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Joint Displacements and Forces 

 

1. Coordinate Systems 
      y              z 
      
                

          

    

 

x           x 

            

               

 

           z          y 

Fig. 1: Coordinate System1    Fig. 2: Coordinate System2 

(widely used and also applied in this course)               (used in some formulations) 

 

2. Sign Convention for Joint Displacements and Forces 

           uy                 Fy 

            

         y        My    

       

    

              ux       Fx 

     x                Mx  

   z      Mz 

           

uz         Fz  

Fig. 3: Sign convention for Displacements   Fig. 4: Sign convention for Forces 

 

3. Sign Convention for Two-dimensional Problems 

           uy                 Fy 

            

                     

     

                                    

z                  ux  Mz     Fx 

 

              Fig. 5: Two-Dimensional Displacements                  Fig. 6: Two-Dimensional Forces 
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Stiffness Matrix for Truss Members in the Local Axes System 

 

Consider a truss member AB subjected to forces (XA, YA) and (XB, YB) at joints A and B.  

 
        YA                     YB 

                                     

             XA                  XB 
          A                     B 

 

Assume that the length of the member is L, its modulus of elasticity is E and cross-sectional area A.  

The axial stiffness of the member, Sx = Load to produce unit deflection = EA/L 

Also assume that the member has no flexural or shear stiffness.  

 

If the displacements of joints A and B are (uA, vA) and (uB, vB), the effect of the external forces may result in 

the following cases. 
 

         (uA=1)            (vA=1) 

    uA=1       

    vA=1 

 Sx uA                      Sx uA  

                   A                          B 
 

         (uB=1)            (vB=1) 

                    uB=1       

                    vB=1 

Sx uB                     Sx uB  

                    A                          B 
 

Equilibrium equations: 

 

Fx(A) = 0  XA = Sx uA + 0  Sx uB + 0        ……………….(1)

 Fy(A) = 0  YA = 0 + 0 + 0 + 0         ……………….(2) 

Fx(B) = 0  XB = Sx uA + 0 + Sx uB + 0       ……………….(3)

 Fy(B) = 0  YB = 0 + 0 + 0 + 0         ……………….(4) 

Eqs. (1)~(4) can be summarized in matrix form as 

 

   Sx  0  Sx  0         uA                XA    

0  0    0  0         vA                YA              

          Sx  0    Sx  0         uB                    XB               

0  0    0  0         vB                YB 

 Km
L
 um

L
 = pm

L
          ………………(5) 

where  Km
L
 = The stiffness matrix of member AB in the local axis system,  

um
L
 = The displacement vector of the member in the local axis system, and  

pm
L
 = The force vector of the member in the local axis system 

 

 

= 
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Transformation of Stiffness Matrix from Local to Global Axes 

 

The member matrices formed in the local axes system can be transformed into the global axes system by 

considering the angles they make with the horizontal.  

The local vectors and global vectors are related by the following equations. 

vB
G
  

       vB
L
          uB

L
      

              B            uB
G
 

      

      

                vA
G
                      

vA
L
          

                      A             uA
G
       

   uA
L
             

Local and global joint displacements of a truss member 

 

uA
L
 = uA

G
 cos  + vA

G 
sin       …………………(6) 

vA
L
 = uA

G
 sin  + vA

G 
cos       …………………(7) 

uB
L
 = uB

G
 cos  + vB

G 
sin       …………………(8) 

vB
L
 = uB

G
 sin  + vB

G 
cos       …………………(9) 

In matrix form 

              uA
L
       cos      sin        0      0         uA

G
 

              vA
L
        sin       cos        0      0         vA

G
 

            uB
L
        0       0     cos    sin           uB

G
 

              vB
L
          0       0   sin    cos          vB

G
 

 um
L
 = Tm um

G
                …………………(10) 

where Tm is called the transformation matrix for member AB, which connects the displacement vector 

um
L
 in the local axes of AB with the displacement vector um

G
 in the global axes. 

A similar expression can be obtained for the force vectors pm
L
 and pm

G
; i.e., 

 pm
L
 = Tm pm

G
                …………………(11) 

 

Eq. (5) can be rewritten as  Km
L
 Tm um

G
 = Tm pm

G
             …………….……(12) 

 (Tm
-1 

Km
L
 Tm) um

G
 = pm

G   

 (Tm
T
 Km

L
 Tm) um

G
 = pm

G                            
 ...………….……(13) 

where Tm
T
 is the transpose of the transformation matrix Tm, which is also = Tm

-1
 

 

If (Tm
T
 Km

L
 Tm) is written as Km

G
, the member stiffness matrix in the global axis system, then  

 

C
2
     CS       C

2
     CS                                      

CS     S
2
       CS     S

2
         [where C = cos , S = sin ] 

                      C
2
     CS       C

2
      CS          

                          CS    S
2
        CS       S

2
          

= 

= Sx Km
G 
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Assembly of Stiffness Matrix and Load Vector of a Truss 

 

Assemble the global stiffness matrix and write the global load vector of the truss shown below.  

Also write the boundary conditions [EA/L = Constant = 500 kip/ft]. 

 
           10

k
                 u8 

    D                 20
k
          

                        u7 

                      

       10  

                     u2             u4      u6 

         

                               u1        u3                    u5 

         A                   B                    C 

         

     10               10  

 

Member AB: (C = 1, S = 0)       Member BC: (C = 1, S = 0)  Member BD: (C = 0, S = 1) 

 

                       1   2     3    4      3   4     5    6                                3   4   7   8  

           1   0   1   0     1                  1   0   1   0     3                   0   0   0   0     3 

KAB
G
 = 500    0   0     0   0      2       KBC

G
 = 500    0   0     0   0      4     KBD

G
 = 500    0   1   0  1    4 

       1   0     1   0      3                1   0     1   0     5       0   0   0   0     7 

         0   0     0   0      4      0   0     0   0     6       0 1   0   1     8 

 

 

Member AD: (C = 1/ 2, S = 1/ 2)   Member CD: (C = 1/ 2, S = 1/ 2)        

 

                         1      2      7       8                            5        6      7      8      

           0.5    0.5  0.5  0.5    1             0.5    0.5  0.5  0.5    5            

KAD
G 

= 500    0.5    0.5  0.5  0.5     2   KCD
G 

= 500  0.5    0.5    0.5  0.5    6        

       0.5  0.5    0.5     0.5    7           0.5    0.5    0.5  0.5    7 

       0.5  0.5    0.5     0.5    8             0.5  0.5  0.5   0.5     8 

 

 

   

                        1+0.5    0+0.5   1          0          0.5           0.5                 XA 

                        0+0.5 0+0.5     0          0          0.5           0.5                     YA 

                        1       0        1+1+0   0+0+0   1          0           0               0                                    XB 

   0 0        0+0+0   0+0+1     0          0           0             1                        YB 

 K
G
 = 500                       1       0        1+0.5    0 0.5  0.5            0.5                       p

G 
=     0 

     0       0        0 0.5    0+0.5    0.5          0.5                                  YC 

         0.5      0.5 0 0       0.5        0.5   0+0.5+0.5  0+0.5 0.5                20 

         0.5      0.5 0         1         0.5       0.5  0+0.5 0.5  1+0.5+0.5                    10 

 

Boundary Conditions: u1 = 0, u2 = 0, u3 = 0, u4 = 0, u6 = 0 

   1     2    3    4   5  6          7     8 

1 

2 

3 

4 

5 

6 

7 

8 
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Boundary Conditions, Support Reactions and Member Forces 

After assembly of the member stiffness matrices, the equilibrium equations were 

  

 1.5 0.5    1 0 0 0        0.5       0.5 

0.5 0.5        0         0 0 0        0.5       0.5 

1        0           2         0         1          0           0             0 

   500   0     0      0 1      0          0           0           1      = 

               0     0          1       0         1.5     0.5      0.5          0.5 

  0        0   0       0        0.5      0.5        0.5         0.5       

0.5    0.5   0 0       0.5       0.5         1    0    

0.5    0.5   0         1       0.5     0.5         0    2 

 

Applying the boundary conditions (u1 = 0, u2 = 0, u3 = 0, u4 = 0, u6 = 0), the equations are modified to 

 

          1.5       0.5      0.5         u5      0          u5 = 22.22  10
-3

 ft  

500   0.5        1          0            u7      =     20           u7 = 51.11  10
-3

 ft  

          0.5         0          2           u8   10          u8 = 15.56  10
-3

 ft  

 

Once displacements are known, support reactions can be calculated from equilibrium equations; i.e., 

XA = 750 u1 + 250 u2 500 u3 + 0 u4 + 0 u5 + 0 u6 250 u7 250 u8 = 0 + 0 + 0 + 0 + 0 + 0 +12.78 3.89 = 

8.89
k
 

Similarly, YA = 12.78 3.89 = 8.89
k
, XB = 11.11

k
, YB = 7.78

k
, YC = 5.56 12.78 3.89 = 11.11

k
 

 

The bar forces can be calculated from the equation PAB = (EA/L) {(uB
G

uA
G
) cos  + (vB

G
vA

G
) sin } 

PAB = 500{(u3 u1) cos 0 +(u4 u2) sin 0 }= 0, PBC = 500 {(u5 u3) cos 0 +(u6 u4) sin 0 }= 11.11
 k
, 

 

PBD=500{(u7 u3) cos 90 +(u8 u4) sin 90 }=7.78
k
, PAD=500{(u7 u1)cos 45 +(u8 u2)sin 45 }= 12.57

k
, PCD = 

500 {(u7 u5) cos 135 +(u8 u6) sin 135 }= 15.71
k
  

 

In addition to the externally applied forces if the support C settles 0.10 , then u6 = 0.10  is known 

Applying boundary conditions (u1 = 0, u2 = 0, u3 = 0, u4 = 0, u6 = 0.10 ), the equations become 

 

           1.5       0.5      0.5         u5      0+250 u6    25     u5 = 33.33  10
-3

 ft  

500   0.5        1          0            u7      =     20 250 u6    =       5      u7 = 6.67  10
-3

 ft  

          0.5         0          2           u8   10+250 u6    15  u8 = 6.67  10
-3

 ft  

 

PAB = 0, PBC = 16.67
 k
, PBD = 3.33

k
, PAD = 4.71

k
, PCD = 23.57

k
 

u1 

u2 

u3 

u4 

u5 

u6 

u7 

u8 

XA 

YA 

XB 

YB 

0 

YC 

20 

10 
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Stiffness Formulation using Equilibrium of Joints 

 
                            u8 

    D                        

                         u7 

                      

       10  

      YA  YB                         YC                u2             u4      u6 

         

     XA   XB                             u1        u3                    u5 

         A                   B                    C 

               EA/L = Constant = 500 kip/ft 

     10               10       

 

For the truss ABCD, the equilibrium equations of joints A, B, C and D take the following forms when the 

equation for member force [i.e., PAB = (EA/L) {(uB
G 

uA
G
) cos  + (vB

G 
vA

G
) sin }] is applied 

FxA=0  XA+PAB+PAD cos 45 = 0 

 XA + 500(u3 u1) + 500{(u7 u1)cos 45  + (u8 u2)sin 45 }cos 45  = 0 

 500 {(1.0 + 0.5) u1 + 0.5 u2 1.0 u3  0.5 u7  0.5 u8} = XA        …………………(1) 

FyA = 0  YA + PAD sin 45  = 0  YA + 500 {(u7 u1) cos 45  + (u8 u2) sin 45 } sin 45  = 0 

 500 {0.5 u1 + 0.5 u2  0.5 u7  0.5 u8} = YA          …………………(2) 

FxB = 0  XB  PAB + PBC = 0  XB  500 (u3 u1) + 500 (u5 u3) = 0 

 500 {  1.0 u1 + 2.0 u3  1.0 u5} = XB               …………………(3) 

FyB = 0  YB + PBD = 0  YB + 500 (u8 u4) = 0 

 500 {1.0 u4  1.0 u8} = YB            …………………(4) 

FxC = 0   PBC   PCD cos 45  = 0  

 500 (u5 u3) 500{(u7 u5)cos 135  + (u8 u6)sin 135 }cos 45  = 0 

 500 {  1.0 u3 + (1.0 + 0.5) u5  0.5 u6  0.5 u7 + 0.5 u8} = 0        …………………(5) 

FyC = 0  YC + PCD sin 45  = 0  YC + 500 {(u7 u5) cos 135  + (u8 u6) sin 135 } sin 45  = 0 

 500 { 0.5 u5  + 0.5 u6 + 0.5 u7  0.5 u8} = YC          …………………(6) 

FxD = 0   20  PAD cos 45   + PCD cos 45  = 0   20  500 {(u7 u1)cos 45  + (u8 u2)sin 45 } cos 45  + 

500 {(u7 u5) cos 135  + (u8 u6) sin 135 } cos 45  = 0 

 500 { 0.5 u1  0.5 u2  0.5 u5 + 0.5 u6  + (0.5 + 0.5) u7 + (0.5  0.5) u8} = 20   ……………(7) 

FyD = 0  10  PBD  PAD sin 45    PCD sin 45 = 0  

 10  500 (u8 u4)  500 {(u7 u1) cos 45  + (u8 u2) sin45 } sin45   

  500 {(u7 u5) cos 135  + (u8 u6) sin 135 } sin 45  = 0 

    500{ 0.5 u1 0.5 u2  1.0 u4 + 0.5 u5  0.5 u6 + (0.5  0.5) u7+ (1.0 + 0.5 + 0.5) u8}= 10 ...…….(8) 

Eqs. (1)~(8) are the same equations given by the Stiffness Matrix assembled earlier.  

After applying boundary conditions for the known displacements u1, u2, u3, u4 and u6, Eqs. (5), (7) and (8) 

can be solved for the three unknown displacements u5, u7 and u8, whereupon Eqs. (1)~(4) and (6) can be 

used to calculate the support reactions XA, YA, XB, YB and YC.   

20
k
 

10
k
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Problems on Stiffness Method for Trusses 

1. Assemble the global stiffness matrix and write the global load vector of the truss shown below (do not 

apply boundary conditions) [EA/L = Constant = 1000 kip/ft]. 
       Py  

                  B            C 

               Px 

       

 

            10  

 

 

        A          D  

 

              

2. In the truss shown below, ignore the zero-force members and formulate the stiffness matrix, load vector 

and write down the boundary conditions [Given: EA/L = constant = 1000 kip/ft]. 

 

 

 

 

 

 

 

 

 

 

3. In the truss shown below, ignore the zero-force members and formulate the stiffness matrix, load vector 

and write down the boundary conditions [Given: EA/L = constant = 1000 kip/ft]. 

 

 

 

 

 

 

 

 

 

 

 

 

4.  In the truss described in Question 1, the forces in members BC and BD are both 10 kips (tensile). 

Calculate the other member forces and the applied loads Px and Py. 

5. For the truss described in Question 2, the force in member DE is 8 k (tension). Calculate the forces in 

the other members of the truss and deflections of joints D and E. 

6. In the truss shown below, the joint B moves 0.05  horizontally (i.e., no vertical movement) due to the 

applied force P. Calculate the forces in all the members of the truss  

 [EA/L = Constant = 500 kip/ft]. 

 
            A              B    

                P 

 

              8.66  

 

 

                               C        60     30      D 

5           10            5                     

        

45  45  

10 k 

A B C 

F 

D E 

H 

G 

4@25  = 100  

10 k 

25  

25  

P P 

A 
G 

B C D E F 

K 

J 
I 

H 

6 @50  = 300  

86.6  

50  

28.9  
30  

45  

60  

10  10  
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Stiffness Matrix for 2-Dimensional Frame Members in the Local Axes System 

 

Consider a frame member AB subjected to forces (XA, YA, MA) and (XB, YB, MB) at joints A and B.  

 
        YA      YB 

               MA           MB                       

             XA                            XB 
           A                   B 

 

Assume that the length of the member = L, its modulus of elasticity = E, cross-sectional area = A and 

moment of inertia about z-axis = I.  

The axial stiffness of the member, Sx = Load to produce unit deflection = EA/L 

Also assume S1 = shear stiffness = 12EI/L
3
, S2 = 6EI/L

2
, S3 = flexural stiffness = 4EI/L, S4 = 2EI/L  

 

If the displacements and rotations of joints A and B are (uA, vA, A), (uB, vB, B) and the fixed-end reactions 

are denoted by ‘FE’, the external forces may result in the following cases. 
         FEYA  FEYB 

                   

    FEXA                 FEXB  

FEMA       FEMB 

 

 (uA=1)                              (vA=1)     ( A=1) 

    uA=1            S1                   S2 

     vA =1        S2              S2              A=1               S4    

     Sx                  Sx                            S3 

                   A         B                S1                  S2        

  

   (uB=1)                  (vB=1)                 ( B=1)   S2 

                 uB=1    S2                S3 

                          S2            vB =1     B=1      

    Sx                                  Sx          S1        S4                 

                    A           B       
                  S1               S2 

Equilibrium equations: 

Fx(A) = 0  XA = FEXA + Sx uA + 0 + 0  Sx uB + 0 + 0      ……………….(1) 

 Fy(A) = 0  YA = FEYA + 0 + S1 vA + S2 A + 0  S1 vB + S2 B     ……………….(2) 

Mz(A) = 0  MA = FEMA + 0  + S2 vA + S3 A + 0   S2 vB + S4 B    ……………….(3) 

Fx(B) = 0  XB = FEXA Sx uA + 0 + 0 + Sx uB + 0 + 0         ……………….(4) 

 Fy(B) = 0  YB = FEYB + 0  S1 vA  S2 A + 0 + S1 vB  S2 B     ……………….(5) 

Mz(B) = 0  MB = FEMB + 0 + S2 vA + S4 A + 0  S2 vB + S3 B     ……………….(6) 

 

 

  Sx    0     0    Sx     0     0        uA               XA  FEXA    

 0     S1    S2     0    S1      S2       vA               YA  FEYA           

 0     S2    S3     0    S2      S4  A        MA   FEMA 

            Sx      0     0      Sx     0   0          uB                   XB              FEXB 

 0  S1  S2     0     S1     S2       vB               YB   FEYB 

 0    S2    S4     0    S2      S3 B        MB   FEMB 

 Km
L
 um

L
 = qm

L
  fm

L
  = pm

L
             ………………(7) 

where  Km
L
 = The stiffness matrix of member AB in the local axis system,  

um
L
 = The displacement vector of the member in the local axis system, and  

pm
L
 = The force vector of the member in the local axis system  

       (= qm
L
  fm

L
 = Imposed load vector  Fixed end reaction vector) 

=  
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Transformation of Stiffness Matrix from Local to Global Axes 

 

The member matrices formed in the local axes system can be transformed into the global axes system by 

considering the angles they make with the horizontal. The local displacements/rotations and global 

displacements/rotations are related by the following equations. 
vB

G
  

       vB
L
          uB

L
      

              B            uB
G
 

               B
L
, B

G
 

      

                vA
G
                     

 vA
L
            

                                   A              uA
G
  

uA
L      

 A
L
, A

G
          

Local and global joint displacements and rotations of a frame member 

uA
L
 = uA

G
 cos  + vA

G 
sin       …………………(8) 

vA
L
 = uA

G
 sin  + vA

G 
cos       …………………(9) 

A
L
 = A

G
                    ..………………(10) 

uB
L
 = uB

G
 cos  + vB

G 
sin       ………………..(11) 

vB
L
 = uB

G
 sin  + vB

G 
cos       ………………..(12) 

B
L
 = B

G
                    ………………..(13) 

In matrix form, using C = cos , S = sin  

              uA
L
       C     S    0 0      0    0   uA

G
 

              vA
L
        S    C     0 0      0    0   vA

G
 

 A
L
      0     0     1 0      0    0   A

G
 

            uB
L
      0     0     0 C     S      0    uB

G
 

              vB
L
        0     0     0   S     C      0   vB

G
 

    B
L
      0     0     0 0      0    1    B

G
 

 um
L
 = Tm um

G
                …………………(14) 

where Tm is the transformation matrix for member AB, which connects the displacement vector um
L
 in the 

local axes of AB with the displacement vector um
G
 in the global axes. 

 

A similar expression can be obtained for the force vectors pm
L
 and pm

G
; i.e., 

 pm
L
 = Tm pm

G
                …………………(15) 

Eq. (7) can be rewritten as  Km
L
 Tm um

G
 = Tm pm

G
                        …………….……(16) 

 (Tm
1 
Km

L
 Tm) um

G
 = pm

G   

 (Tm
T
 Km

L
 Tm) um

G
 = pm

G                            
 ...………….……(17) 

where Tm
T
 is the transpose of the transformation matrix Tm, which is also = Tm

1
 

 

If (Tm
T
 Km

L
 Tm) is written as Km

G
, the member stiffness matrix in the global axis system, then 

   Km
G
 um

G
 = pm

G                            
             ...………….……(18) 

= 
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Assembly of Stiffness Matrix and Load Vector of a 2D Frame 

 

The general form of the stiffness matrix for any member of a 2-dimensional frame is 

 

  SxC
2
+S1S

2
 (Sx S1)CS S2S (SxC

2
+S1S

2
) (Sx S1)CS S2S 

(Sx S1)CS SxS
2
+S1C

2     
S2C (Sx S1)CS  (SxS

2
+S1C

2
)   S2C 

   S2S      S2C
       

S3        S2S        S2C    S4 

                     (SxC
2
+S1S

2
)      (Sx S1)CS   S2S   SxC

2
+S1S

2
    (Sx S1)CS   S2S 

           (Sx S1)CS      (SxS
2
+S1C

2
)

             
S2C   (Sx S1)CS    (SxS

2
+S1C

2
) S2C 

  S2S      S2C
       

S4        S2S        S2C    S3 

 

Example 

Assemble the global stiffness matrix and write the global load vector of the frame shown below.  

Also write the boundary conditions [E, A, I are constant for all the members]. 
                 10 k 

Since E, A, I and L are uniform, so are Sx, S1, S2, S3 and S4                                20 k 
              A              B              

If E = 500 10
3
 ksf, A = 1 ft

2
, I = 0.10 ft

4
, L = 10 ft 

Sx = EA/L = 50,000 k/ft               5       5  

S1 = 12EI/L
3
 = 600 k/ft, S2 = 6EI/L

2
 = 3,000 k/rad                        1 k/ft 

S3 = 4EI/L = 20,000 k-ft/rad, S4 = 2EI/L =10,000 k-ft/rad       10         

 

For member AB, C = 1, S = 0             

For member BC, C = 0, S = 1                 C  

                  

d.o.k.i = 3 3 = 9, which are (uA, vA, A), (uB, vB, B) and (uC, vC, C), denoted by u1~u9. 

 

       1    2     3      4      5     6           4     5     6      7     8     9 

     Sx    0    0    Sx     0     0          S1    0     S2  S1     0    S2 

     0     S1   S2     0    S1      S2          0  Sx    0      0    Sx    0 

     0     S2   S3     0    S2      S4              S2    0     S3   S2       0     S4 

  Sx     0    0      Sx     0     0         S1    0   S2     S1    0   S2 

     0   S1  S2    0     S1    S2          0   Sx     0      0      Sx    0 

     0      S2   S4    0    S2      S3           S2    0     S4   S2       0     S3 

 

 

       1       2        3         4       5         6         7        8          9   

     Sx       0       0      Sx      0          0             u1                    XA                0 

     0        S1      S2       0     S1              S2             u2                   YA               5.0 

     0        S2      S3       0     S2              S4              u3                     0               12.5 

  Sx        0       0     Sx+S1  0+0     0+S2    S1       0       S2           u4                 20              0 + 5.0 

     0      S1    S2     0+0   S1+Sx   S2+0      0      Sx      0            u5 0              5.0 + 0 

     0        S2      S4     0+S2 S2+0     S3+S3  S2       0       S4          u6 0            12.5+8.33 

          S1       0       S2        S1       0     S2          u7                   XC               5.0 

         0       Sx       0          0        Sx      0           u8                    YC        0 

         S2       0         S4      S2            0        S3          u9                   MC    8.33 

 

 

Boundary Conditions: u1 = 0, u2 = 0, u7 = 0, u8 = 0, u9 = 0 

 

Therefore, the matrices and vectors can be modified accordingly (similar to the analysis of truss). 

Solving the resulting (4 4) matrix, the following displacements and rotations are obtained 

u3 = 8.12 10
4 
rad, u4 = 5.14 10

4 
ft, u5 = 1.27 10

4 
ft, u6 = 3.36 10

4 
rad 

Km
G
 = 

KAB
G
 = KBC

G
 = 

=  
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Stiffness Method for 2-D Frame neglecting Axial Deformations 

 

If axial deformations are neglected in the problem shown before, the displacements u4 and u5 are zero and 

the only unknown displacements are the rotations u3 and u6. In that case, the modified equilibrium equations 

are 

S3 u3 + S4 u6 = 12.5  20 10
3 
u3 + 10 10

3 
u6 = 12.5 

and S4 u3 + 2S3 u6 = 4.17  10 10
3 
u3 + 40 10

3 
u6 = 4.17 

[Note: S1 = 600 k/ft, S2 = 3,000 k/rad, S3 = 20,000 k-ft/rad, S4 = 10,000 k-ft/rad] 

Solving, u3 = 7.74 10
4 
rad, u6 = 2.98 10

4 
rad [instead of 8.12 10

4
, 3.36 10

4 
found before] 

If the axial deformations are neglected, the calculations and formulations are much simplified without 

significant loss of accuracy. 

Neglecting the axial deformations, the earlier problem can be formulated as shown below 

  
          u3    10 k         u6 

               A                 B    Here, d.o.k.i. = 2      

                          20 k  There can be three cases of response  

       (i) Case0: The fixed-end reactions 

       (ii) Case1: The reactions due to u3 

       (iii) Case2: The reactions due to u6 

 

 

 

 

       C 

 
5 k   5 k       S2 

      12.5 k    12.5 k             S4        S3 

             25 k 

                         8.33 k      S3     S4                     

                 S2              S2                             S3 

 

 

 

 

 

     8.33 k                         S4 

 Case 0 (FER)            5 k          Case 1 (u3 = 1)     Case 2 (u6 = 1)    S2 

                           

Equilibrium equations: 

Mz(A) = 0  12.5 + S3 u3 + S4 u6 = 0    20 10
3 
u3 + 10 10

3 
u6 = 12.5 

Mz(B) = 0  12.5 + 8.33 + S4 u3 + (S3+S3) u6 = 0  10 10
3 
u3 + 40 10

3 
u6 = 4.17 

Solving the two equations, u3 = 7.74 10
4  

rad, u6 = 2.98 10
4 
rad 

 

Calculation of Internal Forces (SF and BM): 

SF(A) = 5 + S2 u3 + S2 u6 = 5 + 3,000 ( 7.74 10
4
) + 3,000 (2.98 10

4
) = 3.54 k 

SF(B) (in AB) = 5  S2 u3  S2 u6 = 5  3,000 ( 7.74 10
4
)  3,000 (2.98 10

4
) = 6.46 k 

SF(B) (in BC) = 25 + 0  + S2 u6 = 25 + 3,000 (2.98 10
4
) = 25.89 k 

SF(C) (in BC) = 5 + 0   S2 u6 = 5  3,000 (2.98 10
4
) = 4.11 k        should be zero 

 

BM(A) = 12.5 + S3 u3 + S4 u6 = 12.5 + 20,000 ( 7.74 10
4
) + 10,000 (2.98 10

4
) = 0 

BM(B) (in AB) = 12.5+ S4 u3 + S3 u6 = 12.5+ 10,000 ( 7.74 10
4
)+ 20,000 (2.98 10

4
) = 14.28 k  

BM(B) (in BC) = 8.33 + 0  + S3 u6 = 8.33 + 20,000 (2.98 10
4
) = 14.29 k  

BM(C) =  8.33 + 0  + S4 u6 = 8.33 + 10,000 (2.98 10
4
) = 5.35 k   should be equal 

S2 

S2 
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Problems on Stiffness Method for Beams/Frames 

 

1.        1 k/   Support A settles 0.05   
    A                
       

        10                     20  

 

 

2. 5 k      1 k/     3.   
    A                

             

        

          10      20  

4.         5.    1 k/  

 

 

 
                    10                  20  

     

6. Assemble the stiffness matrix, load vector and calculate the unknown joint deflections and rotations of 

the beam ABC shown below, considering flexural and axial deformations as well as boundary conditions 

[Given: P = 250 k, w = 1 k/ft, F = 10 k, E = 400  10
3
 k/ft

2
]. 

             w                            F   

            A                 B                                   C 

 

             

              

          Beam Section 

      

7. 100 k           10 k     8. 

                 

      
                               Guided Roller 

            
                     10  

             

                 Support A settles 0.05                     Joint A rotates 1º anticlockwise 
               

          5               5  

       

9.  Use the Stiffness Method (considering flexural deformations only) to calculate the unknown joint 

deflections and rotations of the frame loaded as shown below [Given: EI = constant = 10  10
3
 kN-m

2
]. 

 

    a                   j    

                 

d          g  

   5m                

         

    

              100 kN  

  

 

   5m               

f           i 

 

      c                   l  

             

               5m           5m         5m 

 

D 
C 

B 
A 

A and B are guided roller supports; EIAB = 2 EI 

20  5  

5 k 

20  

8  

6  10  

1 k/  

B 

A 

B in an Internal Hinge 

EIDE = 2 EI 

C 

10 k 

5  15  

D 

1 k/  

10  5  5  

E 

Neglect axial deformations and assume  

EI = 40,000 k-ft
2
 

b and k are Guided Rollers 

b           e            h              k 

5
0

 k
N

/m
 

A and C are Guided Rollers 

P 

10  

15  

15  15  

P/2 
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Analysis of Three-Dimensional Trusses and Frames 

 

1.  Three-Dimensional Trusses 

Three-dimensional trusses have 3 unknown displacements at each joint; i.e., the deflection u along x-axis, 

deflection v along y-axis and deflection w along z-axis. Therefore the size of the member stiffness matrix is 

(6 6). If Sx = EA/L, then the stiffness matrix in the local axes system is 

 

   1  0 0 1  0         0 

   0  0 0   0  0         0 

         Km
L
 =   Sx 0  0 0   0  0         0 

           1  0 0   1  0         0 

0  0 0   0  0         0 

0  0 0   0  0         0 

 

The member stiffness matrix in the global axes system is 

 

   Cx
2
  CxCy CxCz Cx

 2
  CxCy CxCz 

   CyCx  Cy
2
 CyCz CyCx  Cy

2
 CyCz 

   Km
G
 =  Sx CzCx  CzCy Cz

2
 CzCx  CzCy Cz

2
 

                   Cx
 2
  CxCy CxCz   Cx

 2
  CxCy CxCz 

           CyCx  Cy
2
 CyCz   CyCx  Cy

2
 CyCz 

                               CzCx  CzCy Cz
2
   CzCx  CzCy Cz

2
 

 

where Cx = cos , Cy = cos , Cz = cos   

[ ,  and  are the angles the member makes with the coordinate axes x, y and z respectively] 

After assembling the stiffness matrix and load vector and applying known boundary conditions, the 

unknown displacements are calculated by any standard method of solving simultaneous equations.  

Once the displacements are known, the member forces are calculated by the following equation 

PAB = Sx [(uB uA) Cx + (vB vA) Cy + (wB wA) Cz] 

 

2.  Three-Dimensional Frames 

Three-dimensional frames have 6 unknown displacements at each joint; i.e., the deflections (u, v, w) along 

the x, y and z-axis and rotations ( x, y, z) around the x, y and z-axis. Therefore the size of the member 

stiffness matrix is (12 12), which has the following form in the local axes system   

 

 

 

 

 

  

  

    

     Km
L
 = 

 

 

 

 

 

 

The transformation matrix Tm and the transformed stiffness matrix Km
G
 in the global axes system are 

complicated and not written here. However, the method of applying boundary conditions and solving for the 

unknown displacements are similar to the methods mentioned earlier. 

Sx      Sx      

 S1z    S2z  S1z    S2z 

  S1y  S2y    S1y  S2y  

   Tx      Tx   

  S2y  S3y    S2y  S4y  

 S2z    S3z  S2z    S4z 

Sx      Sx      

 S1z    S2z  S1z    S2z 

  S1y  S2y    S1y  S2y  

   Tx      Tx   

  S2y  S4y    S2y  S3y  

 S2z    S4z  S2z    S3z 
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Assembly of Stiffness Matrix and Load Vector of a Three-Dimensional Truss 

Assemble the global stiffness matrix and write the global load vector of the three dimensional truss shown 

below. Also write the boundary conditions [EA/L = Constant = 500 kip/ft]. 

 

                 10  

            

 

 

    10
k
                   

 

 

      10     20
k
 

 

 

 

    10                 10  

 

                      

Member DB: (Cx = 1, Cy = 0, Cz = 0)  Member DC: (Cx = 0, Cy = 0, Cz = −1)     

 

 

 

 

 

 

 

 

 

Member DA: (Cx = −0.707, Cy = −0.707, Cz = 0) 

 

 

 

 

 

 

 

 

 

 

0.5 0.5 0       −0.5 −0.5 0 

0.5 0.5 0       −0.5 −0.5 0 

0 0 0       0 0 0 

   1 0 0    −1 0 0 

   0 0 0    0 0 0 

   0 0 0    0 0 0 

      0 0 0 0 0 0 

      0 0 0 0 0 0 

      0 0 1 0 0 −1 

−0.5 −0.5 0 −1 0 0 0 0 0 1+0+0.5 0+0+0.5 0+0+0 

−0.5 −0.5 0 0 0 0 0 0 0 0+0+0.5 0+0+0.5 0+0+0 

0 0 0 0 0 0 0 0 −1 0+0+0 0+0+0 0+1+0 

 

 

Boundary Conditions: u1 = 0, u2 = 0, u3 = 0, u4 = 0, u5 = 0, u6 = 0, u7 = 0, u8 = 0, u9 = 0 

x 

y 

z 

A 

C 

B D 

u1 

u2 

u3 

u10 

u11 

u12 
u4 

u5 

u6 

u7 

u8 

u9 

   1   0    0  1    0    0 
   0   0    0    0    0    0 
   0   0    0    0    0    0 
 1   0    0    1    0    0 
   0   0    0    0    0    0 
   0   0    0    0    0    0 
 

KDB
G
 = 500 

  10  11  12  4    5    6 
10   

11  

12 

4 

5 

6 

KDC
G
 = 500 

 10  11 12   7    8    9 

10   

11  

12 

7 

8 

9 

  0.5  0.5   0  0.5  0.5  0 
  0.5  0.5   0  0.5  0.5  0 
    0    0     0     0       0    0 

0.5 0.5  0   0.5   0.5    0 
0.5 0.5  0   0.5   0.5    0 

    0     0    0     0      0     0 
 

KDA
G
 = 500 

  10   11   12    1     2    3 
10   

11  

12 

1 

2 

3 

   0   0    0    0    0    0 
   0   0    0    0    0    0 
   0   0    1    0    0  1 
   0   0    0    0    0    0 
   0   0    0    0    0    0 
   0   0  1    0    0    1 
 

K
G
 = 500 

     1        2       3      4     5    6    7    8    9           10             11            12 
1     

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

p
G 

= 

XA 

YA 

ZA 

XB 

YB 

ZB 

XC 

YC 

ZC 

10 

−20 

0 
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Applying boundary conditions 

 

      1.5    0.5    0        u10            10 

      0.5    0.5    0        u11    =    −20 

                   0       0      1        u12            0 

 

Solving the three equations  u10 = 0.06 , u11 = −0.14 , u12 = 0 

 

Support Reactions 

XA = 250 u1 + 250 u2 − 250 u10 − 250 u11 = 20 k 

YA = 250 u1 + 250 u2 − 250 u10 − 250 u11 = 20 k 

ZA = 0 

XB = 500 u4 − 500 u10 = −30 k 

YB = 0 

ZB = 0 

XC = 0 

YC = 0 

ZC = 500 u9 − 500 u12 = 0 

 

Member Forces 

FDA = 500 {−0.707 (u1 − u10) −0.707 (u2 − u11) + 0 (u3 − u12)} = −28.28 k 

FDB = 500 {1 (u4 − u10) + 0 (u5 − u11) + 0 (u6 − u12)} = −30 k 

FDC = 500 {0 (u7 − u10) + 0 (u8 − u11) − 1 (u9 − u12)} = 0 

 

 

 

500 
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Problems on the Analysis of Three-Dimensional Trusses 

Apply boundary conditions and ignore zero-force members whenever necessary/convenient 

[Assume EA/L = constant = 500 k/ft for all questions] 

1.  Calculate the joint deflections, support reactions and member forces of the space truss analyzed in class 

if support A settles 0.10  vertically downwards. 

 

2. Calculate the member forces of the space truss abcd loaded as shown below, if Px = 0, Py = 10 k, Pz = 0. 

 

 

 

 

 

 

 

 

3.  Calculate the member forces and applied loads Px, Py, Pz in the space truss abcd shown in Question 2, if 

the joint a moves 0.10  right wards and 0.05  downwards due to the applied loads (i.e., no displacement 

in z-direction). 

 

4. Calculate the support reactions and member forces of the space truss loaded as shown below.  

 
 

 

             

             

             

               

                             b     

                               

        d     

                

     .            

             a                                                c   

             

             
 

5. Assemble the stiffness matrix, load vector and write down the boundary reactions of the three-

dimensional truss loaded as shown below.  
 

 
 

              

             

             

             

             

             

             

             

             

            

x 

d 

a 
b 

c, d 

a 

y 

x 

c 
b a 

d 

10 k 

10  10  

20  

5  

5  

z 

x 

c, d b, e 

a 
10 k 

Yb, Ye Yc, Yd 

5  15  

20  

5  

10  

y 

x 

z 

x 

Px 

y 

20  20  

20  

b 

c 

20  40  

x 

z 

a 10 k 

d 

c 

e 

b 

Roller Support 

10  10  

5  15  

Py 

Pz 

Px 

Hinge Support 

Xb 

Zb 

Xc 

Zc 

Xd 

Zd 
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Calculation of Degree of Kinematic Indeterminacy (Doki) 

Determine the doki (i.e., size of the stiffness matrix) for the structures shown below, considering boundary 

conditions. For the frames, also determine the doki if axial deformations are neglected.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3D Truss 3D Frame 

2D Frame 3D Frame 2D Frame 

3D Frame 3D Truss 

2D Frame 3D Frame 

2D Frame 3D Frame 
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Energy Formulation of Geometric Nonlinearity 

Linear structural analysis is based on the assumption of small deformations and linear elastic behavior of 

materials. The analysis is performed on the initial undeformed shape of the structure. As the applied loads 

increase, this assumption is no longer accurate, because the deformations may cause significant changes in 

the structural shape. Geometric nonlinearity is the change in the elastic load-deformation characteristics of 

the structure caused by the change in the structural shape. 

Among various types of geometric nonlinearity, the structural instability or moment magnification caused by 

large compressive forces, stiffening of structures due to large tensile forces, change in structural parameters 

due to applied dynamic loads are significant. Rather than using equilibrium equations, it is often more 

convenient to formulate geometrically nonlinear problems by the Method of Virtual Work. 

 

Method of Virtual Work  

Another way of representing Newton’s equation of equilibrium is by energy methods, which is based on the 

law of conservation of energy. According to the principle of virtual work, if a system in equilibrium is 

subjected to virtual displacements u, the virtual work done by the external forces ( WE) is equal to the 

virtual work done by the internal forces ( WI) 

WI = WE                            ...…………………(1) 

where the symbol  is used to indicate ‘virtual’. This term is used to indicate hypothetical increments of 

displacements and works that are assumed to happen in order to formulate the problem. 

 

Energy Formulation and Buckling of Beams-columns 

                   
                           

                                          

                                  

       

Transversely Loaded Member and Assumed Shape 

 

Applying the method of virtual work to flexural members subjected to transverse load of q(x) per unit length 

and axial (tensile) force P   u E I u  dx +  u  P u  dx =  q(x) dx u   ..…...……………(2) 

Using the energy formulation assuming u(x) = u0 (x) provides the following equation 

 u0 (x) EI u0 (x) dx +  u0 (x) P u0 (x) dx =  q(x) dx u0 (x) 

 {  EI [ (x)]
2
 dx +  P [ (x)]

2
 dx} u0 =  q(x) (x) dx           ……….………….(3) 

Carrying out the integrations after knowing (or assuming) (x), Eq. (3) can be rewritten as, 

kTotal* u0 = f*               ……………….…...(4) 

where k*, f*are the ‘effective’ stiffness and force of the system, with 

  kTotal* =  EI [ (x)]
2
 dx +  P [ (x)]

2
 dx          ……...…………..(5.1) 

  f* =  q(x) (x) dx            ……………….…(5.2) 

Therefore a tensile force P (i.e., positive P) will further stiffen the beam-column (i.e., increase its stiffness) 

and a compressive force (i.e., negative P) will make it more flexible and increase the resulting deflection and 

internal forces compared to linear analysis. In the extreme case, the beam-column will buckle if the effective 

stiffness k* becomes zero, which is possible only for a compressive force  

  Pcr = −{ EI [ (x)]
2
 dx}/ [ (x)]

2
 dx                 ……………….…...(6) 

It is obvious that the accuracy of the formulation depends on the accuracy of the assumed shape function 

(x), which must at least satisfy the natural boundary conditions. However, other than assuming a more 

appropriate shape function, its accuracy cannot be improved by any other means. 

u0 q(x) 

A B 
P P 

u(x) = u0 (x) 

L 



 19 

Stiffness Matrix and Geometric Stiffness Matrix of Beams-columns 

 
           u1      u3 

    u2               q(x)                 u4        

                    

             L 

Transversely Loaded Beam-Column 

Two-noded elements with cubic interpolation functions for u1, u2, u3 and u4 are typically chosen in such 

cases, so that u(x) = u1 1
 
+ u2 2 + u3 3 + u4 4                               ……………(7) 

where 1(x) = 1 3(x/L)
2 
+2(x/L)

3
, 2(x) = x{1  (x/L)}

2
 

3(x) = 3(x/L)
2 

2(x/L)
3
, 4(x) = (x L)(x/L)

2
                             ……………(8) 

u = u1 1
 
+ u2 2  + u3 3  + u4 4 ; u = u1 1

 
+ u2 2  + u3 3  + u4 4           .……….…..(9) 

u = u1 1
 
+ u2 2  + u3 3  + u4 4 ; u = u1 1

 
+ u2 2  + u3 3  + u4 4         .…...…..…(10) 

 
         1(x) 

                                                                                  2(x) 

 

    

    

               
             3(x)       

                 4(x) 

    

               

 

 

Shape functions 1(x), 2(x), 3(x) and 4(x) 

Inserting the values of u , u , u  and u  in Eq. (1), and equating the coefficients of 1  

( E I 1  1  dx + P 1  1  dx) u1 + ( E I 1  2  dx + P 1  2  dx) u2  

+ ( E I 1  3  dx + P 1  3  dx) u3 + ( E I 1  4  dx + P 1  4  dx) u4 = q(x) 1 dx     …...…...(11) 

 

Similarly, equating the coefficients of 2, 3 and 4 will produce two (4 4) matrices Km and Gm, along with 

a (4 1) load vector pm here, and their elements are given by 

Kmij = EI i
 

j  dx  Gmij =  P i j  dx   pmi =  q(x) i dx             ……..…(12) 

The equations of the stiffness matrix and geometric stiffness matrix for flexural members guarantee that for 

‘linear’ problems,  

(i) The stiffness and geometric stiffness matrices are symmetric [i.e., element (i,j) = element (j,i)],  

(ii) The diagonal elements of the matrices are positive [as the element (i,i) involves squares]. 

 

As mentioned, for structural analysis the effect of axial load on flexural behavior can be approximated by 

simplified formulations of the geometric nonlinearity problem. For this purpose, a new matrix called the 

geometric stiffness matrix (G) has been added to the original stiffness matrix K obtained from linear 

analysis of the undeformed deflected shape of the structure. Therefore, the total stiffness matrix of a flexural 

member is the sum of these two matrices; i.e.,  

Ktotal = K + G           ……………………..(13) 

Using the same shape functions i (i = 1~4) as done for the linear analyses of beams and frames, the 

following geometric stiffness matrix is formed in the local axes system of a member of length L. 

x 

x 

x 

x 

P P 
A B 
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             36      3L     36      3L                              

Gm
L 

= (P/30L)     3L     4L
2      

 3L    L
2
                               ……….....(14) 

     36   3L      36     3L   

    3L     L
2     

 3L     4L
2
   

 

This geometric stiffness matrix can be added to the linear stiffness matrix shown before, and the total 

stiffness matrix is transformed and assembled using the equations and formulations mentioned in earlier 

lectures. Once the total stiffness matrix Ktotal is obtained in the global axes after applying appropriate 

boundary conditions, the structural analyses can be carried out using the procedures mentioned before.  

 

The governing equations of motion can be written in matrix form as 

Ktotal u = f               ……………….….(15) 

However it should be noted that the presence of axial force P in the geometric stiffness matrix makes the 

problem nonlinear because P is obtained from member deformations, which cannot be found before 

performing the structural analysis. Therefore the system properties and output are interdependent, which 

calls for iterative methods of structural analysis. However, P is known for special cases (e.g., single column 

subjected to a known axial load) so that the problem is not nonlinear any more.    

 

Buckling occurs when the structure loses its stiffness, i.e., when the total stiffness matrix Ktotal becomes 

singular. Therefore, the buckling load can be obtained by solving the eigenvalue problem 

 Ktotal = 0  K+G = 0     ………………………..(16) 

Since the stiffness and geometric stiffness matrix are derived from approximate shape functions, the critical 

buckling load obtained from Eq. (16) is also approximate and can be improved if the beam-column is 

divided into more segments throughout its length. 

 

Just as an axial compressive load can reduce the effective stiffness of a structural member, a tensile load 

may increase it. This will cause stiffening of the member and a corresponding decrease in deformations. 
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Example 

For EI = 40 10
3
 k-ft

2
, L = 10 ft, calculate the approximate first buckling load for  

(i) a simply supported beam, (ii) a cantilever beam  

(iii) Suggest how to improve the results. 

(iv) Also calculate the tip deflection and rotation of the cantilever beam when subjected to a uniformly 

distributed transverse load of 1 k/ft along with a compressive load of 400 kips. 

Solution 

(i)  For the simply supported beam, the two d.o.f. are A and B, so the K and G matrices are 

          16  8             400    100 

     K = 10
3
   and  G = (P/300)            A                                  B 

        8 16            100     400 

For critical buckling load P, the determinant of (K + G) is = 0  

 (16000 + 4P/3)
2 

(8000  P/3)
2 
= 0  16000 + 4P/3

 
=  (8000  P/3)  

 5P/3 = 8000; i.e., P = 4800 k, or P + 24000 = 0; i.e., P = 24000 k (negative  compression) 

Compared to the first two ‘exact’ buckling loads, 
2
EI/L

2
 and 4

2
EI/L

2
 ; i.e., 3948 k and 15791 k  

(ii)  For the cantilever beam, the two d.o.f. are vA and A, the K and G matrices being 

          0.48     2.4             36         30 

     K = 10
3
   and  G = (P/300)            A       B 

        2.4 16             30       400 

For critical buckling load P, the determinant of (K + G) is = 0  

 (480 + 0.12 P) (16000 + 4 P/3)
 

 (2400 + 0.10 P)
2 
= 0  0.15 P

2 
+ 2080 P +192 10

4 
= 0  

 P = [ 2080  {( 2080)
2

 4 0.15 192 10
4
}]/0.30 = 994 k and 12872 k 

Compared to the first two ‘exact’ buckling loads, 
2
EI/(2L)

2
 and 9

2
EI/(2L)

2
; i.e. 987 k, 8883 k 

(iii) The predictions can be improved by dividing the beams into more segments or using more appropriate 

shape functions. For the simply supported beam 

Dividing into two segments, half of the symmetric beam takes the form 

For the simply supported beam, the two d.o.f. are A and vC, so the K and G matrices are 

          32       9.6             100     15    A    C 

     K = 10
3
   and  G = (P/150)                                                  

        9.6    3.84                     15        36 

For critical buckling load P, the determinant of (K + G) is = 0 

 (32000 + 2P/3) (3840 + 0.24P)
 

( 9600 P/10)
2 
= 0  0.15 P

2
 + 8320 P + 30.72 × 10

6 
= 0 

 P = 3978 k, or 51489 k (negative  compression) 

They only represent the first two ‘odd’ buckling loads, 
2
EI/L

2
 and 9

2
EI/L

2
; i.e., 3948 k, 35531 k 

Assuming (x) = sin( x/L) [with (0) = (L) = 0, (x) = ( /L) cos( x/L), (x)= −( /L)
2 
sin( x/L)] 

Effective stiffness k* =  EI [ (x)]
2
 dx = ( /L)

4
 EI L/2 

Effective geometric stiffness g* =  P [ (x)]
2
 dx = ( /L)

2
 P L/2 

kTotal*= k* + g* = 0  Buckling load Pcr = −{( /L)
4
 EI L/2}/{( /L)

2
 L/2}= −

2 
EI//L

2 
= −3948 k, which is 

the exact first buckling load. 

(iv) If P = 400 kips for the cantilever beam, the total stiffness matrix Ktotal and load vector f are  

   480  48     2400  40          432  2360            5.00  

            Ktotal =       =        f = 

2400  40   16000  533.33         2360     15466.67            8.33 

Solving the two equations, vA = 51.86 10
3
 ft, and A = 7.374 10

3
 rad 

 (compared to the results when P = 0, i.e., vA = 31.25 10
3
 ft, and A = 4.167 10

3
 rad)  

 Assuming (x) = 1 sin( x/2L), (x) = ( /2L) cos( x/2L) 

 Effective stiffness k* =  EI [ (x)]
2
 dx = ( /2L)

4
 EI L/2 = 121.76  k/ft 

 Effective geometric stiffness g* =  P [ (x)]
2
 dx = ( /2L)

2
 P L/2 = 49.35 k/ft 

 Effective force f* =  q(x) (x) dx = qL(1  2/ ) = 3.63 kips 

 (121.76  49.35) u2 = 3.63  u2 = 50.18  10
3
 ft  

  vA = u2 (0) = u2 = 50.18  10
3
 ft, and A = u2 (0) = u2 ( /2L) = 7.882 10

3
 rad 
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Assembling Stiffness Matrix and Geometric Stiffness Matrix 

 

Assume EI = 40 10
3
 k-ft

2
 for the following problems 

1.             

       
          A                       B                  C     

     

 

           20                       20    Guided Roller 

 

Stiffness Matrix K =    8000 + 8000   =   16000 

 

Geometric Stiffness Matrix G =  (P/600)   1600 + 1600    =   (P/600)  3200 

 

 

 

2.       
          A                        B                          C     

     

 

           20                      20    Roller 

 

            8000 + 8000         4000
             

16000                4000 

Stiffness Matrix K =     = 

                                       4000                    8000
             

4000                  8000 

 

           1600 + 1600
                                

400                         3.2
   
   0.4 

Geometric Stiffness Matrix G =  (P/600)          =  (P/0.6) 

    
      

400 
         

                      1600
                                       

0.4     1.6 

 

 

3.       
          A                        B                    C     

     

 

           20                     20           Slope = 0, Deflections 0 

 

 

            8000 + 8000            600
  

16000                600 

Stiffness Matrix K =          = 

                                         600                        60
   

600                     60 

 

            1600 + 1600
             

60                           3200
   
    60 

Geometric Stiffness Matrix G =  (P/600)         =  (P/600) 

    
    

60 
         

               36
                                             

60         36 

 

P 

P 

P 
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Practice Problems on Geometrically Nonlinear Structures 

 

1. Calculate the force P needed to cause buckling of the beam ABC shown below 
 [Given: EIAB = 20  10

3
 k-ft

2
, EIBC = 40  10

3
 k-ft

2
]. 

 

 

 

 

 

2. Approximately calculate the critical buckling load of the beam ABC shown below. 
    

    EI = 40 10
3
 k-ft

2
     EI = 80 10

3
 k-ft

2    
  

                          

        A                  B     C 

                                    10                        10       

        

          

3. Calculate the value of force P needed to cause buckling of the beam abcdef shown below [Given: EIae = 

20  10
3
 k-ft

2
, EIef = 2EIae]. 

 

 

 

 
4. Use the Stiffness Method (considering geometric nonlinearity) to calculate the horizontal deflection at A 

and vertical deflection at C of the frame loaded as shown below [Given: EI = constant = 15  10
3
 k-ft

2
].  

 

 

 

 

 

 

 

 

 

5. Calculate the load w to cause buckling of the frame ABC shown below. 

 

              
                    Note: C is a guided roller 

 

 
 

 

 

 

6. Calculate the force P to cause buckling of the frame shown below, using w = 0.15P [EI = 40 10
3
 k-ft

2
]. 

  

 

              

      
 

 
 

 

 

 

 

w k/ft 

A 

B 
C 

EIBC = 80 10
3
 k-ft

2
 

20  

10  EIAB = 40 10
3
 k-ft

2
 

P P 

A 

C D 

5  

10  

P 

B 

10  10  

E 

F 
5  

P w k/ft 

B 

5 k/  

30  

15  

c is an Internal Hinge 

5  10   5  5  10  

b 

a c 

d 
f 

P P 

A 

100 k 

A, B, C are Guided Rollers 

C 

e 

20  20  

C 
B A 

P 
P A and C are guided 

roller supports 



 24 

Material Nonlinearity and Plastic Moment 

As mentioned in the previous section, structural properties cannot be assumed to remain constant in many 

practical situations. In addition to the geometric nonlinearity that may lead to instability of structures with 

linearly materials properties, the variation in material properties itself can make the structural analysis 

nonlinear. For example, yielding of the structural materials, a likely situation in a severe loading conditions 

or ground vibrations, may alter the stiffness properties, which needs to be updated with structural 

deformations.  

 

Material Nonlinearity in Concrete, Steel and Reinforced Concrete 

Concrete and steel are the most common among the construction materials used for Civil Engineering 

constructions. Among them, concrete is much stronger in compression than in tension (tensile strength is of 

the order of one-tenth of compressive strength). While its tensile stress-strain relationship is almost linear, 

the stress-strain relationship in compression is nonlinear from the beginning (Fig. 1).  

 

Steel on the other hand, has similar stress-strain properties in tension and compression. After an initial 

linearly-elastic portion, the stress remains almost constant while the strain increases significantly (a 

phenomenon called yielding). This is typically followed by some increase in stress (strain hardening) at a 

reducing elasticity, and finally a decrease in stress leading to breaking of the specimen (Fig. 2).  

 

Reinforced Concrete or RC is a unique combination of these two materials where the complexities of their 

constitutive behavior come into effect. The behavior of RC cannot be modeled properly by linear elastic 

behavior. Recognizing this, the design of RC structures has gradually shifted over the years from the 

‘elastic’ Working Stress Design (WSD) to the more rational Ultimate Strength Design (USD). The design of 

steel structures has also undergone similar transition from the Allowable Stress Design (ASD) method to the 

Load and Resistant Factor Design (LRFD) method. 

           

   Parabola     Typical  vs.           fult        

                                                             fbrk 

       fc              Straight Line           fy                                

                              

 fc      fs  E      Elastic-Perfectly Plastic Model 

         

           0         0   u    

                       

     Fig. 1: Stress-Strain Model for Concrete (Compression)                     Fig. 2: Typical Stress vs. Strain for Steel 

 
Analysis of Linearly Elastic and Inelastic Systems 

For a linearly elastic system the relationship between the applied force fs and the resulting deformation u is 

linear, i.e., 

 fs = k u                                     ……………………(1) 

where k is the linear stiffness of the system; its units are force/length. Implicit in Eq. (1) is the assumption 

that the linear fs-u relationship determined for small deformations of structure is also valid for large 

deformations. Because the resisting force is a single valued function of u, the system is elastic; hence the 

term k can be used in linearly elastic system. This is however not valid when the load-deformation 

relationship is nonlinear, i.e., when the stiffness itself is not constant but is a function of u. Thus the resisting 

force can be expressed as 

 fs = fs(u)                      .……………………....(2) 

and the system is called inelastic dynamic system. The structural analysis of such systems can only be 

performed by iterative methods. 
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Plastic Moment of Typical Sections 

The iterative method required to analyze nonlinear systems is quite laborious, time consuming and its 

convergence to the exact solution is not always guaranteed, it is usually not followed in typical structural 

analyses other than for very important projects. However, the calculation of the ultimate moment capacity of 

a cross-section or the ultimate load carrying capacity of a structure is usually much simpler, and is of more 

interest to a structural designer.  

 

The following examples show the calculation of yielding and ultimate moment capacities of typical steel and 

RC sections. 

 
Example 1 

Calculate the Yield Moment and Plastic Moment capacity of the sections shown below if they are made of 

elastic-fully plastic material (e.g., steel model shown in Fig. 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 2 

Calculate the Ultimate Moment capacity of the rectangular RC beam section shown below  

[Given: fc  = 4 ksi, fy = 60 ksi]. 

 

 

             

             

             

             

             

        

For b = 12 , d = 15.5 , As = 3 (1)
2
/4 = 2.36 in

2
  

 a = Asfy/(0.85f c  b) = 2.36  60/(0.85  4  12) = 3.46  

Mult = Asfy (d − a/2) = 2.36  60 (15.5 − 3.46/2) = 1946 k-in = 162.2 k-ft 

 

 

 

 

 

 

 

 

 

Steel Bars  

(1  diameter) 

12  

2.5  

15.5  

For the rectangular section, the neutral axis divides the area into two segments of (b  h/2) 

Compressive force = Tensile force = yp (bh/2) 

Plastic moment Mp = Tensile (or compressive) force  Moment arm = yp (bh/2)  h/2 

Mp = yp (bh
2
/4) 

The yield moment is My = yp (S) = yp (bh
3
/12)/(h/2) = yp (bh

2
/6) 

 

For the T-section, the equal-area axis divides the area along the flange line.  

Compressive force = Tensile force = yp (12  2) = 24 yp 

Plastic moment Mp = Tensile (or compressive) force  Moment arm = 24 yp  (1 + 6) 

Mp = yp (168) = 6048 k-in = 504 k-ft   [assuming yp = 36 ksi] 

Also, y = (24  1 + 24   8)/48 = 4.5 ;  c = 14 − 4.5 = 9.5  

I = 12  2
3
/12 + 24 (1 − 4.5)

2
 + 2  12

3
/12 + 24 (8 − 4.5)

2
 = 884 in

4
 

S = 884/9.5 = 93.05 in
3 

 My = yp (93.05) = 279.15 k-ft 

 

For the I-section, the equal-area axis divides the area symmetrically.  

Compressive force = Tensile force = yp {6  5/16 + (6 −5/16)  0.25} = 3.297 yp 

Plastic moment Mp = yp {1.875  (6 −5/32) + 1.422  (6 −5/16)/2}  2 = 30 yp 

Mp = yp (30) = 1800 k-in = 150 k-ft   [assuming yp = 60 ksi] 

h 

2  

12  

12  

2  

b 

5″/16

 

12  

6  

0.25  
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Ultimate Load of Simple Beams 

Plastic Hinge and Ultimate Load 

Since Plastic Moment of a section is its ultimate moment capacity, it cannot take any more moment beyond 

this. As such, the section behaves almost like an internal hinge within a structure. Such a hypothetical 

internal hinge is called Plastic Hinge; and by adding a new equation of statics, it reduces by one the degree 

of statical indeterminacy of the structure. Therefore, formation of such hinges can make the structure 

statically determinate, and eventually lead to its instability, which can cause the ultimate collapse of the 

structure, at the formation of Collapse Mechanism.  

By calculating the external loads necessary to form such hinges, it is possible to calculate the loads needed 

to form Collapse Mechanism of the structure. This load is called the Ultimate Load of the structure and is 

important to a designer because it provides information about the load that the structure can possibly sustain, 

as demonstrated by the following examples. 

Example 3 

Calculate the ultimate load capacity of the simply supported beams loaded as shown below  

[Given: Plastic Moment (Mp) of the section = 150 k-ft, as calculated for the I-section in Example 1]. 

 

 

             

             

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 4 

Calculate the ultimate load capacity of the fixed-ended beams loaded as shown below. 

 

 

             

             

   

 

 

 

 

 

P w per unit length 

P1 L/4 = Mp 

BMD 

w1 L
2
/8= Mp 

BMD 

When P = P1, Plastic Hinge forms at the 

midspan of the beam at a moment P1L/4. 

P1L/4 = Mp  P1 = 4Mp/L 

L = 25  and Mp= 150 k  

 Pult = P1 = 4  150/25 = 24 k 

  

-Shape 
-Shape 

When w = w1, Plastic Hinge forms again at 

the midspan at a moment of w1L
2
/8. 

w1L
2
/8 = Mp  w1 = 8Mp/L

2
 

L = 25  and Mp= 150 k  

 wult = w1 = 8  150/25
2
 = 1.92 k/ft 

P 

L/2 L/2 L 

w per unit length 

P1 L/8 

P1 L/8 P1 L/8 wL
2
/12 wL

2
/12 

When w = w1, the first Plastic Hinges form at both 

ends at moments of w1L
2
/12. 

w1L
2
/12 = Mp  w1 = 12Mp/L

2
 

But a Collapse Mechanism is not formed until 

another hinge forms at midspan at a load w = w2; 

i.e., when w2L
2
/8 − Mp = Mp  w2 = 16Mp/L

2
 

L = 25 , Mp= 150 k   wult = w2 = 3.84 k/ft 

When P = P1, Plastic Hinges form at both ends 

and midspan of the beam at moments of P1L/8. 

P1L/8 = Mp  P1 = 8Mp/L, when a Collapse 

Mechanism is formed 

L = 25 , Mp= 150 k  

 Pult = P1 = 8  150/25 = 48 k 

L/2 L/2 L 

wL
2
/24 
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Energy Formulation of Collapse Mechanism 

The calculation of ultimate load capacity based on bending moment diagrams demonstrates the actual 

sequence of plastic hinge formulation in a structure leading to its ultimate failure. However, it requires the 

bending moment diagram after each hinge formation, which may not always be convenient to form. A more 

direct (though not as detailed) calculation of the ultimate load capacity is possible by using the virtual work 

method on assumed collapse mechanisms of structures. As mentioned in previous formulations, if a system 

in equilibrium is subjected to virtual displacements u, the virtual work done by the external forces ( WE) is 

equal to the virtual work done by the internal forces ( WI); i.e., WE = WI  

Example 5 

Use Energy Formulation to calculate the ultimate load capacity of the simply supported beams shown below. 

 

 

             

             

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 6 

Use Energy Formulation to calculate the ultimate load capacity of the beams shown below. 

 

 

             

             

   

 

P w per unit length 

For the deflected shape 1 

External work done = P  

Internal work done = Mp(  + ) = 2Mp  

P  = 2Mp  = 2Mp{ /(L/2)} 

 P = 4Mp/L 

For the deflected shape 2 

External work done = P  = P L/2 

Internal work done = Mp( + ) 

P L/2 = Mp( + )  

 P{ /(L x)}L/2 = Mp{ /x + /(L x)} 

 P = 2Mp/L{(L/x 1) +1}= 2Mp/x 

Pmin = 2Mp/(L/2) = 4Mp/L 

 

-Shape 

External work done = wL /2 

Internal work done = Mp( + ) 

wL /2 = Mp(  + ) = Mp{ /x + /(L x)} 

 w = (2Mp/L){1/x + 1/(L x)} 

w/ x = 0  1/x
2
 + 1/(L x)

2
 = 0  x = L/2 

 wult = wmin = (2Mp/L
2
) (2 +2) = 8Mp/L

2
 

P 

L/2 L/2 

w per unit length 

External work done = wL /2 

Internal work done = Mp( + ) + Mp  = Mp( +2 ) 

wL /2 = Mp( +2 ) = Mp{ /x + 2 /(L x)} 

 w = (2Mp/L){1/x + 2/(L x)} 

w/ x = 0  1/x
2
 + 2/(L x)

2
 = 0  x = L/( 2+1) 

 wult = wmin = (2Mp/L
2
){ 2+1+2+ 2} = 11.66Mp/L

2
 

External work done = P  

Internal work done = Mp(2 ) + Mp  + Mp    

                               = 4Mp  

P  = 4Mp  = 2Mp{ /(L/2)} 

 Pult = 8Mp/L 

L/2 L/2 L 

  
  

1-Shape 

 

  
  

-Shape 

 

2-Shape 

  
  

 

x (L x) 

 

  
  

 

x (L x) 

  
  

 

x (L x) 
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Ultimate Load of Continuous Beams, Frames 

Example 7 

Use the Energy Method to calculate the plastic moment Mp needed to prevent the development of plastic 

hinge mechanism in the beam ABCD loaded as shown below [Given: Mp(AB) = Mp (BC) = Mp, Mp(CD) = 2Mp]. 

 

 

 

 

 

 

For span AB: w = 11.66Mp(AB)/L
2 

 5 = 11.66 Mp/10
2 

 Mp = 42.88 k-ft 

For span BC: w = 16Mp(BC)/L
2 

 5 = 16Mp/15
2 

 Mp = 70.31 k-ft 

For span CD: P = 8Mp(CD)/L
 

 50 = 8(2Mp)/20
 

 Mp = 62.50 k-ft 

 Mp(req) = 70.31 k-ft 

If Mp(req) = 70.31 k-ft, w(all)AB = 11.66  70.31/10
2 
 = 8.20 k/ft 

  w(all)BC = 16  70.31/15
2 
 = 5.00 k/ft 

  P(all)CD = 8  2  70.31/20
 
 = 56.25 k 

 

Example 8 

Use the Energy Method to calculate the load (i) w needed to form beam mechanism, (ii) P needed to form 

the sidesway mechanism in the frames ABCD loaded as shown below [Given: Mpb  Mpc]. 

 

 

 

 

 

 

 
 

B 
A 

C 

5 k/  

D 

15  10  10  10  

50 k 

B 

A 

C 

w per length 

L 

D 

P 

H 

B 

A 

C 

w per length 

D 

P 

H 

L 

For beam mechanism, wult = 16Mpb/L
2 

For sidesway mechanism,  

P  = Mpc  + Mpc  = 2Mpc  = 2Mpc /H 

Pult = 2Mpc/H 

  
  

 

 

  

For beam mechanism, wult = 16Mpb/L
2 

For sidesway mechanism,  

P  = Mpc  + Mpc  + Mpc  + Mpc   

       = 4Mpc  = 4Mpc /H 

Pult = 4Mpc/H 
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Practice Problems on Material Nonlinearity and Plastic Moment 

1. Use bending moment diagram of the beam ABCDE loaded as shown below to calculate the force P 

needed to develop plastic hinge mechanism [Given: yp = 40 ksi]. 

 

 

             

              

                               

  

    5                   10                          10       5  

     

2. Calculate the distributed load w k/ft needed to develop plastic hinge mechanism of the beam ABC 

loaded as shown below (by using the bending moment diagram) [Given: yp = 40 ksi]. 

 

             

              

                               

  

                

                             

 

 

 

 

3. Use the bending moment diagram of the reinforced concrete beam ABCD loaded as shown below to 

calculate the concentrated load P needed to develop plastic hinge mechanism, assuming P to act 

(i) upward, (ii) downward [Given: fc  = 3 ksi, fy = 50 ksi]. 
 

 

             

              

                               

                

                             

 

 

4.  Answer Question 1, 2 and 3 using the Energy Method of Collapse Mechanism. 

5. Calculate the plastic moment Mp needed to prevent the development of plastic hinge mechanism in the 

beam ABCD loaded as shown below (by using the Energy Method) [Given: Mp(AB) = Mp (BCD) = Mp]. 

 
 

 

 

 

 

6. Use the Energy Method to calculate the plastic moment Mp of the cross-sections necessary to prevent the 

development of collapse mechanism in the (i) continuous bridge ABCD, and (ii) balanced cantilever 

bridge ABEFCD loaded as shown below. 

 

 

                              

   

 

                              

A                       B E                        F     C                                D 

                        

A 
B 

C 
E 

P P P 

D 

Cross-section of the beam 

Cross-section of the beam 

C 

3/8  

16  

8  

0.25  

A 
B 

w k/ft 

15  5  

10  

10  

2  

2  

Beam Cross-section 

C 

A 

B 

10  5   5  

D 

P 

10  

10  

2.5  

2.5  

3-#7 bars 

2-#7 bars 

A 

2 k/ft 

10  5  

C 

10 k 

10  

D 

3 k/ft 

E and F are Internal Hinges 

80  80  60  20  20  

B 
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Dynamic Equations of Motion for Lumped Mass Systems 

Formulation of the Single-Degree-of-Freedom (SDOF) Equation 

A dynamic system resists external forces by a combination of forces due to its stiffness (spring force), 

damping (viscous force) and mass (inertia force). For the system shown in Fig. 1.1, k is the stiffness, c the 

viscous damping, m the mass and u(t) is the dynamic displacement due to the time-varying excitation force 

f(t). Such systems are called Single-Degree-of-Freedom (SDOF) systems because they have only one 

dynamic displacement [u(t) here]. 

 

   
        m               f(t), u(t)          f(t)  

        

                      

           k          c 

        

 

 
  Fig. 1.1: Dynamic SDOF system subjected to dynamic force f(t) 

 

Considering the free body diagram of the system, f(t)  fS  fV = ma   …………..(1.1) 

where fS = Spring force = Stiffness times the displacement = k u    …..………(1.2)  

          fV = Viscous force = Viscous damping times the velocity = c du/dt   …..………(1.3)  

          fI = Inertia force = Mass times the acceleration = m d
2
u/dt

2
                 ..…………(1.4) 

 

Combining the equations (1.2)-(1.4) with (1.1), the equation of motion for a SDOF system is derived as, 

m d
2
u/dt

2
 + c du/dt + ku = f(t)                   …..………(1.5) 

This is a 2
nd

 order ordinary differential equation (ODE), which needs to be solved in order to obtain the 

dynamic displacement u(t). As will be shown subsequently, this can be done analytically or numerically. 

 

Eq. (1.5) has several limitations; e.g., it is assumed on linear input-output relationship [constant spring (k) 

and dashpot (c)]. It is only a special case of the more general equation (1.1), which is an equilibrium 

equation and is valid for linear or nonlinear systems. Despite these, Eq. (1.5) has wide applications in 

Structural Dynamics. Several important derivations and conclusions in this field have been based on it. 

 

Governing Equation of Motion for Systems under Seismic Vibration 

The loads induced by earthquake are not body-forces; rather it is a ground vibration that induces certain 

forces in the structure. For the SDOF system subjected to ground displacement ug(t) 

   
        m               u(t)          u(t)  

        

                      

           k          c 

        

 

 

Fig. 1.2: Dynamic SDOF system subjected to ground displacement ug(t) 

fS = Spring force = k (u ug), fV = Viscous force = c (du/dt dug/dt), fI = Inertia force = m d
2
u/dt

2
               

Combining the equations, the equation of motion for a SDOF system is derived as,  

m d
2
u/dt

2
 + c (du/dt dug/dt) + k (u ug) = 0  m d

2
u/dt

2
 + c du/dt + k u =  c dug/dt + k ug ...……(1.6) 

 m d
2
ur/dt

2 
+ c dur/dt + k ur = m d

2
ug/dt

2
                     ..…..……………(1.7) 

where ur = u ug is the relative displacement of the SDOF system with respect to the ground displacement. 

Eqs. (1.6) and (1.7) show that the ground motion appears on the right side of the equation of motion just like 

a time-dependent load. Therefore, although there is no body-force on the system, it is still subjected to 

dynamic excitation by the ground displacement. 

fS fV 

m a 

fS fV 

m a 

ug(t) ug(t) 
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Formulation of the Two-Degrees-of-Freedom (2-DOF) Equation 

The simplest extension of the SDOF system is a two-degrees-of-freedom (2-DOF) system, i.e., a system 

with two unknown displacements for two masses. The two masses may be connected to each other by 

several spring-dashpot systems, which will lead to two differential equations of motion, the solution of 

which gives the displacements and internal forces in the system. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.1: Dynamic 2-DOF system and free body diagrams of m1 and m2 

  

Fig. 2.1 shows a 2-DOF dynamic system and the free body diagrams of the two masses m1 and m2. In the 

figure, ‘u’ stands for displacement (i.e., u1 and u2) while ‘v’ stands for velocity (v1 and v2). Denoting 

accelerations by a1 and a2, the differential equations of motion are formed by applying Newton’s 2
nd

 law of 

motion to m1 and m2; i.e., 

m1a1 = f1(t) + k2(u2–u1) + c2(v2–v1) – k1u1 – c1v1  

 m1a1 + (c1+c2) v1 + (k1+k2)u1 – c2v2 – k2u2 = f1(t)        ……..…(2.1) 

and m2a2 = f2(t) – k2 (u2–u1) – c2(v2–v1)  m2a2 – c2v1 + c2v2 – k2u1 + k2u2 = f2(t)      ……..…(2.2) 

Putting v = du/dt (i.e., v1 = du1/dt, v2 = du2/dt) and a = d
2
u/dt

2
 (i.e., a1 = d

2
u1/dt

2
, a2 = d

2
u2/dt

2
) in Eqs. (2.1) 

and (2.2), the following equations are obtained 

m1 d
2
u1/dt

2 
+ (c1+c2) du1/dt – c2 du2/dt + (k1+k2) u1 – k2 u2 = f1(t)     ………....(2.3) 

m2 d
2
u2/dt

2 
– c2 du1/dt + c2 du2/dt  – k2 u1 + k2 u2 = f2 (t)      …………(2.4) 

Eqs. (2.3) and (2.4) can be arranged in matrix form as 

 m1      0        d
2
u1/dt

2
           c1 + c2        –c2   du1/dt            k1+k2       –k2 u1   f1(t) 

                                                  

 

0     m2       d
2
u2/dt

2                 
–c2              c2   du2/dt            –k2             k2 u2    f2(t) 

            ………....(2.5) 

Eqs. (2.5) represent in matrix form the set of equations [i.e. (2.3) and (2.4)] to evaluate the displacements 

u1(t) and u2(t). In this set, the matrix consisting of the masses (m1 and m2) is called the mass matrix, the one 

consisting of the dampings (c1 and c2) is called the damping matrix and the one consisting of the stiffnesses 

(k1 and k2) is called the stiffness matrix of this particular system. These matrices are different for various 2-

DOF systems, so that Eq. (2.5) cannot be taken as a general form for any 2-DOF system. 

For a lumped 2-DOF system subjected to ground displacement ug(t), velocity vg(t) and acceleration ag(t), the 

following equations are obtained in matrix form 

 

 m1      0       d
2
u1/dt

2
            c1 + c2       c2   du1/dt            k1 + k2      k2      u1           

         +       +         = 

0      m2      d
2
u2/dt

2   
 c2            c2   du2/dt            k2            k2       u2      0 

 

                …………(2.6) 

 

 m1      0       d
2
u1r/dt

2
            c1 + c2      c2  du1r/dt            k1 + k2      k2      u1r    m1 ag 

          +        +          =  

0      m2      d
2
u2r/dt

2   
 c2            c2  du2r/dt            k2             k2      u2r     m2 ag 

      …………(2.7) 

For a MDOF system, Eq. (2.5) can be written in the general form of the dynamic equations of motion, 

M d
2
u/dt

2 
+ C du/dt + K u = f(t)                                    ……….….(2.8)

c1 k1 

m1 

c1v1 

c2 (v2 v1) k2 (u2 u1) 

c2 (v2 v1) k2 (u2 u1) 

c2 

f2(t), u2(t) 

c1 

f1(t), u1(t) 

k2 

m2 

k1 

m1 
k1u1 

f2(t), u2(t) 

c2 k2 

m2 

+ + = 

f1(t), u1(t) 

c1vg + k1ug 
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Numerical Solution of SDOF Equation 

 

The equation of motion for a SDOF system can be solved analytically for different loading functions. Even 

if the assumptions of linear structural properties are satisfied; the practical loading situations can be more 

complicated and not convenient to solve analytically. Numerical methods must be used in such situations. 

 

The most widely used numerical approach for solving dynamic problems is the Newmark-  method. 

Actually, it is a set of solution methods with different physical interpretations for different values of . The 

total simulation time is divided into a number of intervals (usually of equal duration t) and the unknown 

displacement (as well as velocity and acceleration) is solved at each instant of time. The method solves the 

dynamic equation of motion in the (i + 1)
th
 time step based on the results of the i

th
 step. 

 

The equation of motion for the (i +1)
th
 time step is 

 

m (d
2
u/dt

2
)i+1 + c (du/dt)i+1 + k (u)i+1 = f i+1  m ai+1 + c vi+1 + k ui+1 = f i+1         …..………(3.1) 

 

where ‘a’ stands for the acceleration, ‘v’ for velocity and ‘u’ for displacement. 

 

To solve for the displacement or acceleration at the (i + 1)
th
 time step, the following equations are assumed 

for the velocity and displacement at the (i + 1)
th
 step in terms of the values at the i

th
 step. 

 

vi+1 = vi + {(1 ) ai +  ai+1} t                         ….…………(3.2) 

ui+1 = ui + vi t + {(0.5 ) ai +  ai+1} t
2
                        …….………(3.3) 

 

By putting the value of vi+1 from Eq. (3.2) and ui+1 from Eq. (3.3) in Eq. (3.1), the only unknown variable ai+1 

can be solved from Eq. (3.1). 

 

In the solution set suggested by the Newmark-  method, the Constant Average Acceleration (CAA) method 

is the most popular because of the stability of its solutions and the simple physical interpretations it 

provides. This method assumes the acceleration to remain constant during each small time interval t, and 

this constant is assumed to be the average of the accelerations at the two instants of time ti and ti+1. The CAA 

is a special case of Newmark-  method where  = 0.50 and  = 0.25. Thus in the CAA method, the 

equations for velocity and displacement [Eqs. (3.2) and (3.3)] become 

 

vi+1 = vi + (ai + ai+1) t/2                           ……………(3.4) 

ui+1 = ui + vi t + (ai + ai+1) t
2
/4                          ……………(3.5) 

 

Inserting these values in Eq. (3.1) and rearranging the coefficients, the following equation is obtained, 

 

(m + c t /2 + k t
2
/4)ai+1 = fi+1 – kui – (c + k t)vi – (c t/2 + k t

2
/4)ai         ….….…..(3.6) 

(meff) ai+1 = fi+1 – kui –(ceff) vi – (meff1) ai              ….….…..(3.6)  

 

To obtain the acceleration ai+1 at an instant of time ti+1 using Eq. (3.6), the values of ui, vi and ai at the 

previous instant ti have to be known (or calculated) before. Once ai+1 is obtained, Eqs. (3.4) and (3.5) can be 

used to calculate the velocity vi+1 and displacement ui+1 at time ti+1. All these values can be used to obtain the 

results at time ti+2. The method can be used for subsequent time-steps also. 

 

The simulation should start with two initial conditions, like the displacement u0 and velocity v0 at time t0 = 0. 

The initial acceleration can be obtained from the equation of motion at time t0 = 0 as 

 

a0 = (f0 – cv0 – ku0)/m                       ……………(3.7) 
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Example 3.1 

For the undamped SDOF system described before (m = 1 k-sec
2
/ft, k = 25 k/ft, c = 0 k-sec/ft), calculate the 

dynamic response for a Ramped Step Loading with p0 = 25 kips and t0 = 0.5 sec [i.e., p(t) = 50 t  25 kips] 

 

Results using the CAA Method (for time interval t = 0.05 sec) as well as the exact analytical equation are 

shown below in tabular form. 

 

Table 3.1: Acceleration, Velocity and Displacement for t = 0.05 sec 

m (k-sec
2
/ft) c (k-sec/ft) k (k/ft) t0 (sec) dt (sec) meff (k-sec

2
/ft) ceff (k-sec/ft) meff1 (k-sec

2
/ft) 

1.00 0.00 25.00 0.50 0.05 1.0156 1.2500 0.0156 

 

 

i t (sec) fi (kips) ai (ft/sec
2
) vi (ft/sec) ui (ft) uex (ft) 

0 0.00 0.0 0.0000 0.0000 0.0000 0.0000 

1 0.05 2.5 2.4615 0.0615 0.0015 0.0010 

2 0.10 5.0 4.7716 0.2424 0.0091 0.0082 

3 0.15 7.5 6.7880 0.5314 0.0285 0.0273 

4 0.20 10.0 8.3867 0.9107 0.0645 0.0634 

5 0.25 12.5 9.4693 1.3571 0.1212 0.1204 

6 0.30 15.0 9.9692 1.8431 0.2012 0.2010 

7 0.35 17.5 9.8556 2.3387 0.3058 0.3064 

8 0.40 20.0 9.1354 2.8135 0.4346 0.4363 

9 0.45 22.5 7.8531 3.2382 0.5859 0.5888 

10 0.50 25.0 6.0876 3.5867 0.7565 0.7606 

11 0.55 25.0 1.4858 3.7760 0.9406 0.9463 

12 0.60 25.0 -3.2073 3.7330 1.1283 1.1353 

13 0.65 25.0 -7.7031 3.4603 1.3081 1.3159 

14 0.70 25.0 -11.7249 2.9746 1.4690 1.4769 

15 0.75 25.0 -15.0251 2.3058 1.6010 1.6082 

16 0.80 25.0 -17.4007 1.4952 1.6960 1.7017 

17 0.85 25.0 -18.7055 0.5925 1.7482 1.7516 

18 0.90 25.0 -18.8592 -0.3466 1.7544 1.7547 

19 0.95 25.0 -17.8523 -1.2644 1.7141 1.7109 

20 1.00 25.0 -15.7468 -2.1044 1.6299 1.6230 

21 1.05 25.0 -12.6723 -2.8149 1.5069 1.4962 

22 1.10 25.0 -8.8179 -3.3521 1.3527 1.3387 

23 1.15 25.0 -4.4209 -3.6831 1.1768 1.1600 

24 1.20 25.0 0.2481 -3.7874 0.9901 0.9715 

25 1.25 25.0 4.9019 -3.6586 0.8039 0.7846 

26 1.30 25.0 9.2540 -3.3048 0.6298 0.6112 

27 1.35 25.0 13.0367 -2.7475 0.4785 0.4620 

28 1.40 25.0 16.0171 -2.0211 0.3593 0.3462 

29 1.45 25.0 18.0118 -1.1704 0.2795 0.2711 

30 1.50 25.0 18.8981 -0.2477 0.2441 0.2412 

31 1.55 25.0 18.6214 0.6903 0.2551 0.2586 

32 1.60 25.0 17.1989 1.5858 0.3120 0.3220 

33 1.65 25.0 14.7179 2.3837 0.4113 0.4276 

34 1.70 25.0 11.3312 3.0350 0.5468 0.5688 

35 1.75 25.0 7.2472 3.4994 0.7101 0.7368 

36 1.80 25.0 2.7172 3.7485 0.8913 0.9212 

37 1.85 25.0 -1.9800 3.7670 1.0792 1.1105 

38 1.90 25.0 -6.5553 3.5536 1.2622 1.2929 

39 1.95 25.0 -10.7273 3.1215 1.4291 1.4570 

40 2.00 25.0 -14.2391 2.4974 1.5696 1.5928 

 

Fig. 6.1: Acceleration vs. Time
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Fig. 6.2: Velocity vs. Time
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Fig. 6.3: Displacement vs. Time
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Stiffness and Mass Matrices of Continuous Systems 

Axial Members 

Applying the method of virtual work to undamped members subjected to axial load of p(x,t) per unit length, 

  WI = WE   m dx d
2
u/dt

2 
u +  u  E A u  dx =  p(x,t) dx u                …………….….(4.1) 

 
        u1A          p(x,t)             u1B 

       A          B   

                

              

             

   Fig. 4.1: Axially Loaded Member      

 

If the displacements of a member AB (Fig. 4.1) are assumed to be interpolating functions [ 1(x) and 2(x)] 

of two nodal displacements u1A and u1B,      

 u = u1A 1 + u1B 2  u  = u1A 1  + u1B 2           ….…….…..………(4.2), (4.3) 

d
2
u/dt

2 
= d

2
u1A/dt

2 
1 + d

2
u1B/dt

2 
2           ……………………..……(4.4) 

u = u1A 1 + u1B 2  u  = u1A 1  + u1B 2           …………...……….(4.5), (4.6) 

Eq. (4.1) can be written in matrix form as, 

 

       m 1 1dx           m 1
 

2dx      d
2
u1A/dt

2     
EA 1 1 dx        EA 1 2 dx      u1A        p(x,t) 1dx 

                            

 

       m 2 1dx           m 2
 

2dx      d
2
u1B/dt

2     
EA 2 1 dx        EA 2 2 dx      u1B        p(x,t) 2 dx 

              

      ...…...…..(4.7) 

For concentrated loads p(x,t) is a delta function of x, as mentioned before. If loads XA and XB are applied at 

joints A and B, they can be added to the right side of Eq. (4.7). 

Eq. (4.7) can be rewritten as, Mm d
2
um/dt

2 
+ Km um

 
= fm                     ………………(4.8) 

where Mm and Km are the mass and stiffness matrices of the member respectively, while d
2
um/dt

2
,
 
um and fm 

are the member acceleration, displacement and load vectors. They can be formed once the shape functions 1 

and 2 are known or assumed. 

Mmij = m i
 

j dx, and Kmij = EA i j  dx                    ………………………(4.9) 

 

Flexural Members 
 

      u2A           u2B 

    3A                q(x,t)                    3B        

       A          B   

               L 

 
            Fig. 4.2: Transversely Loaded Member      

 

Applying the method of virtual work to undamped members subjected to flexural load of q(x,t) per unit 

length   m dx d
2
u/dt

2 
u +  u E I u  dx =  q(x,t) dx u              …….……………..(4.10) 

 

Following the same type of formulation as for axial members, the member equations for undamped flexural 

members subjected to transverse load of q(x,t) per unit length (Fig. 4.2) can be written in matrix form like 

Eq. (4.8), but the member matrices are different here. 

 

Interpolation functions for u2A, 3A, u2B and 3B are typically chosen in such cases, so that  

u(x) = u2A 1
 
+ 3A 2 + u2B 3 + 3B 4                                   ……….………………(4.11) 

 

The size of the matrices is (4 4) here, due to transverse joint displacements (u2A, u2B) joint rotations ( 3A, 

3B) and their elements are given by 

Mmij = m i
 

j dx, and Kmij = EI i
 

j  dx                  ………………………(4.12) 

+ = 

L 
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Example 4.1 

For modulus of elasticity E = 450000 ksf, cross-sectional area A = 1 ft
2
, length L = 10 ft, mass per length m 

= 0.0045 k-sec
2
/ft

2
, calculate the natural frequencies of a cantilever beam in axial direction, analyzing with 

(i) one lumped-mass element, (ii) one consistent-mass element, (iii) two lumped-mass elements. 

 

Solution 

(i) For lumped-mass elements 

 

     mL/2                0        EA/L    –EA/L   

                  Mm =                   Km =         

     0             mL/2              –EA/L      EA/L  

 

Assuming one linear element with properties mentioned, mL/2 = 0.0225 k-sec
2
/ft, EA/L = 45000 k/ft 

 

     0.0225            0                  45000    –45000   

               Mm =                   Km =         

       0             0.0225             –45000      45000  

     

Applying the boundary conditions that the only non-zero DOF is the axial deformation at B (u1B), the mass 

and stiffness matrices are reduced to (1 1) matrices  M = 0.0225,  K = 45000  

 K– n
2
 M  = 0  45000 –  n

2
 0.0225 = 0  n

2
 = 2  10

6
  n = 1414 rad/sec 

(ii) For linear functions 1(x) = 1–x/L,  2(x) = x/L, the mass and stiffness matrices obtained from Eq. (4.7) 

 

     mL/3             mL/6        EA/L    –EA/L   

                  Mm =                   Km =         

    mL/6             mL/3              –EA/L      EA/L  

 

Assuming one linear element with properties mentioned, mL/3 = 0.015 k-sec
2
/ft, EA/L = 45000 k/ft 

 

     0.0150        0.0075                  45000    –45000   

               Mm =                   Km =         

    0.0075        0.0150             –45000      45000  

     

Applying the boundary conditions that the only non-zero DOF is the axial deformation at B (u1B), the mass 

and stiffness matrices are reduced to (1 1) matrices  M = 0.015,  K = 45000 

 K– n
2
 M  = 0  45000 –  n

2
 0.015 = 0  n

2
 = 3  10

6
  n = 1732 rad/sec 

(iii) For two lumped-mass elements of length 5  each, mL/2 = 0.01125 k-sec
2
/ft, EA/L = 90000 k/ft 

      The following mass and stiffness matrices are obtained for each element 

 

     0.01125         0                 90000   –90000   

               Mm =                                           Km =         

      0           0.01125             –90000     90000  

Applying the boundary conditions that axial deformation at A (u1A) is zero, only the axial deformations at B 

(u1B) and C (u1C) are non-zero, the mass and stiffness matrices are reduced to (2 2) matrices.    

  
           

        u1A= 0               u1B                  u1C 

                 A                           B        C              

                                 

 

        0.01125              0       90000       –90000  

         M =                         K =   

            0        0.0225    –90000    180000 

  K- n
2
 M  = 0  (90000 – n

2
 0.01125) (180000 – n

2
 0.0225) – (–90000)

2
 = 0  

 n = 1531 rad/sec, 3696 rad/sec 

Analytical solutions for the first two natural frequencies are 1571 rad/sec, 4712 rad/sec respectively. 

5  5  
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Example 4.2 

For the member properties E = 450000 ksf, I = 0.08 ft
4
, L = 10 ft, m = 0.0045 k-sec

2
/ft

2
, calculate the 

approximate first natural frequency of the cantilever beam in transverse direction, analyzing with  

(i) one lumped-mass element, (ii) one consistent-mass element. 

Solution 

(i) For cubic polynomial functions 

1(x) = 1 3(x/L)
2 
+2(x/L)

3
,  2(x) = x{1 (x/L)}

2
, 3(x) = 3(x/L)

2 
2(x/L)

3
,           4(x) = (x L)(x/L)

2
 

with lumped mass mL/2 at both ends and constant EI, the following matrices are obtained from Eq. (4.12) 

                         1    0     0    0                             12  6L -12      6L  

Mm = (mL/2)    0    0    0    0  Km = (EI/L
3
)    6L 4L

2
 -6L      2L

2
 

                         0    0     1    0                        -12 -6L  12      -6L   

                         0    0     0    0
    

           6L           2L
2
 -6L      4L

2
 

In this case, mL = 0.045 k-sec
2
/ft, EI/L

3 
= 36 k/ft 

 

            1     0     0      0                 12  60 -12  60  

Mm = 0.0225    0     0     0      0        Km = 36     60 400 -60       200 

                         0     0     1      0            -12 -60  12 -60   

                         0     0     0      0
   

           60 200 -60       400 

Applying the boundary conditions that the only non-zero degrees of freedom are the vertical deflection and 

rotation at B (u2B and 3B), the mass and stiffness matrices are reduced to (2  2) matrices 

       

 1               0                           432    -2160   

  M = 0.0225                              K =         

0               0            -2160    14400  

 
        u2A= 0                  u2B 

       

                      A                                     B          

                           

                              10  

            

 K  n
2
 M  = 0  (432  n

2
 0.0225) 14400 – ( 2160)

2
 = 0  n = 69.28 rad/sec 

 

(ii) For cubic polynomial functions with uniform m 

 

     156  22L 54     -13L             156   220  54    -130  

Mm = (mL/420)     22L   4L
2
 13L   -3L

2
     = 1.071 10

-4
     220    400 130   -300 

54    13L 156   -22L           54    130 156   -220   

   -13L  -3L
2        

-22L    4L
2            

-130  -300
     

-220   400 

Applying the boundary conditions, the mass and stiffness matrices are reduced to 

       

      156               -220                           432    -2160   

  M = 1.071 10
-4

                              K =         

     -220               400            -2160    14400  

 

 K  n
2
 M  = 0  (432  n

2
 0.01671) (14400  n

2
 0.04286) – ( 2160 + n

2 
0.02357)

2
 = 0  

 n = 99.92 rad/sec, 984.49 rad/sec 

 

The exact results for the first two natural frequencies are 99.45 rad/sec and 623.10 rad/sec respectively. 

Therefore, as was the case for axial vibrations, the natural frequencies are under-estimated for lumped-mass 

element and over-estimated for consistent-mass element. 

3A= 0 3B 
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Dynamic Analysis of Trusses and Frames 

Two-dimensional Trusses 

The mass and stiffness matrices derived for axially loaded members can be used for the dynamic analysis of 

two-dimensional trusses. One difference is that here the transverse displacements (u2A, u2B) are also 

considered in forming the matrices, so that the size of the matrices is (4  4) instead of (2  2). 

 

 mL/2 0      0         0   mL/3 0    mL/6 0  

         Mm
L
 =    0 0   0 0 or      Mm

L
   =   0 0    0 0     ……….(5.1)  

    0 0 mL/2 0   mL/6 0 mL/3 0 

    0 0   0 0     0 0    0 0 

The member matrices formed in the local axes system by Eq. (5.1) can be transformed into the global axes 

system by considering the angles they make with the horizontal.  

 

       0               /2 

         Mm
G
 = (mL/2)               or         Mm

G
 = (mL/3)                       . ……..….(5.2) 

 0      /2              

  

where  is a (2  2) matrix of coefficients given by 

  

 C
2
 CS 

   =                      ………………..(5.3) 

  CS  S
2
 

The mass and stiffness matrices (from previous formulations) and load vector of the whole structure can be 

assembled from the member matrices and vector (Mm
G
, Km

G
 and fm

G
). They are obtained in their final forms 

only after applying appropriate boundary conditions. 

 

Two-dimensional Frames 

The matrices formed for flexural members and already used for a cantilever beam can be used for the 

dynamic analysis of two-dimensional frames. The elements of the i
th
 row and j

th
 column of the mass and 

stiffness matrices are given by Eq. (4.12) in integral form and can be evaluated once the shape functions i 

and j are known or assumed [as shown in Example 4.2]. However, the axial displacements of joints (u1A, 

u1B) are also considered for frames in addition to the transverse displacements (u2A, u2B) and rotations ( 3A, 

3B) about the out-of-plane axis considered in forming the matrices for beams, so that the size of the matrices 

is (6  6) instead of the (4  4) matrices shown for beams. 

 

If shape functions of Example 4.2 are assumed for frame members of uniform cross-section, the member 

mass and stiffness matrices take the following forms in the local axes system 

 

       1    0     0       0    0     0                      140    0     0    70   0    0  

                 0    1     0       0    0     0                                  0   156   22L  0   54 -13L   

            0    0     0       0    0     0                                0   22L  4L
2   

0  13L -3L
2

     ...…...(5.4) 

                    0    0     0       1    0     0                      70    0     0   140  0     0 

        0    0     0       0    1     0                       0   54   13L  0  156  -22L 

      0    0     0       0    0     0                       0 -13L  -3L
2
  0  -22L 4L

2
 

 

Denoting the global structural matrices by M and K respectively and assuming appropriate damping ratios, 

the damping matrix C can be obtained as,  

 C = a0 M + a1 K                   ………………..(5.5) 

The dynamic analysis can be carried out once these matrices and vector are formed. 

Mm
L
 = (mL/2)  

(Lumped) (Consistent) 

Mm
L
 = (mL/420) 

(Lumped) (Consistent) 
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Example 5.1 

For the plane truss shown below, modulus of elasticity E = 30000 ksi, cross-sectional area A = 2 in
2
, mass 

per length m = 1.5 10
-6

 k-sec
2
/in

2
. Calculate its natural frequencies using consistent mass matrices. 

Solution 

                 

                  

                                    

 

          

             7.5  

    

                            

                            45                  45           

                        

     

                    15              7.5  

The truss has 8 DOF. The displacements u1~u4 and u7, u8 are restrained, so that only two DOF (u5, u6) are 

non-zero. There are five members in the truss (including two zero-force members), all with the same cross-

sectional properties, but different lengths. The member mass and stiffness matrices can be obtained from 

          C
2
     CS    C

2
/2    CS/2             C

2
     CS     -C

2
     -CS  

     Mm
G
 =  (mL/3)     CS     S

2
     CS/2    S

2
/2               Km

G
 = (EA/L)     CS     S

2
     -CS      -S

2
         

          C
2
/2  CS/2    C

2
      CS            -C

2
   -CS      C

2
       CS     

        CS/2  S
2
/2    CS      S

2   
         -CS   -S

2
      CS       S

2
 

For member AB, C = 1, S = 0, L = 15  = 180 , mL/3 = 9.0 10
-5

 k-sec
2
/in,

 
EA/L = 333.33 k/in 

                        1.0    0       0.5       0           1.0     0      -1.0        0  

     MAB
G
 = 9.0 10

-5
      0      0        0         0         KAB

G
 = 333.33     0       0        0          0         

             0.5    0       1.0       0          -1.0     0       1.0        0     

            0      0        0         0
   

         0       0         0          0 

 DOF [1       2        3        4] 

The matrices for AB and CD are the same, but the latter connects displacements 5, 6, 7 and 8 

For member AC, C = 0.707, S = 0.707, L = 10.607  = 127.28   

mL/3 = 6.37 10
-5

 k-sec
2
/in,

 
EA/L = 471.41 k/in 

                        0.5     0.5     0.25  0.25              0.5     0.5     -0.5  -0.5  

   MAC
G
 = 6.37 10

-5
     0.5     0.5     0.25  0.25                KAC

G
 = 471.41   0.5     0.5     -0.5  -0.5         

             0.25    0.25    0.5    0.5             -0.5    -0.5      0.5   0.5     

           0.25    0.25    0.5    0.5
   

          -0.5   -0.5      0.5   0.5 

[1        2        5       6] 

The matrices for AC and BD are the same, but the latter connects displacements 3, 4, 7 and 8 

For member BC, C = -0.707, S = 0.707, L = 10.607  = 127.28   

mL/3 = 6.37 10
-5

 k-sec
2
/in,

 
EA/L = 471.41 k/in 

            0.5     -0.5     0.25  -0.25               0.5    -0.5     -0.5   0.5  

   MBC
G
 = 6.37 10

-5
    -0.5      0.5     -0.25  0.25             KBC

G
 = 471.41    -0.5     0.5       0.5  -0.5         

             0.25   -0.25    0.5   -0.5              -0.5     0.5       0.5  -0.5     

           0.25   -0.25   -0.5    0.5
   

            0.5     -0.5     -0.5   0.5 

[3        4        5         6] 

Applying boundary conditions, the mass and stiffness matrices for the whole truss can be assembled as 

 

         15.37           0                          804.74       0   

                 M = 10
-5

                             K =         

           0            6.37               0       471.41  

     

 K n
2
 M  = 0  (804.74 n

2
 0.0001537) (471.41 n

2
 0.0000637) = 0  

 n = 2288 rad/sec, 2720 rad/sec 

C D 

A 

u8 

u2 

u1 

u4 

u3 

u7 

u6 

u5 

B 
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Practice Problems on Structural Dynamics 

1.  A SDOF system with k = 10 k/ft, m = 1 k-sec
2
/ft, c = 0.5 k-sec/ft is subjected to a force (in kip) given by  

(i) p(t) = 50,  (ii) p(t) = 100 t, (iii) p(t) = 50 cos(3t). In each case, use the CAA method to calculate the 

displacement of the system at time t = 0.10 seconds, if the initial displacement and velocity are both zero. 

 

2.  For a (20   20   20 ) overhead water tank supported by a (25   25 ) square column, use the CAA 

method (c = 0) to calculate the displacement at time t = 0.20 seconds, when subjected to 

(i) a sustained wind pressure of 40 psf, (ii) a harmonic wind pressure of 40 cos(2t) psf [use k = 3EI/L
3
]. 

Assume the total weight of the system to be concentrated in the tank, and initial displacement and 

velocity are both zero [Given: E of concrete = 400  10
3
 k/ft

2
, Unit weight of water = 62.5 lb/ft

3
]. 

 

3.  For beam AB loaded as shown below, use the CAA method to calculate rotation at A at time t = 0.10 sec 

(starting with zero initial displacement and velocity) [Given: EI = 40  10
3
 k-ft

2
, m = 0.0045 k-sec

2
/ft

2
]. 

                    w (k/ft)           

 
A              B 

    20               t (sec) 
                    0         0.2       0.4 

 

4. Calculate the natural frequencies and periods of the structures shown below (in axial/transverse vibration) 

(i) 

 

 

 

 

 

 

 

 

 

 

(ii) A 10-ft long simply supported beam with EI = 40  10
3
 k-ft

2
, m = 0.005 k-sec

2
/ft

2
. 

 

(iii) Given: EAAB = 400  10
3
 k, EABC = 800  10

3
 k;  EIAB = 40  10

3
 k-ft

2
, EIBC = 80  10

3
 k-ft

2
;  

     mAB = 0.005 k-sec
2
/ft

2
, mBC = 0.010 k-sec

2
/ft

2
. 

    

    EI = 40 10
3
 k-ft

2
     EI = 80 10

3
 k-ft

2    
  

                          

        A                  B     C 

                                    10                        10       

        

(iv) Given: EAAB = 200  10
3
 k, EABC = 400  10

3
 k;  EIAB = 20  10

3
 k-ft

2
, EIBC = 40  10

3
 k-ft

2
;  

                        mAB = 0.005 k-sec
2
/ft

2
, mBC = 0.010 k-sec

2
/ft

2
. 

 

 

 

 

 
20  20  

C 
A A and C are guided 

roller supports 

w(t) 

m2 m1 = m2 = 1 k-sec
2
/ft 

k1 = k2 = 10 k/ft 
k2 

k1 

m1 

c2 

c1 

B 

2 
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Structures on Flexible Foundations 

 

Rather than idealized support conditions (i.e., roller, hinged or fixed), it is more rational to assume structures 

to be supported on flexible supports. In addition to real springs, foundations on flexible supports (e.g., 

columns) or soils can also be modeled by springs for horizontal, vertical displacements, as well as bending 

and torsional rotations. 

 

For example, if EI = 80 × 10
3
 k-ft

2
, the Stiffness Matrix for the beam in Fig. 1.1 is S3 = 16 × 10

3
 k-ft/rad 

The stiffness formulation is, S3 A =  P0L/8  16 × 10
3
 A = 25  A = 1.56 × 10

-3 
rad 

 

  
 

 

    

   

Fig. 1.1           Fig. 1.2 

If springs of stiffness Kh, Kv and K  replace the ‘fixed’ support (Fig. 1.2), the stiffness formulation becomes 

  

  S3           0          S2             S4     A          P0L/8 

                 0       Sx + Kh       0  0           uB                         0               ………………..(1.1) 

              S2          0         S1 + Kv     S2        vB                   P0/2 

 S4           0          S2       S3 + K    B          P0L/8 

 

Stiffness of Circular Foundations and Long Pile Foundations 

Motion KHalfspace KEmbed KPile 

h 8GR/(2- ) 4 G E 4 G
0.75 

(EpIp)
0.25

 

v 4GR/(1- ) 2.75 G E 1.5 G
0.5 

(EpAp)
0.5

 

 8GR
3
/(3-3 ) [8+4(E/R)

2
] G ER

2
/3 2 G

0.25 
(EpIp)

0.75
 

t 16GR
3
/3 12 G ER

2
 3 R G

0.5 
(EpJp)

0.5
 

[h for horizontal, v for vertical ,  for bending and t for torsional motion] 

 

If EA = 800 × 10
3
 k, Sx = 40 × 10

3
 k/ft, S1 = 120 k/ft, S2 = 1200 k-ft/ft, S4 = 8 × 10

3
 k-ft/rad 

    G = Shear modulus of sub-soil, R = Radius of circular foundation,  = Poisson’s ratio  

    Kh = 8GR/(2 ), Kv = 4GR/(1 ), K  = 8GR
3
/(3 3 ) 

Assuming shear-wave velocity vs = 1000 ft/s, G = svs
2
 = (0.12/32.2) × (1000)

2 
= 3.73 × 10

3 
k/ft

2 

R = 2 ft,  = 0.30  Kh = 8GR/(2- ) = 35.08 × 10
3 
k/ft, Kv = 4GR/(1- ) = 42.59 × 10

3
 k/ft, 

           K  = 8GR
3
/(3-3 ) = 113.58 × 10

3
 k-ft/rad 

 
16.0         0        1.2              8.0   A           25 

                 0        75.07        0             0           uB                        0 

              1.2         0       42.71       1.2       vB                    5 

 8.0          0       1.2           129.58    B          25 

 

These values may vary significantly with the stiffness(es) of foundation, which are directly proportional to 

the value of G (shear modulus of sub-soil), which in turn depends on the shear-wave velocity vs of sub-soil. 

Table below shows the variation of A, vB and B with vs. 

 

vs (ft/s) A (10
-3

 rad) vB (10
-3

 ft) B (10
-3

 rad) 

 1.563 0 0 

1000 1.721 0.133 0.298 

300 2.476 1.138 1.657 

100 3.372 7.325 2.520 

 

10′ 10′ 

10 k 

10′ 10′ 

10 k 

A A B 

vB 

uB 

=  

=  

A = 1.721 × 10
-3 

rad 

uB = 0 

vB = 0.133 × 10
-3 

ft 

B = 0.298 × 10
-3 

rad 

 10
3
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Effect on Dynamic Properties 

The effect of foundation flexibility on the dynamic properties of a structural system can be illustrated by a 

simple analysis of a 2-DOF system with the equations of motion in matrix form 

 
    

 

 

 

 

 

 

 

 

 

 

Fig. 1.3: ‘Fixed-based’ and ‘Flexible-based’ foundation-structure systems 

 

 

 m1      0      d
2
u1/dt

2
              c1+c2       -c2   du1/dt            k1+k2        -k2 u1    f1(t) 

          +        +           = 

0      m2     d
2
u2/dt

2
  -c2            c2   du2/dt            -k2              k2 u2     f2(t) 

 

          ……………..(1.2) 

 

If u1 and u2 are the horizontal displacements at the foundation and 1
st
 floor level and the foundation is 

assumed massless (i.e., m1 = 0) but to consist of a spring k1 and dashpot c1 [Fig. 1.3], Eq. (1.2) reduces to 

 

 0      0      d
2
u1/dt

2
              c1+c2       -c2   du1/dt            k1+k2       -k2 u1  f1(t) 

          +        +           = 

0      m2     d
2
u2/dt

2
              -c2            c2   du2/dt            -k2              k2 u2   f2(t) 

 

          ………..……(1.3) 

 

Therefore, the natural frequencies of the system can be calculated from (k1 + k2 – 0)(k2 – n
2 
m2) – (-k2)

2 
= 0  

 n= {k1 k2/(k1+k2)/m2}= {k2/m2/(1+k2/k1)}             .……………….(1.4) 

 

Since there is only one mass in the system, the foundation-structure system reduces to a SDOF system. The 

natural frequency given by Eq. (1.4) is less than the ‘fixed-based’ frequency [ n = (k2/m2)] of the system.  

 

Moreover, instead of the ‘fixed-based’ damping ratio  = c2/2 (k2 m2), the damping ratio now  

 = c2/2 {k2 m2 (1+k2/k1)
3
} + c1/2 {k1 m2 (1+k1/k2)

3
 }                 ………………(1.5) 

 

This simple illustration shows some important features of foundation flexibility 

(i)  Natural frequency of the structure is reduced. 

(ii)  The damping ratio of the structure may increase or decrease. 

(iii) Whether it is beneficial or harmful to the structure depends on the frequency of applied loads. 

For example, if k1 = k2 = 10 k/ft, m1 = 0, m2 = 1 k-sec
2
/ft, c1 = c2 = 0.316 k-sec/ft 

n for ‘fixed-based’ system = {k2/m2}= 3.16 rad/sec             

n for ‘flexible-based’ system = {k1k2/(k1+k2)/m2} = 2.24 rad/sec 

 

 for ‘fixed-based’ system = c2/2 (k2 m2) = 0.05 

 for ‘flexible-based’ system = 0.316/2 (80) + 0.316/2 (80) = 0.035 

 

c2 

f2(t), u2(t) 

c1 

k2 

m2 

k1 

m1 
f1(t), u1(t) 

m2 f2(t), u2(t) 

k2 c2 
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Short Questions and Explanations 

 

Stiffness Method for 3D Trusses vs. 3D Frames 

1. Unknowns: Deflections only vs. Deflections + Rotations 

2. No. of Unknowns: doki = 3j vs. doki = 6j 

3. Member Stiffness Matrix: (6  6) vs. (12  12) 

4. Member Properties: E, A vs. G, E, A, J, Iy, Iz 

5. Forces Calculated: Member Axial Forces vs. Member Axial, Shear Forces, Torsions, BM’s  

 

Stiffness Method for 

- 2D Trusses vs. 2D Frames 

- 2D Trusses vs. 3D Trusses 

- 2D Frames vs. 3D Frames 

- Linear vs. Nonlinear Analysis 

- Analysis for Geometric vs. Material Nonlinearity 

 

Briefly explain 

- axial deformations are sometimes neglected for the structural analysis of frames but not trusses 

- joint rotations are considered in calculating the doki of frames, but not trusses 

- stiffness matrix of a 3D truss member is (6  6) while that of a 3D frame member is (12  12) 

- the matrices K and G used for the nonlinear analysis of frames are only approximate 

- the formulation of the geometric stiffness matrix G is a nonlinear problem 

- a structure becomes unstable at buckling load (explain in terms of stiffness matrix) 

- the terms material nonlinearity, plastic moment and collapse mechanism 

- frames can be approximately modeled by lumped-mass systems 

- the effect of foundation flexibility can be beneficial or harmful to the structure 
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Influence Lines for Frames and Trusses 

 

1. Pattern Loading for Multi-storied Frames 

(a) Beam Moments 
 

 

 

 

 

     A                     B  

   

 

 

 

 

 

Live Loading Pattern for Maximum MA (+ ve)  Live Loading Pattern for Maximum MB (  ve) 

 

(b) Column Moment and Axial Force 

 

 

 

 

 

        C1             C2           C2  

   

 

 

 

 

 

Live Loading Pattern for Maximum MC1 and MC2  Live Loading Pattern for Maximum PC2  

 

2. Qualitative Influence Lines for Truss Reactions and Member Forces 
 

  U1 U2      U3       U4       U5             U1       U2       U3       U4          U5 
 

 
  L0               L3                             L6       L0                   L3                                  L6 

 L1 L2                   L4         L5              L1      L2                     L4          L5   

 

 

 

                     (+)                                 (+) 

U1L1                              U1L0               

 

 

 

                     (+)           (+) 

RL0                             L1L2 

    

 

 

   (+) 

                           (+) 

RL3             U1L2               
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Quantitative Influence Lines using Shape Functions 
 

Quantitative Influence Lines can also be drawn using the shape functions 

 

(1)   f1(x) = 1 3(x/L)
2
 +2(x/L)

3
    (2)                f2(x) = L{x/L 2(x/L)

2
 +(x/L)

3
}        

     u1=1               u2=1 

                    
    

 

 

(3) f3(x) = 3(x/L)
2
 2(x/L)

3
    (4)                        f4(x) = L{ (x/L)

2
 +(x/L)

3
} 

              u3=1 

                   u4=1   
    

  

 

The deflected shape is u(x) = u1 f1(x) + u2 f2(x) + u3 f3(x) + u4 f4(x), once u1, u2, u3, u4 are known.  

 

 

  

 

 

 

[u1 = 1]  6/L
2   

6/L
2  

[u1 = 1]   6/L
2  

6/L
2
   

(u2 = 1.5/L)         (u2 = 1.5/L) 6/L
2                   

3/L
2
 

6/L
2                    

3/L
2
                    

    
1.5/L

2    
1.5/L

2
 

u(x) = (1) f1(x) (1.5/L) f2(x)        (u2 = 0.25/L)                 (u4 = 0.5/L)             (u6 = 0.25/L) 

           = 1 1.5(x/L) +0.5(x/L)
3          

u(x) = (1)f1(x) (1.25/L)f2(x) (0.5/L) f4(x); left span 

        u(x) = (0.5/L) f2(x) + (0.25/L) f4(x); right span 
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Quantitative Influence Lines for Three-Span Continuous Beam 

 

Assume EI =1, L = 1 for each span 

 

1. Quantitative IL for RA using Moment Distribution 
      A      B            C       D  

 
     E  F       G  

       0  1            0.43  0.57        0.57  0.43     1  0  

[u1=1]  6
  

6          
    

 

           6
                  

3 

(u2= 1.5)
                                   

 

    
                             

1.29 1.71
              

 

(u2=0.21)          (u4= 0.43) 

      0.86 

     0.49  0.37 

   (u6=0.12)           (u8= 0.06) 

     0.24 

        0.10  0.14 

(u2=0.02)          (u4= 0.03) 

   0.07 

     0.04  0.03 

                       (u6=0.01)           (u8= 0.01) 

  [u1=1] 

  (u2= 1.27)      (u4= 0.46)    (u6=0.13)           (u8= 0.07) 

 

2. Quantitative IL for RB using Moment Distribution 

   

 
       0   1          0.43   0.57       0.57   0.43     1  0  

                           [u3=1] 

           6            6  6           6          
    

 

            6
                        

3    3.43  2.57 

    (u2=1.5)        (u6= 0.86)           (u8=0.43)
                                   

 

                   1.71 

    
                             

0.55 0.74
              

 

   (u2=0.09)          (u4= 0.18) 

       0.37 

      0.21  0.16 

       (u6=0.05)           (u8= 0.03) 

     0.10 

        0.04  0.06 

(u2=0.01)         (u4= 0.02) 

      [u3=1] 

    (u2=1.60)       (u4= 0.20)     (u6= 0.81)        (u8=0.40) 

 

 

3. Once the reactions RA and RB [Fig. 1] are known 

(i) Shear Forces VE, VB
( )

, VB
(+)

 [Fig. 2] and 

(ii) Bending Moments ME, MB, MF [Fig. 3] can be  

      calculated from Statics. 

     [e.g., MF = RA  1.5 + RB  0.5 1  1.5 x/L ] 
 

Fig. 1: IL for Reactions
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Fig. 2: IL for Shear Forces
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Fig. 3: IL for Bending Moments
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Computer Algorithm for the Linear Static Analysis of 2D Trusses 

 

1.  Declare parameters and arrays (e.g., x, y, E, A) 

 

2. Read 

(i) number of nodes (Nnod) 

(ii) number of members (Nmem) 

 
3. Read the nodal coordinates (x, y) (for Nnod nodes) 

 

4. Read for (Nmem members) 

(i) member properties (E, A)  

(ii) member nodal numbers (ni, nj) 

 

5. Size of the stiffness matrix, Ndf = 2 Nnod 

 

6. Assemble structural stiffness matrix SK 

i.e., formulate member stiffness matrix and assign them to appropriate locations of SK 

L = {( x)
2
+( y)

2
} 

Sx = EA/L 

C = ( x)/L, S = ( y)/L 

i2 = 2(ni-1) 

j2 = 2(nj-1) 

SK(i2+1, i2+1) = SK(i2+1, i2+1) + Sx C
2
 

SK(i2+1, i2+2) = SK(i2+1, i2+2) + Sx CS 

SK(i2+2, i2+1) = SK(i2+2, i2+1) + Sx CS 

SK(i2+2, i2+2) = SK(i2+2, i2+2) + Sx S
2
, etc. 

 

7. Read the number of loads (Nload) and formulate the load vector p 

[Actually p is denoted by u in the program] 

 

8. Apply boundary conditions 

(i) Read the number and known values of the known displacements  

(ii) Modify the corresponding rows and load vector elements 

 

9. Solve the matrix equations SKu = p (using Gauss Elimination), to obtain displacement vector u 

 [Actually the equations are solved in this program so that the new u replaces the old u] 

 

10. Calculate the member forces using 

PAB = Sx{C(uB uA) + S(vB vA)} 
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Computer Program (in Fortran 90) for the Linear Static Analysis of 2D Trusses 

 
      PROGRAM TRUSS2 

      IMPLICIT REAL*8(A-H,O-Z) 

      DIMENSION X(800),Y(800) 

      DIMENSION ELAS(600),AREA(600),NI(600),NJ(600) 

      DIMENSION DX(600),DY(600),P(600) 

 DIMENSION IKNOW(50),DKNOW(50) 

 COMMON/SOLVER/STK(990,990),U(990),NDF 

      CHARACTER*16 FILOUT 

 

      PRINT*,' ENTER OUTPUT FILENAME' 

      READ*,FILOUT 

 

      OPEN(1,FILE='TRUSS2.IN',STATUS='OLD') 

      OPEN(2,FILE=FILOUT,STATUS='OLD') 

 

C*******NUMBER OF NODES, NUMBER OF MEMBERS************************ 

      READ(1,*)NNOD,NMEM 

 

C*******NODAL PROPERTIES****************************************** 

      READ(1,*)(X(I),Y(I),I=1,NNOD) 

 

C*******MEMBER PROPERTIES***************************************** 

      DO 11 I=1,NMEM 

       READ(1,*)ELAS(I),AREA(I),NI(I),NJ(I) 

       NII=NI(I) 

       NJI=NJ(I) 

       DX(I)=X(NJI)-X(NII) 

       DY(I)=Y(NJI)-Y(NII) 

   11 CONTINUE 

 

C*******ASSEMBLING STIFFNESS MATRIX******************************* 

 NDF=2*NNOD 

 

 DO 30 I=1,NDF 

  U(I)=0. 

  DO 30 J=1,NDF 

   STK(I,J)=0. 

   30 CONTINUE 

 

 DO 12 I=1,NMEM 

  TLEN=SQRT(DX(I)*DX(I)+DY(I)*DY(I)) 

  STX=ELAS(I)*AREA(I)/TLEN 

  I2=(NI(I)-1)*2 

  J2=(NJ(I)-1)*2 

  C=DX(I)/TLEN 

  S=DY(I)/TLEN 

  CC=C*C 

  CS=C*S 

  SS=S*S 

 

  STK(I2+1,I2+1)=STK(I2+1,I2+1)+STX*CC 

  STK(I2+1,I2+2)=STK(I2+1,I2+2)+STX*CS 

  STK(I2+1,J2+1)=STK(I2+1,J2+1)-STX*CC 

  STK(I2+1,J2+2)=STK(I2+1,J2+2)-STX*CS 

   

  STK(I2+2,I2+1)=STK(I2+2,I2+1)+STX*CS 

  STK(I2+2,I2+2)=STK(I2+2,I2+2)+STX*SS 

  STK(I2+2,J2+1)=STK(I2+2,J2+1)-STX*CS 

  STK(I2+2,J2+2)=STK(I2+2,J2+2)-STX*SS 

 

  STK(J2+1,I2+1)=STK(J2+1,I2+1)-STX*CC 

  STK(J2+1,I2+2)=STK(J2+1,I2+2)-STX*CS 

  STK(J2+1,J2+1)=STK(J2+1,J2+1)+STX*CC 

  STK(J2+1,J2+2)=STK(J2+1,J2+2)+STX*CS 
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  STK(J2+2,I2+1)=STK(J2+2,I2+1)-STX*CS 

  STK(J2+2,I2+2)=STK(J2+2,I2+2)-STX*SS 

  STK(J2+2,J2+1)=STK(J2+2,J2+1)+STX*CS 

  STK(J2+2,J2+2)=STK(J2+2,J2+2)+STX*SS 

   12 CONTINUE 

 

C WRITE(2,8)(STK(I,I),I=1,NDF) 

 

C*******LOADS CORRESPONDING TO DEGREES OF FREEDOM********************** 

 READ(1,*)NLOAD 

 IF(NLOAD.GT.0)READ(1,*)(J,U(J),I=1,NLOAD) 

 

C*******RESTRAINTS***************************************************** 

 READ(1,*)NKND 

 READ(1,*)(IKNOW(I),DKNOW(I),I=1,NKND) 

 DO 15 I=1,NKND 

  IKND=IKNOW(I) 

  DKN=DKNOW(I) 

   

  DO 16 J=1,NDF 

   U(J)=U(J)-STK(J,IKND)*DKN 

   16  CONTINUE 

 

  DO 15 J=1,NDF 

   IF(J.NE.IKND)THEN 

    STK(J,IKND)=0. 

    STK(IKND,J)=0. 

        ENDIF  

      U(IKND)=DKN*STK(IKND,IKND) 

   15 CONTINUE 

 

 CALL GAUSS 

 

C*******DISPLACEMENTS************************************************** 

   6  FORMAT(10(1X,F8.2))  

   7  FORMAT(1X,I4,10(1X,F10.6)) 

   8  FORMAT(1X,I4,10(1X,F10.4))  

      WRITE(2,*)'DISPLACEMENTS ARE' 

 

 DO 17 I=1,NDF 

  WRITE(2,7)I,U(I) 

   17 CONTINUE 

 

C*******MEMBER FORCES************************************************** 

      WRITE(2,*) 

      WRITE(2,*)'MEMBER FORCES ARE' 

 DO 18 I=1,NMEM 

  TLEN=SQRT(DX(I)*DX(I)+DY(I)*DY(I)) 

  STX=ELAS(I)*AREA(I)/TLEN 

  I2=(NI(I)-1)*2 

  J2=(NJ(I)-1)*2 

  C=DX(I)/TLEN 

  S=DY(I)/TLEN 

  AXDIS=(U(J2+1)-U(I2+1))*C+(U(J2+2)-U(I2+2))*S 

  P(I)=STX*AXDIS 

  WRITE(2,8)I,P(I)   

   18 CONTINUE  

 

 END 



 49 

C********************************************************************** 

C*******GAUSS ELIMINATION********************************************** 

 SUBROUTINE GAUSS 

 IMPLICIT REAL*8(A-H,O-Z) 

 COMMON/SOLVER/A(990,990),B(990),N 

 

 NHBW=N 

      N1=N-1 

 DO 10 K=1,N1 

  K1=K+1 

  KH=K+NHBW 

       C=1./A(K,K) 

  DO 11 I=K1,KH 

   IF(I.LE.N)D=A(I,K)*C 

   DO 12 J=K1,KH 

   12   IF(J.LE.N)A(I,J)=A(I,J)-D*A(K,J) 

   11  IF(I.LE.N)B(I)=B(I)-D*B(K) 

   10 CONTINUE 

 

 B(N)=B(N)/A(N,N) 

 

 DO 13 I=N1,1,-1 

  I1=I+1 

       SUM=0. 

  DO 14 K=I1,N 

   14  SUM=SUM+A(I,K)*B(K) 

   13 B(I)=(B(I)-SUM)/A(I,I) 

 

 END 
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Structural Analysis using Energy Formulation 

Method of Virtual Work  

Another way of representing Newton’s equation of equilibrium is by energy methods, which is based on the 

law of conservation of energy. According to the principle of virtual work, if a system in equilibrium is 

subjected to virtual displacements u, the virtual work done by the external forces ( WE) is equal to the 

virtual work done by the internal forces ( WI) 

WI = WE                        …...…………………(1) 

where the symbol  is used to indicate ‘virtual’. This term is used to indicate hypothetical increments of 

displacements and works that are assumed to happen in order to formulate the problem. 

Axially Loaded Bar on Elastic Foundation 

For a structural member loaded axially by p(x) per unit length, the external virtual work due to virtual 

deformation u is  WE =  p(x) dx u                            ..………………………(2) 

while the internal virtual work due to virtual axial strain d( u)/dx = u  and virtual deformation u of the 

elastic foundation is  WI =  u  EA u  dx +  u kf u dx                 ..………………………(3) 

where u  stands for differentiation of u with respect to x (in general the symbol  stands for differentiation 

with respect to x), E = modulus of elasticity and A = cross-sectional area of the axial member, kf = stiffness 

of elastic foundation. E, A and kf can vary with x. 

WI  = WE   u  EA u  dx +  u kf u dx =  p(x) dx u         ….………....(4) 

If the displacements are assumed to be function of a single displacement u1, so that  

  u(x) = u1 (x)  u  = u1 (x)                  …...…………(5), (6)  

u = u1 (x)  u  = u1 (x)                               ……………(7), (8) 

Eq. (4)   u1 (x) EA u1 (x) dx +  u1 (x) kf u1 (x) dx =  p(x) dx u1 (x) 

     {  EA [ (x)]
2
 dx +  kf [ (x)]

2
 dx } u1 =  p(x) (x) dx            …………………..(9) 

If the integrations are carried out after knowing (x), Eq. (9) can be rewritten as, 

k* u1 = f*                           …………….…...(10) 

where k*, f* are the ‘effective’ stiffness and force of the system.  

Transversely Loaded Beam on Elastic Foundation 

For a structural member loaded transversely by q(x) per unit length, the external virtual work due to virtual 

deformation v is  WE =  q(x) dx v         .……………………(11) 

while the internal virtual work due to virtual curvature d( v )/dx = v  and virtual deformation v of the 

elastic foundation is   WI =  v  E I v  dx +  v kf v dx       .……………………(12) 

where v  stands for double differentiation of v with respect to x, E = modulus of elasticity and I = moment 

of inertia of the cross-sectional area of the flexural member. E, I and kf can vary with x. 

WI = WE   v E I v  dx +  v kf v dx =  q(x) dx v     ……...………….…(13) 

If the displacements are assumed to be function of a single displacement u2, so that  

  v(x) = u2 (x)  v  = u2 (x)            …..…….…….(14), (15) 

v = u2 (x)  v = u2 (x)                       …………...….(16), (17) 

Inserting these values in Eq. (13)   

   u2 (x) EI u2 (x) dx +  u2 (x) kf u2 (x) dx =  q(x) dx u2 (x) 

 {  EI [ (x)]
2
 dx +  kf [ (x)]

2
 dx} u2 =  q(x) (x) dx            …...…………….(18) 

If the integrations are carried out after knowing (or assuming) (x), Eq. (18) can be rewritten as, 

k* u2 = f*                       ………………….…...(19) 

where k*, f*are the ‘effective’ stiffness and force of the system.  

Once k* and f* are calculated, Eq. (10) or (19) can be solved to obtain the deflection u1 or u2, from which 

the deflection u(x) or v(x) at any point can be calculated using Eq. (5) or (14). The accuracy of Eq. (10) or 

(19) depends on the accuracy of the shape functions (x) or (x). If the shape functions are not defined 

exactly, the solutions can only be approximate. These functions must be defined satisfying the natural 

boundary conditions; i.e., those involving displacements for axial deformation and displacements as well as 

rotations for flexural deformations. This method of analysis using energy principles is called the Rayleigh-

Ritz method.  
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Example 1 

For a cantilever rod, modulus of elasticity E = 45  10
4
 ksf, cross-sectional area A = 1 ft

2
, moment of inertia 

I = 0.08 ft
4
, length L = 10 ft. Calculate the approximate axial and flexural deflections of the system for axial 

and transverse loads of 1 k/ft respectively. 

 

Solution 

Assuming shape functions (satisfying natural boundary conditions) 

(x) = x/L, (x) = (x/L)
2
  

[Note that: (0) = 0, (0) = 0, (0) = 0]  

 

For axial deformations, 

 Effective stiffness k* =  EA [ (x)]
2
 dx = EA/L = 45000 k/ft 

  Effective force f* =  p(x) (x) dx = pL/2 = 5 kips 

 Equation for axial deformation is, 45000 u1 = 5  

  u1 = 1.11  10
-4

 ft, which is the exact result
 

 
 u(x) = 1.11  10

-4
 (x/L), which is also the exact deformed shape of the bar 

 

For flexural deformations,  

Effective stiffness k* =  EI [ (x)]
2
 dx = 4EI/L

3 
= 144 k/ft 

 Effective force f* =  q(x) (x) dx = qL/3 = 3.33 kips 

 Equation for flexural deformation is, 144 u2 = 3.33  

  u2 = 0.02315 ft, the exact result being [= qL
4
/(8EI)] = 0.03472 ft 

  u(x) = 0.02315 (x/L)
2
 

 

Example 2 

For the member properties mentioned in Example 1, calculate the approximate flexural deflections of 

(i) a cantilever beam, assuming (x) = 1 cos( x/2L),  

(ii) a simply supported beam, assuming (x) = sin( x/L), for transverse loads of 1 k/ft. 

 

Solution 

Both these shape functions satisfy the natural boundary conditions for the problems mentioned. 

[i.e., (i) (0) = 0, (0) = 0, (ii) (0) = 0, (L) = 0] 

(i) For the cantilever beam,  

Effective stiffness k* =  EI [ (x)]
2
 dx = 3.044 EI/L

3 
= 109.59 k/ft 

 Effective force f* =  q(x) (x) dx = qL(1 2/ ) = 3.63 kips 

 Equation for flexural deformation is, 109.59 u2 = 3.63  

  u2 = 0.03316 ft, which is much better estimate of the exact result 

 u(x) = 0.03316 [1 cos( x/2L)] 

 

(ii) For the simply supported beam,  

 Effective stiffness k* =  EI [ (x)]
2
 dx = ( /L)

4
 EI L/2

 
= 1753.36 k/ft 

 Effective force f* =  q(x) (x) dx = 2qL/  = 6.367 kips 

 Equation for flexural deformation is, 1753.36 u2 = 6.367  

        u2 = 36.31  10
-4 

ft, which is very close to exact result [= 5qL
4
/(384 EI)] = 36.17  10

-4
 ft 

  u(x) = 36.31  10
-4 

 sin( x/L) 

 

These results show that the accuracy of the Rayleigh-Ritz method depends on the accuracy of the assumed 

shape function. Based on the shape function, this method can model the structure to be too stiff (i.e., over-

estimate the ‘effective’ stiffness and ‘effective’ force) or can reproduce the exact solution. 
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Problems on Structural Analysis using Energy Formulation 

 

1. For the beams loaded as shown below [Given: EI = 40  10
6
 lb-ft

2
] 

(a)  choose an appropriate shape function (satisfying the essential boundary conditions) among 

(i) (x) = cos( x/2L), (ii) (x) = [1 + cos( x/L)]/2 and (iii) (x) = sin( x/L) 

(b)  use the chosen shape function to calculate the deflections at A if  

 (i) P0 = 10 kips, w0 = 0, (ii) P0 = 0, w0 = 1 kip/ft 

(c)  compare the results found in (b) with the exact results. 

 

 

 

 

 

 

 

 

2.  For the structures loaded as shown below [Given: EI = 36  10
3
 k-ft

2
, EA = 450  10

3
 k] 

 (a)  justify the choice of shape functions  

  Bar1: (x) = 1−(x/L)      Bar2: (x) = 1−(x/2L) 

 

 

 

 

 

 

 
    Bar1       Bar2 

 

 

  Beam1: (x) = 2  3(x/L) + (x/L)
3
   Beam2: (x) = sin( x/2L) 

 (x) = sin
2
( x/2L) 

 

 

 

 

 

 

 
    Beam1       Beam2 
 

(b) calculate the corresponding elongations/deflections at ‘a’ 

a 

w0 w0 

A A 

L = 20  L = 10  L = 10  

L = 10  
L = 10  

L = 20  L = 10  

P0 P0 

10 k 10 k 
Area = 2A Area = A 

100 k 

  Area increases linearly from A to 2A  

a 

3 

k/ft 

a 

a 

10 k 1 k/ft 

L = 10  
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Problems on Structural Analysis using Energy Formulation 

 

1.  (a)  For (x) = cos( x/2L), (0) = cos(0) = 1   (0) = ( /2L) sin(0) = 0  

           (L) = cos( /2) = 0   (L) = ( /2L) sin( /2) = ( /2L) 

For (x) = [1 + cos( x/L)]/2, (0) = [1 + 1]/2 = 1  (0) = ( /L) sin(0) = 0  

                                   (L) = [1  1]/2 = 0  (L) = ( /L) sin( ) = 0 

For (x) = sin( x/L), (0) = sin(0) = 0    (0) = ( /L) cos(0) = /L 

                      (L) = sin( ) = 0    (L) = ( /L) cos( ) = /L 

 

 

 

 

 

 

 

 

 

For the first beam  

(0)  0, (0) = 0, (L) = 0, (L)  0; Choose (x) = cos( x/2L) 

For the second beam  

(0)  0, (0) = 0, (L) = 0, (L) = 0; Choose (x) = [1 + cos( x/L)]/2 

 Since (0) = 1 for both these functions, the deflection u2 indicates uA here 

(b)  For the first beam, (x) = cos( x/2L)  (x) = ( /2L)
2
 cos( x/2L) 

 Effective stiffness k* =  EI [ (x)]
2
 dx = ( /2L)

4
 EI L/2

 
= 121.76 k/ft 

 For P0 = 10 kips, Effective force f* =  q(x) (x) dx = ( 10) (0) = 10 kips 

 u2 = 10/121.76 = 0.0821 ft = 0.986 in 

For w0 = 1 kip/ft, Effective force f* =  q(x) (x) dx = (1) (2  10/ ) (1) = 6.366 kips 

 u2 = 6.366/121.76 = 0.0523 ft = 0.627 in 

 

  For the second beam, (x) = [1 + cos( x/L)]/2  (x) = ( /L)
2
 cos( x/L)/2 

 Effective stiffness k* =  EI [ (x)]
2
 dx = [( /L)

4
/4] EI L/2

 
= 60.88 k/ft 

 For P0 = 10 kips, Effective force f* =  q(x) (x) dx = ( 10) (0) = 10 kips 

 u2 = 10/60.88 = 0.164 ft = 1.971 in 

For w0 = 1 kip/ft, Effective force f* =  q(x) (x) dx = (1) (20)/2 = 10 kips 

  u2 = 10/60.88 = 0.164 ft = 1.971 in 

 

(c) The exact results are (using Stiffness Method) 

 For the first beam, u2 = 1.0 in and 0.625 in 

 For the second beam, u2 = 2.0 in and 2.0 in 

w0 w0 

A A 

L = 20  L = 10  

P0 P0 
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2.  (a)  For Bar1, (0)  0, (L) = 0 

(x) = 1−(x/L)  (0) = 1  0, (L) = 0  OK 

For Bar2, (0)  0, (L)  0, (2L) = 0 

(x) = 1−(x/2L)  (0) = 1  0, (L) = 0.5  0, (2L) = 0  OK 

  For Beam1, (0)  0, (0)  0, (L) = 0, (L) = 0 

(x) = 2  3(x/L) + (x/L)
3
, (x) = 3/L + 3x

2
/L

3 

 (0) = 2, (0) = 3/L  0, (L) = 2 3 + 1 = 0, (L) = 3/L + 3L
2
/L

3 
= 0  OK   

For Beam2, (0) = 0, (0) = 0, (2L) = 0, (2L) = 0 

(x) = sin( x/2L), (x) = ( /2L) cos( x/2L) 

 (0) = 0, (0) = /2L, (2L) = sin( ) = 0, (2L) = ( /2L) cos( )
 
= ( /2L)  Not OK 

(x) = sin
2
( x/2L) = [1 cos( x/L)]/2, (x) = ( /2L) sin( x/L) 

 (0) = 0, (0) = /2L sin (0) = 0, (2L) = sin
2
( ) = 0, (2L) = ( /2L) sin(2 )

 
= 0  OK 

 

 

 

 

 

 

 
    Bar1       Bar2 

 

 

 

 

 

 

 
    Beam1       Beam2 
 

(b)  For Bar1, A(x) = A (1 + x/L), (x) = 1/L 

Effective stiffness k* =  EA[ (x)]
2
 dx = EA (L + L

2
/2L)/L

2 
= 33.75  10

3
 k/ft 

 Effective force f* =  p(x) (x) dx = (100) (0) = 100 kips 

 u1 = 100/(33.75  10
3
) = 2.96  10

3 
ft = 0.0356 in  ua = u1 (0) = 0.0356 in 

For Bar2, A1 = 2A, A2 = A, (x) = 1/2L 

Effective stiffness k* =  EA [ (x)]
2
 dx = (E/4L

2
) (2A L + A L) = 3 EA/4L = 33.75  10

3
 k/ft 

 Effective force f*= p(x) (x)dx = ( 10) (0)+ ( 10) (L) = ( 10) (1) + ( 10) (0.5) = 15 kips 

 u1 = 15/(33.75  10
3
) = 4.44  10

4 
ft = 5.33  10

3 
in  ua = u1 (0) = 5.33  10

3
 in 

For Beam1, (x) = 2  3(x/L) + (x/L)
3
, (x) = 3/L + 3 x

2
/L

3
, (x) = 6 x/L

3
  

Effective stiffness k* =  EI [ (x)]
2
 dx = EI  36 x

2
/L

6
 dx = 12 EI/L

3
 = 432 k/ft 

 Effective force f* =  q(x) (x) dx = ( 10) (0) = ( 10) (2) = 20 kips 

 u2 = 20/432 = 0.0463
 
ft = 0.556

 
in  ua = u2 (0) = 0.556  2 = 1.111 in 

For Beam2, (x) = [1 cos( x/L)]/2, (x) = ( /2L) sin( x/L), (x) = [( /L)
2
 cos( x/L)]/2  

Effective stiffness k*=  EI [ (x)]
2
 dx = EI ( /L)

4
[cos

2
( x/L)]/4 dx =

4
EI/(4L

3
)= 876.68 k/ft 

 Effective force f* =  q(x) (x) dx =  (1) [1 cos( x/L)]/2 dx = 10 kips 

 u2 = 10/876.68 = 0.0114
 
ft = 0.137

 
in  ua = u2 (L) = 0.137  1 = 0.137 in 

 

 

a 

L = 20  L = 10  L = 10  

L = 10  
L = 10  

10 k 10 k 
Area = 2A Area = A 

100 k 

  Area increases linearly from A to 2A  

a 

a a 

10 k 
1 k/ft 

L = 10  
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Stiffness Matrices of Axial and Flexural Members 

The Rayleigh-Ritz method can handle variations in member properties and loads over the members. But its 

accuracy depends on the shape function chosen for the analysis, for which there is no automatic way of 

choosing. Moreover the choice of the function depends on the boundary conditions, thus needing a different 

formulation even if the structure remains the same otherwise. The Stiffnes Method, on the other hand, has 

the advantage of a methodical formulation and versatility in applying the boundary conditions for a large 

variety of linear and nonlinear problems. Like the Rayleigh-Ritz method, the formulation of Stiffness 

Method can also be based on energy principles, which makes its formulation more versatile. But rather than 

defining the displacement of the entire structure/structural member by a single function, it divides the 

member into a number of small elements and defines the displacements at any point in the member by 

interpolating between the displacements/rotations of the nodes at the ends of the member.  

Axially Loaded Bar  

Applying the method of virtual work to members subjected to axial load of p(x) per unit length,   

 WI = WE   u  E A u  dx =  p(x) dx u        …………………(4) 

 
        u1A          p(x)             u1B 

       A          B   

                

            L 

 

Axially Loaded Member 

If the displacements of a member AB (shown above) are assumed to be interpolating functions [ 1(x) and 

2(x)] of two nodal displacements u1A and u1B,      

 u = u1A 1 + u1B 2  u  = u1A 1  + u1B 2                 …………..………(20), (21) 

            u = u1A 1 + u1B 2  u  = u1A 1  + u1B 2                 …...……..……….(22), (23) 

Eq. (4) can be written in matrix form as, 

 

       
     

EA 1 1 dx        EA 1 2 dx      u1A                p(x) 1dx               

                 

                  ……....…...…….(24) 
     

EA 2 1 dx        EA 2 2 dx      u1B           p(x) 2 dx 

              

For concentrated loads, p(x) is a delta function of x. If loads XA and XB are applied at joints A and B, they 

can be added to the right side of Eq. (24). Eq. (24) can be rewritten as,  

  Km um
 
= fm                       ………...………(25) 

where Km is the stiffness matrix of the member, while um and fm are the member displacement and load 

vectors. They can be formed once the shape functions 1 and 2 are known or assumed. One-dimensional 

two-noded elements with linear interpolation functions are typically chosen in such cases, so that the shape 

functions 1 and 2 for axially loaded members are  

 1(x) = 1  x/L, and 2(x) = x/L                                ..…………(26) 

Therefore, elements of the member stiffness matrices are Kmij = EA i
 

j  dx         ..…………(27) 

 
     

           1(x)              2(x) 

         

 

           x                       x 

Shape functions 1(x) and 2(x) 

= 
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Transversely Loaded Beam 

Applying the method of virtual work to beams subjected to flexural load of q(x) per unit length  

   u E I u  dx =  q(x) dx u                         .………………(13) 

Following the same type of formulation as for axial members, the member equations for flexural members 

subjected to transverse load of q(x) per unit length (shown below) can be written in matrix form like Eq. 

(24), but the member matrices are different here. 

 
 

      u2A           u2B 

    3A                q(x)                    3B        

       A          B   

               L 

 
Transversely Loaded Member 

 

Two-noded elements with cubic interpolation functions for u2A, 3A, u2B and 3B are typically chosen in such 

cases, so that  

u(x) = u2A 1
 
+ 3A 2 + u2B 3 + 3B 4                           …….………………(28) 

where 1(x) = 1 3(x/L)
2 
+2(x/L)

3
, 2(x) = x{1 (x/L)}

2 

           3(x) = 3(x/L)
2 

2(x/L)
3
, 4(x) = (x L)(x/L)

2
          ...…………….……(29) 

 

 

   1(x) = 1 3(x/L)
2
 +2(x/L)

3
                    2(x) = L{x/L 2(x/L)

2
 +(x/L)

3
}        

     u2A=1                 3A =1 

                    
    

 

 

        3(x) = 3(x/L)
2
 2(x/L)

3
                   4(x) = L{ (x/L)

2
 +(x/L)

3
} 

                u2B =1 

                   3B =1   
    

  
Shape functions 1(x), 2(x), 3(x) and 4(x) 

 

The size of the stiffness matrix is (4 4) here, due to transverse joint displacements (u2A, u2B) joint rotations 

( 3A, 3B) and its elements are given by 

Kmij = EI i
 

j  dx               …..…………………(30) 

The equations of the stiffness matrix for axial members [Eq. (27)] as well as flexural members [Eq. (30)] 

guarantee that for linear problems 

(i) The stiffness matrices are symmetric [i.e., element (i,j) = element (j,i)],  

(ii) The diagonal elements of the matrices are positive [as element (i,i) involves square]. 
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1.   1 k/       

B   A    C EI = 40,000 k-ft
2
     

             For BA, S1 = 480 k/ft, S2 = 2400 k/rad                                                         

 S3 = 16,000 k-ft/rad, S4 = 8,000 k-ft/rad  

     10      20            For AC, K1 = 60 k/ft, K2 = 600 k/rad 

       K3 = 8,000 k-ft/rad, K4 = 4,000 k-ft/rad 

d.o.k.i. = 1 (u1 is rotation at A)        

         S2   K2          K2 

         33.33 k    33.33 k          S4            S3     

             

                K3       K4            

   10 k          10 k               S2 

Case 0 (FER)     Case 1 (u1 = 1) 

 

Mz(A) = 0  33.33 + S3 u1 + K3 u1 = 0  24 10
3 
u1 = 33.33  u1 = 1.389 10

3
 rad 

BM(B) = 0 + S4 u1 = 11.11 k , BM(A)/BA = 0 + S3 u1 = 22.22 k , 

BM(A)/AC = 33.33 + K3 u1 = 22.22 k , BM(C) = 33.33 + K4 u1 = 38.89 k  

 

2. The only difference from Problem 1 is the additional FER due to support settlement. 

      For BA, 6EI /L
2
 = 6 40,000 0.05/10

2
 = 120 k-ft 

        120 k   120 k  30 k            30 k     12EI /L
3
 = 12 40,000 0.05/10

3
 = 24 k 

For AC, 6EI /L
2
 = 6 40,000 0.05/20

2
 = 30 k-ft 

              12EI /L
3
 = 12 40,000 0.05/20

3
 = 3 k 

        24 k      24 k  3 k     3 k    

 

Mz(A) = 0  33.33 +120 30 + S3 u1 + K3 u1 = 0  24 10
3 
u1 = 123.33  u1 = 5.138 10

3
 rad 

BM(B) = 120 + S4 u1 = 78.89 k , BM(A)/BA = 120 + S3 u1 = 37.78 k , 

BM(A)/AC = 33.33  30 + K3 u1 = 37.78 k , BM(C) = 33.33  30 + K4 u1 = 83.89 k  

 

3. 5 k  1 k/     

B   A    C Stiffness of BA = 0     

               For AC, K1 = 60 k/ft, K2 = 600 k/rad    

     K3 = 8,000 k-ft/rad, K4 = 4,000 k-ft/rad 

     10      20                d.o.k.i. = 1 (u1 is rotation at A)     

   

                K2         K2 

        50 k       33.33 k   33.33   k                            

                       

               K3                 K4            

 5 k  10 k         10 k                
Case 0 (FER)     Case 1 (u1 = 1) 

 

Mz(A) = 0   50 + 33.33 + K3 u1 = 0  8 10
3 
u1 = 16.67  u1 = 2.083 10

3
 rad 

BM(B) = 0 + 0 = 0, BM(A)/BA = 50 + 0 = 50 k , 

BM(A)/AC = 33.33 + K3 u1 = 50 k , BM(C) = 33.33 + K4 u1 = 16.67 k  

 

4. The only difference from Problem 3 is the additional FER due to support settlement. 

  Mz(A) = 0  50 + 33.33  30 + K3 u1 = 0   

    30 k       30 k   u1 = 2.667 10
3
 rad 

              BM(B) = 0, BM(A)/BA = 50 k , 

            3 k     3 k BM(A)/AC = 50 k , BM(C) = 63.33 + K4 u1 = 52.67 k  
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5. Both members have the same stiffness (e.g., S3 = 16,000 k-ft/rad), and d.o.k.i. = 1 

 

 100 k         10 k   12.5 k         12.5 k              S2                    S2 

B             C         

        S2   S3                S4   

                 5 k             5 k        S3    

                   10  

 

 

           A               S4         

          S2 

         5              5                    Case 0 (FER)       Case 1 (u1 = 1) 

 

Mz(B) = 0  12.5 + S3 u1 + S3 u1 = 100  32 10
3 
u1 = 87.5  u1 = 2.734 10

3
 rad 

BM(A) = 0 + S4 u1 = 21.88 k , BM(B)/AB = 0 + S3 u1 = 43.75 k , 

BM(B)/BC = 12.5 + S3 u1 = 56.25 k , BM(C) = 12.5 + S4 u1 = 9.38 k  

 

6. The only difference from Problem 5 is the additional FER due to support settlement. 

 

    120 k             120 k  Mz(B) = 0  12.5  120 + S3 u1 + S3 u1 = 100  

B             C       u1 = 6.484 10
3
 rad     

   BM(A) = 0 + S4 u1 = 51.88 k      

 24 k    24 k        BM(B)/AB = 0 + S3 u1 = 103.75 k  

            BM(B)/BC = 12.5  120 + S3 u1 = 3.75 k       

     BM(C) = 12.5  120 + S4 u1 = 81.62 k  

 

            A         

           

                                       

7. Here d.o.k.i. = 2 (rotations at B, C); for both members S3 = 16,000 k-ft/rad, S4 = 8,000 k-ft/rad 

 

10 k  

              12.5 k         12.5 k   S2    S3                                 S2                  S2                                 S2 

       C            

           S2         S3                         S4        S4                               

            5 k           5 k  

 

                     10   

                     

          S4         S2 

         5                   Case 0 (FER)    Case 1 (u1 = 1)                       Case 2 (u2 = 1) 

 

Mz(B) = 0  12.5 + 2S3 u1 + S4 u2 = 100  2S3 u1 + S4 u2 = 87.5 

Mz(C) = 0  12.5 + S4 u1 + S3 u2 = 0  S4 u1 + S3 u2 = 12.5 

 u1 = 2.902 10
3
 rad, u2 = 0.670 10

3
 rad 

BM(A) = 0 + S4 u1 + 0 = 23.21 k , BM(B)/AB = 0 + S3 u1 = 46.43 k , 

BM(B)/BC = 12.5 + S3 u1 + S4 u2 = 53.57 k , BM(C) = 12.5 + S4 u1 + S3 u2 = 0 

 

100 k  

B 

A 

5  

S3 
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11. 5 k  1 k/       

A    B    C EI = 40,000 k-ft
2
     

    For AB, S1 = 480 k/ft, S2 = 2400 k/rad  

50 k                                                      S3 = 16,000 k-ft/rad, S4 = 8,000 k-ft/rad  

     10      20            For BC, K1 = 60 k/ft, K2 = 600 k/rad 

       K3 = 8,000 k-ft/rad, K4 = 4,000 k-ft/rad 

            d.o.k.i. = 2 (u1 is deflection at A, u2 is rotation at B)  

             S2 K2                  K2 

           33.33 k    33.33 k          S2      S2                                     S4            S3    

             

                   K3         K4          

       10 k         10 k         S1          S1                      S2 

 Case 0 (FER)             Case 1 (u1 = 1)          Case 2 (u2 = 1) 

 

Fy(A) = 0  0 + S1 u1 + S2 u2 = 5  480 u1 + 2400 u2 = 5 

Mz(B) = 0  33.33 + S2 u1 + S3 u2 + K3 u2 = 0  2400 u1 + 24000 u2 = 33.33 

 u1 = 34.72 10
3
 ft, u2 = 4.861 10

3
 rad 

BM(A) = 0 + S2 u1 + S4 u2 = 44.44 k , BM(B)/AB = 0 + S2 u1 + S3 u2 = 5.56 k , 

BM(B)/BC = 33.33 + K3 u2 = 5.56 k , BM(C) = 33.33 + K4 u2 = 52.78 k  

 

12. The only difference from Problem 11 is the presence of another rotation at A  d.o.k.i. = 3 

 

  5 k  1 k/               

A    B    C        S3         S4                   

  

50 k                                                        S2             S2   Case 3 (u3 = 1) 

     10      20          

 

Fy(A) = 0  0 + S1 u1 + S2 u2 + S2 u3 = 5  480 u1 + 2400 u2 + 2400 u3 = 5 

Mz(B) = 0  33.33 + S2 u1 + S3 u2 + K3 u2 + S4 u3 = 0  2400 u1 + 24000 u2 + 8000 u2 = 33.33 

Mz(A) = 0  0 + S2 u1 + S4 u2 + S3 u3 = 50  2400 u1 + 8000 u2 + 16000 u3 = 50 

 u1 = 20.83 10
3
 ft, u2 = 4.167 10

3
 rad, u3 = 2.083 10

3
 rad 

BM(A) = S2 u1 + S3 u2 + S4 u3 = 50 k , BM(B)/AB = 0 + S2 u1 + S3 u2 + S4 u3= 0,  

BM(B)/BC = 33.33 + K3 u2 = 0, BM(C) = 33.33 + K4 u2 = 50 k  



 60 

Stiffness Method for Grids 

 
        E           
                           y    
                 

       5     EI = 40 10
3
 k-ft

2
            10 k       E          

   GJ = 30 10
3
 k-ft

2
                                 

              10 k      D              x 

       5             
           A         B            C                              
      A         B           C           z                   
 5      5                   

 
Top View    Isometric View 

d.o.k.i. = 3 (u1 = vB, u2 = xB, u3 = zB) 
             5 k 

             K1       K2     
    12.5 k         K2               K4         T2                    
         K2         
  5 k          K1      K3    T2  
                     S1    S2       S2     S1                       K2    
         12.5 k                    S4     S3       S3    S4 

             
   S2      S1   S1      S2   T1  T1    T1         T1          S2          S2  S2            S2 

             

           

 

Here, S1 = 12 40 10
3
/5

3 
= 3840 k/ft, S2 = 6 40 10

3
/5

2 
= 9600 k/rad, 

          S3 = 4 40 10
3
/5

 
= 32000 k-ft/rad, S4 = 2 40 10

3
/5

 
= 16000 k-ft/rad 

          K1 = 12 40 10
3
/10

3 
= 480 k/ft, K2 = 6 40 10

3
/10

2 
= 2400 k/rad, 

          K3 = 4 40 10
3
/10

 
= 16000 k-ft/rad, K4 = 2 40 10

3
/10

 
= 8000 k-ft/rad 

          T1 = 30 10
3
/5

 
= 6000 k-ft/rad, T2 = 30 10

3
/10

 
= 3000 k-ft/rad 

 

Fy(B) = 0  5 + (2S1+K1) u1 + K2 u2 + (S2 S2) u3 = 10  8160 u1 + 2400 u2 + 0 = 15 

Mx(B) = 0  12.5 + K2 u1 + (K3+2T1) u2 + 0  = 0  2400 u1 + 28000 u2 + 0 = 12.5 

Mz(B) = 0  0 + (S2 S2) u1 + 0 + (2S3+T2) u3 = 0  0 + 0 + 67000 u3 = 0 

 u1 = 1.751 10
3
 ft, u2 = 0.296 10

3
 rad, u3 = 0 

 

SF(A) = 0  S1 u1 + 0 + S2 u3 = 6.72 k, SF(B)/AB = 0 + S1 u1 + 0  S2 u3 = 6.72 k,  

SF(B)/BC = 0 + S1 u1 + 0 + S2 u3 = 6.72 k, SF(C) = 0  S1 u1 + 0  S2 u3 = 6.72 k, 

SF(B)/BE = 5 + K1 u1 + K2 u2 + 0 = 3.44 k, SF(E)/BE = 5  K1 u1  K2 u2 + 0 = 6.55 k 

 

BM(A) = 0  S2 u1 + 0 + S4 u3 = 16.81 k , BM(B)/AB = 0  S2 u1 + 0 + S3 u3 = 16.81 k ,  

BM(B)/BC = 0 + S2 u1 + 0 + S3 u3 = 16.81 k , BM(C) = 0 + S2 u1 + 0 + S4 u3 = 16.81 k , 

BM(B)/BE = 12.5 + K2 u1 + K3 u2 + 0  = 3.56 k , BM(E)/BE = 12.5 + K2 u1 + K4 u2 + 0 = 19.07 k  

 

T(A) = 0 + 0  T1 u2 + 0 = 1.78 k , T(B)/AB = 0 + 0 + T1 u2 + 0 = 1.78 k ,  

T(B)/BC = 0 + 0 + T1 u2 + 0 = 1.78 k , T(C) = 0 + 0  T1 u2 + 0 = 1.78 k , 

T(B)/BE = 0 + 0  + 0 + T2 u3 = 0, T(E)/BE = 0 + 0  + 0  T2 u3 = 0 

D 

Case 0 (FER) Case 1 (u1 = 1) Case 2 (u2 = 1) Case 3 (u3 = 1) 
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Problems on Stiffness Method for Grids 

 

Given: EI = 40 10
3
 k-ft

2
, GJ = 30 10

3
 k-ft

2
 for all the problems. 

 

1,2. Use the Stiffness Method to calculate the rotations at joint C for the grids shown below. 

 

 

                   

  

 

             

       

          
Problem 1                               Problem 2 

 

 

3. Using the Stiffness Method, calculate the deflection and rotation at joint C for the grid shown in the 

figure below. 

 

 
                   A           

                     

 15  

     10        10        

                       B       C    D 

                5          

                       

     10 k 

 

 

4, 5. Formulate the stiffness matrix and load vector for the grids shown in the figures below. 

 

 
                                 A  

                                              

                 

                               

               

                   B    C              D 

                        

            10               10                                5             5  

 

     

Problem 4                Problem 5 

 

E 

1 k/ft 

10 k 

10  15  

C 

15  

5  

E 

A 

10  10  

D B 

10 k 

10  15  

5  

E 

D 

C 

B 

A 

1 k/ft 

10  


