon for the given heights in feet above the earths surface. 10

x = height	100	150	200	250	300	350	400
y = distance	10.63	13.03	15.04	16.81	18.42	19.90	21.27

Find the value of y, when x = 218. Use Newton's Forward Difference Method.

University of Asia Pacific Department of Civil Engineering Mid Semester Examination Fall 2015 (Set A1)

Course #: CE 213 Full Marks: 40 (= 4 × 10)

x

24"

Section1 of

abcdefghi

A1.

`5″√

Section2 of

abcdefghi

Fig. 1

1. <u>Fig. 1</u> shows the frame system *abcdefghi* supporting the top of a classroom chair, which carries uniformly distributed load 1 lb/in^2 .

12"

Frame *abcd* supports the load on the area A_1 only.

Calculate the maximum torsional rotation of member cd if the cross-section of *abcd* is

- (i) Section 1 and
- (ii) Section 2 (with small slit)
- [Given: G = 12000 ksi]..
- 2. For the frame system supporting the top of a classroom chair carrying uniformly distributed load 1 lb/in² (as shown in Fig. 1), the frame *efghi* supports load on area A_2 only.

Calculate the maximum normal stress

in the member fg if the cross-section of efghi is Section 1.

- 3. <u>Fig. 2</u> shows a rigid beam *abc* supported on helical springs *a*, *b* and subjected to uniformly distributed load 1 k/ft and concentrated force *P* at distance *x* from *a*.
 - (i) Determine the values of force *P* and distance *x* to ensure that the springs *a* and *b* deflect the same amount
 - (ii) Calculate the corresponding deflection and combined shear stress in the springs

[Given: Springs *a* and *b* have the same coil diameter = 1'', mean radius of spring = 3'', number of coils = 5, shear modulus = 12000 ksi].

4. <u>Fig. 3(i)</u> shows a group of Mohr's circles with the same value of principal stress σ₂. If they represent elements at various depths in water [Fig. 3(ii)] subjected to hydrostatic pressure σ_{xx} = σ_{yy} = -γh (for various values of h) as well as shear stress (τ_{xy}), determine the
(ii) Principal stress = and (iii) Pradius of Mahr's giants

(i) Principal stress σ_l and (ii) Radius of Mohr's circle.

List of Useful Formulae for CE 213

* Torsional Rotation $\phi_B - \phi_A = \int (T/J_{eq}G) dx$, and $= (TL/J_{eq}G)$, if T, J_{eq} and G are constants

Section	Torsional Shear Stress	J _{eq}
Solid Circular	$\tau = Tc/J$	$\pi d^{4}/32$
Thin-walled	$\tau = T/(2\Delta t)$	$4 \Omega^2 / (\int ds/t)$
Rectangular	$\tau = T/(\alpha bt^2)$	ßbt ³

b/t	1.0	1.5	2.0	3.0	6.0	10.0	x
α	0.208	0.231	0.246	0.267	0.299	0.312	0.333
β	0.141	0.196	0.229	0.263	0.299	0.312	0.333

* Normal Stress (along x-axis) due to Biaxial Bending (about y- and z-axis): $\sigma_x(y, z) = M_z y/I_z + M_y z/I_y$

- * Normal Stress (along x-axis) due to Combined Axial Force (along x-axis) and Biaxial Bending (about y- and z-axis): $\sigma_{\rm x}({\rm y},{\rm z}) = {\rm P}/{\rm A} + {\rm M}_{\rm z} {\rm y}/{\rm I}_{\rm z} + {\rm M}_{\rm y} {\rm z}/{\rm I}_{\rm y}$
- * Corner points of the kern of a Rectangular Area are (b/6, 0), (0, h/6), (-b/6, 0), (0, -h/6)
- * Maximum shear stress on a Helical spring: $\tau_{max} = \tau_{direct} + \tau_{torsion} = P/A + Tr/J = P/A (1 + 2R/r)$
- * Stiffness of a Helical spring is $k = Gd^4/(64R^3N)$
- * $\sigma_{xx}' = (\sigma_{xx} + \sigma_{yy})/2 + \{(\sigma_{xx} \sigma_{yy})/2\} \cos 2\theta + (\tau_{xy}) \sin 2\theta = (\sigma_{xx} + \sigma_{yy})/2 + \sqrt{[\{(\sigma_{xx} \sigma_{yy})/2\}^2 + (\tau_{xy})^2]} \cos (2\theta \alpha)$ $\tau_{xy}' = -\{(\sigma_{xx} - \sigma_{yy})/2\} \sin 2\theta + (\tau_{xy}) \cos 2\theta = -\sqrt{[\{(\sigma_{xx} - \sigma_{yy})/2\}^2 + (\tau_{xy})^2]} \sin (2\theta - \alpha)$ where tan $\alpha = 2\tau_{xy}/(\sigma_{xx} - \sigma_{yy})$
- * $\sigma_{xx(mx)} = (\sigma_{xx} + \sigma_{yy})/2 + \sqrt{[\{(\sigma_{xx} \sigma_{yy})/2\}^2 + (\tau_{xy})^2]}; \text{ when } \theta = \alpha/2, \alpha/2 + 180^\circ$ $\sigma_{xx(min)} = (\sigma_{xx} + \sigma_{yy})/2 \sqrt{[\{(\sigma_{xx} \sigma_{yy})/2\}^2 + (\tau_{xy})^2]}; \text{ when } \theta = \alpha/2 \pm 90^\circ$ * $\tau_{xy(max)} = \sqrt{[\{(\sigma_{xx} \sigma_{yy})/2\}^2 + (\tau_{xy})^2]}; \text{ when } \theta = \alpha/2 45^\circ, \alpha/2 + 135^\circ$ $\tau_{xy(min)} = -\sqrt{[\{(\sigma_{xx} \sigma_{yy})/2\}^2 + (\tau_{xy})^2]}; \text{ when } \theta = \alpha/2 + 45^\circ, \alpha/2 135^\circ$

* Mohr's Circle: Center (a, 0) = $[(\sigma_{xx} + \sigma_{yy})/2, 0]$ and Radius R = $\sqrt{[\{(\sigma_{xx} - \sigma_{yy})/2\}^2 + (\tau_{xy})^2]}$

- * Maximum Normal Stress Theory (Rankine): $|\sigma_1| \ge Y$, or $|\sigma_2| \ge Y$ * Maximum Normal Strain Theory (St. Venant): $|\sigma_1 v\sigma_2| \ge Y$, or $|\sigma_2 v\sigma_1| \ge Y$ * Maximum Shear Stress Theory (Tresca): $|\sigma_1 \sigma_2| \ge Y$, $|\sigma_1| \ge Y$, or $|\sigma_2| \ge Y$ * Maximum Distortion-Energy Theory (Von Mises): $\sigma_1^2 + \sigma_2^2 \sigma_1 \sigma_2 = Y^2$

To cause yielding

University of Asia Pacific Department of Civil Engineering Mid Semester Examination Syming 2015 (Fall) Program: B.Sc. Engineering (Civil)

Section B (Set 2)

Course Code: CE 213 Full Marks: 40 (= 4×10) Course Title: Mechanics of Solids II Time: 1 hour

Calculate the combined normal stresses at the four corners (a, b, c and d) of the fixed end section at A of the beam loaded as shown in *Figure 1*. Also calculate the combined shear stress for the spring. [Given: Coil diameter = 40 mm, Average spring radius = 100 mm, Number of coils = 10 and Shear modulus = 84 GPa.]

- 2. *Figure 2* shows a Mohr's circle of stress (kN/m²). Calculate
 - (a) Principal stresses
 - (b) σ_{xx} and τ_{xy} if $\sigma_{yy} = 4 \text{ kN/m}^2$
 - (c) Normal and shear stresses (σ_{xx} and τ_{xy}) acting on a plane defined by $\theta = 45^{\circ}$
- 3. A compound shaft consisting of a steel segment and an aluminium segment is acted upon by two torques as shown in <u>Figure 3</u>. Determine the maximum permissible value of T subject to the following conditions: $\tau_{steel} \le 12$ ksi, $\tau_{aluminium} \le 8$ ksi, and the angle of rotation of the free end is limited to 6°. For steel, G = 12,000 ksi and for aluminium, G = 4,000 ksi.

4. Calculate the required dimension 'a' of the rectangular rod ABC shown in the <u>Figure 4</u> if allowable shear stress is 140 MPa. For the dimension 'a', calculate the maximum angle of twist in the rod [G = 84 GPa].

List of Useful Formulae for CE 213

* Torsional Rotation $\phi_B - \phi_A = \int (T/J_{eq}G) dx$, and $= (TL/J_{eq}G)$, if T, J_{eq} and G are constants

Section	Torsional Shear Stress	J _{eq}	b/t	10	1.5	20	3.0	6.0	10.0	~
Solid Circular	$\tau = Tc/J$	$\pi d^{4}/32$		0.208	0.231	0.246	0.267	0.200	0.312	0 333
Thin-walled	$\tau = T/(2A) t$	$4 A^2 / (\int ds/t)$	ß	0.208	0.251	0.240	0.267	0.299	0.312	0.333
Rectangular	$\tau = T/(\alpha bt^2)$	βbt ³	L P	0.141	0.190	0.229	0.205	0.299	0.512	0.555

- * Normal Stress (along x-axis) due to Biaxial Bending (about y- and z-axis): $\sigma_x(y, z) = M_z y/I_z + M_y z/I_y$
- * Normal Stress (along x-axis) due to Combined Axial Force (along x-axis) and Biaxial Bending (about y- and z-axis): $\sigma_x(y, z) = P/A + M_z y/I_z + M_v z/I_v$
- * Corner points of the kern of a Rectangular Area are (b/6, 0), (0, h/6), (-b/6, 0), (0, -h/6)
- * Maximum shear stress on a Helical spring: $\tau_{max} = \tau_{direct} + \tau_{torsion} = P/A + Tr/J = P/A (1 + 2R/r)$ * Stiffness of a Helical spring is $k = Gd^4/(64R^3N)$
- * $\sigma_{xx}' = (\sigma_{xx} + \sigma_{yy})/2 + \{(\sigma_{xx} \sigma_{yy})/2\} \cos 2\theta + (\tau_{xy}) \sin 2\theta = (\sigma_{xx} + \sigma_{yy})/2 + \sqrt{[\{(\sigma_{xx} \sigma_{yy})/2\}^2 + (\tau_{xy})^2]} \cos (2\theta \alpha)$ $\tau_{xy}' = -\{(\sigma_{xx} - \sigma_{yy})/2\} \sin 2\theta + (\tau_{xy}) \cos 2\theta = -\sqrt{[\{(\sigma_{xx} - \sigma_{yy})/2\}^2 + (\tau_{xy})^2]} \sin (2\theta - \alpha)$ where $\tan \alpha = 2\tau_{xy}/(\sigma_{xx} - \sigma_{yy})$

To cause yielding

- * $\sigma_{xx(max)} = (\sigma_{xx} + \sigma_{yy})/2 + \sqrt{[\{(\sigma_{xx} \sigma_{yy})/2\}^2 + (\tau_{xy})^2]};$ when $\theta = \alpha/2, \alpha/2 + 180^\circ$ $\sigma_{xx(min)} = (\sigma_{xx} + \sigma_{yy})/2 - \sqrt{[\{(\sigma_{xx} - \sigma_{yy})/2\}^2 + (\tau_{xy})^2]}; \text{ when } \theta = \alpha/2 \pm 90^\circ$
- * $\tau_{xy(max)} = \sqrt{[\{(\sigma_{xx} \sigma_{yy})/2\}^2 + (\tau_{xy})^2]};$ when $\theta = \alpha/2 45^\circ$, $\alpha/2 + 135^\circ$ $\tau_{xy(min)} = -\sqrt{[\{(\sigma_{xx} - \sigma_{yy})/2\}^2 + (\tau_{xy})^2]}; \text{ when } \theta = \alpha/2 + 45^\circ, \alpha/2 - 135^\circ$

* Mohr's Circle: Center (a, 0) = $[(\sigma_{xx} + \sigma_{yy})/2, 0]$ and Radius R = $\sqrt{[{(\sigma_{xx} - \sigma_{yy})/2}^2 + (\tau_{xy})^2]}$

- * Maximum Normal Stress Theory (Rankine): $|\sigma_1| \ge Y$, or $|\sigma_2| \ge Y$
- * Maximum Normal Strain Theory (St. Venant): $|\sigma_1 v\sigma_2| \ge Y$, or $|\sigma_2 v\sigma_1| \ge Y$ * Maximum Shear Stress Theory (Tresca): $|\sigma_1 \sigma_2| \ge Y$, $|\sigma_1| \ge Y$, or $|\sigma_2| \ge Y$ * Maximum Distortion-Energy Theory (Von Mises): $\sigma_1^2 + \sigma_2^2 \sigma_1\sigma_2 = Y^2$

Department of Civil Engineering Mid Semester Examination Spring 2015 (Fall) Program: B.Sc. Engineering (Civil)

Section B (Set 1)

Course Code: CE 213	Course Title: Mechanics of Solids II
Full Marks: 40 (= 4 × 10)	Time: 1 hour

1. A compound shaft consisting of a steel segment and an aluminium segment is acted upon by two torques as shown in <u>Figure 1</u>. Determine the maximum permissible value of T subject to the following conditions: $\tau_{steel} \leq 84$ MPa, $\tau_{aluminium} \leq 55$ MPa, and the angle of rotation of the free end is limited to 6°. For steel, G = 84 GPa and for aluminium, G = 28 GPa.

- 2. Calculate the required dimension 'a' of the rectangular rod ABC shown in the <u>Figure 2</u> if allowable shear stress is 20 ksi. For the dimension 'a', calculate the maximum angle of twist in the rod [G = 12000 ksi].
- 3. Calculate the combined normal stresses at the four corners (a, b, c and d) of the fixed end section at A of the beam loaded as shown in <u>Figure 3</u>. Also calculate the combined shear stress for the spring. [Given: coil diameter = 1.5 in, average spring radius = 4 in, number of coils = 10 and shear modulus = 12000 ksi.]

- 4. Figure 4 shows a Mohr's circle of stress (ksi). Calculate
 - (a) Principal stresses
 - (b) σ_{xx} and τ_{xy} if $\sigma_{yy} = 3$ ksi
 - (c) Normal and shear stresses (σ_{xx} ' and τ_{xy} ') acting on a plane defined by $\theta = 30^{\circ}$

List of Useful Formulae for CE 213

Section	Torsional Shear Stress	J _{eq}	h/t	1.0	15	20	2.0	60	10.0	
Solid Circular	$\tau = Tc/J$	$\pi d^{4}/32$	0/1	1.0	1.5	2.0	5.0	0.0	10.0	<u> </u>
Thin-walled	$\tau = T/(2(A) t)$	$4\Omega^2/(ds/t)$	α	0.208	0.231	0.246	0.267	0.299	0.312	0.333
Pactongular	$r = T/(a h t^2)$	0143	β	0.141	0.196	0.229	0.263	0.299	0.312	0.333
Rectangular	$\tau = 1/(\alpha b t^2)$	pot								

* Torsional Rotation $\phi_B - \phi_A = \int (T/J_{eq}G) dx$, and $= (TL/J_{eq}G)$, if T, J_{eq} and G are constants

* Normal Stress (along x-axis) due to Biaxial Bending (about y- and z-axis): $\sigma_x(y, z) = M_z y/I_z + M_y z/I_y$

* Normal Stress (along x-axis) due to Combined Axial Force (along x-axis) and Biaxial Bending (about y- and z-axis): $\sigma_{\mathbf{x}}(\mathbf{y}, \mathbf{z}) = \mathbf{P}/\mathbf{A} + \mathbf{M}_{\mathbf{z}} \mathbf{y}/\mathbf{I}_{\mathbf{z}} + \mathbf{M}_{\mathbf{y}} \mathbf{z}/\mathbf{I}_{\mathbf{y}}$

* Corner points of the kern of a Rectangular Area are (b/6, 0), (0, h/6), (-b/6, 0), (0, -h/6)

* Maximum shear stress on a Helical spring: $\tau_{max} = \tau_{direct} + \tau_{torsion} = P/A + Tr/J = P/A (1 + 2R/r)$

* Stiffness of a Helical spring is $k = Gd^4/(64R^3N)$

* $\sigma_{xx}' = (\sigma_{xx} + \sigma_{yy})/2 + \{(\sigma_{xx} - \sigma_{yy})/2\} \cos 2\theta + (\tau_{xy}) \sin 2\theta = (\sigma_{xx} + \sigma_{yy})/2 + \sqrt{[\{(\sigma_{xx} - \sigma_{yy})/2\}^2 + (\tau_{xy})^2]} \cos (2\theta - \alpha)$ $\tau_{xy}' = -\{(\sigma_{xx} - \sigma_{yy})/2\} \sin 2\theta + (\tau_{xy}) \cos 2\theta = -\sqrt{[\{(\sigma_{xx} - \sigma_{yy})/2\}^2 + (\tau_{xy})^2]} \sin (2\theta - \alpha)$ where $\tan \alpha = 2\tau_{xy}/(\sigma_{xx} - \sigma_{yy})$

* $\sigma_{xx(max)} = (\sigma_{xx} + \sigma_{yy})/2 + \sqrt{[\{(\sigma_{xx} - \sigma_{yy})/2\}^2 + (\tau_{xy})^2]};$ when $\theta = \alpha/2, \alpha/2 + 180^\circ$ $\sigma_{xx(min)} = (\sigma_{xx} + \sigma_{yy})/2 - \sqrt{[\{(\sigma_{xx} - \sigma_{yy})/2\}^2 + (\tau_{xy})^2]};$ when $\theta = \alpha/2 \pm 90^\circ$

* $\tau_{xy(max)} = \sqrt{[\{(\sigma_{xx} - \sigma_{yy})/2\}^2 + (\tau_{xy})^2]}; \text{ when } \theta = \alpha/2 - 45^\circ, \alpha/2 + 135^\circ \tau_{xy(min)} = -\sqrt{[\{(\sigma_{xx} - \sigma_{yy})/2\}^2 + (\tau_{xy})^2]}; \text{ when } \theta = \alpha/2 + 45^\circ, \alpha/2 - 135^\circ$

* Mohr's Circle: Center (a, 0) = $[(\sigma_{xx} + \sigma_{yy})/2, 0]$ and Radius R = $\sqrt{[\{(\sigma_{xx} - \sigma_{yy})/2\}^2 + (\tau_{xy})^2]}$

- * Maximum Normal Stress Theory (Rankine): $|\sigma_1| \ge Y$, or $|\sigma_2| \ge Y$
- * Maximum Normal Strain Theory (St. Venant): $|\sigma_1 v\sigma_2| \ge Y$, or $|\sigma_2 v\sigma_1| \ge Y$
- * Maximum Shear Stress Theory (Tresca): $|\sigma_1 \sigma_2| \ge Y$, $|\sigma_1| \ge Y$, or $|\sigma_2| \ge Y$ * Maximum Distortion-Energy Theory (Von Mises): $\sigma_1^2 + \sigma_2^2 \sigma_1 \sigma_2 = Y^2$

To cause yielding

University of Asia Pacific Department of Civil Engineering Mid-Term Examination Fall 2015 Program: B.Sc. Engineering (Civil)

Course Title: Fluid mechanics	Course Code: C
Time: 1 hour	Full Marks: 60

There are **four** questions. Answer any **three**.

- 1. (a) Briefly explain the application of fluid mechanics in Civil Engineering. [05]
 - (b) A certain fluid weights 80 kN and occupies 10 m³. Determine unit weight and [05] specific gravity of the fluid.
 - (d) A fluid is confined between two plates. Upper plate is moving and lower plate is [10] at rest. Thickness of the fluid is 4ft. Velocity distribution of the fluid is expressed as V = 80-k(4-y)² where y is distance from lower plate in feet and V is velocity in ft/s. Find velocity gradient and shear stress at upper and lower plate. The fluid has dynamic viscosity of 1.5 stoke and specific gravity of 1.25.
- 2. (a) Prove that hydrostatic pressure at a point is same in all directions. [08]
 - (b) Draw the hydrostatic pressure variation on the inclined surface AB shown in [12] figure 2(b). Also find the value and location of total hydrostatic force on that inclined Surface. All values in the figure 2(b) are in meter. [Unit weight of fluid=12.0 kN/m³, width of AB is 10 m.

Figure 2(b)

CE 221

- 3. (a) Prove that center of pressure of a submerged plane surface is independent of unit [07] weight of the liquid.
 - (b) Gage pressure of point A is 175 kN/m². Find the absolute pressure of point B. [10] Use the manometer reading shown in figure 3(b).
 - (c) Define absolute and gage pressure. Differentiate between them.

Figure 3(b)

4.	(a)	What i	s flow net? Draw a typical flow net diagram.	[05]
	(b)	Differentiate between		[05]
		i.	Steady and Unsteady flow	
		ii.	Uniform and Non-uniform flow	
	(c)	In a flow, the velocity vector is expressed by V= -6xi-9yj+3zk. Determine the		

equation of the streamline. Streamline passes through a point A (4, 5, 12).

Page 2 of 2

[03]

University of Asia Pacific Department of Civil Engineering Mid-Term Examination Fall-2015 Program: B.SC Engineering (2nd year/2nd Semester)

Course Title- Principles of Economics	Course Code: ECN 201	Credits: 2.00
Time- 1 Hour		Full Marks- 30

Answer any three from the following four questions. Figures in the right margin indicate marks.

1.	(a) What is market demand? Explain with the help of Curve.	(2)
	(b) Explain the determinants of market demand.	(8)
2.	(a) Define market equilibrium with the help of diagram.	(5)

(b) Write down the effects of Surplus and Shortage with examples.

3. Jenny's Utility Maximization Table:

(4+3+3)Consumption of Coffee (Price \$1) Consumption of Biscuits (Price \$2) Units Total Marginal Marginal Units Total Marginal Marginal Utility Utility Utility Utility Utility Utility per \$ per \$ 0 0 0 0 ---1 12 1 16 -. -2 20 2 28 ----3 24 3 -. 36 4 _ 4 26 4 -40 _

(a) Copy and complete the table, showing the utility Jenny gains from both products.

- (b) Find the combination of Coffee and Biscuits that maximizes Jenny's utility if her total expenditure on these two products is \$4. Explain your answer using the utility maximizing rule and diagram.
- (c) If Jenny's total expenditure on products Coffee and Biscuits rises to \$9 while the prices of Coffee and Biscuits remain unchanged, what is her new utility maximizing combination of Coffee and Biscuits? Explain your answer and show the resulted diagram.

4. Write short Notes:

- (a) Economics
- (b) Opportunity Cost
- (c) Positive economics
- (d) Ceteris Paribus
- (e) Command Economy

(2x5=10)

(5)

University of Asia Pacific Department of Basic Sciences & Humanities Mid Semester Examination, Fall-2015 Program: B.Sc. Engineering (Civil) 2nd Year / 2nd Semester

C	ourse 7	Citle: Mathematics-IV Course No. MTH 203	Credit: 3.00
Time: 1.00 Hour			Full Mark: 60
N	.B: The	ere are Four questions. Answer any Three (3) of the following:	
1.	(a)	Define differential equation. Find the differential equation of	10
		$y = e^x(Acosx + Bsinx)$	
	(b)	Solve $:(x^2 + y^2 + x)dx + xy dy = 0$	10
2.	(a)	Define Integrating Factor and solve the differential equation	10
	(b)	$\frac{dy}{dx} + \frac{1-2x}{x^2}y = 1$ Solve the differential equation $(D^3 - D^2 - 6D)y = 1 + x^2$	10
3.	(a)	Define Cauchy-Euler equation and solve $(x^2D^2 - 3xD + 4)y = 0$	10
	(b)	Solve : $p^2 + 2pycotx - y^2 = 0$	10
4.	(a)	Define Bernoulli's equation and solve	10
		dy.	

$$\frac{dy}{dx} + x\sin 2y = x^3\cos^2 y$$

(b) Define Laplace transform. If $F(t) = t^n$, then $\mathcal{L}{F(t)} = \frac{n!}{s^{n+1}}$ 10