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Structural Stability and Determinacy 

 

Stability is an essential precondition for a structure to be able to carry the loads it is subjected to, and 

therefore being suitable for structural analysis. Since structural analysis is based on solving the unknown 

forces (or displacements) within a structure using some equations, it is essentially the comparison of the 

equations and unknowns that determine the stability of a structural system. 

 

Statical determinacy of a structure is a concept closely related to its stability. Once a structure is determined 

to be stable, it is important to determine whether it remains in equilibrium; i.e., if it can be analyzed by the 

concepts of statics alone, particularly for hand calculation. Although this information is not essential in the 

context of computer-based structural analysis, there are important differences between structures that are 

solvable by statics alone and those requiring additional information (usually from kinematics).  

 

The number of external reactions is often the simplest means to determine the stability of a structure. They 

must be greater than the number of equations available for the structure to remain in static equilibrium. The 

number of equations for two-dimensional (planar) structures (e.g., 2D trusses and 2D frames) is three (i.e., 

Fx = 0, Fy = 0, Mz = 0), while it is six (i.e., Fx = 0, Fy = 0, Fz = 0, Mx = 0, My = 0, Mz = 0) for 

three-dimensional (non-coplanar) structures (e.g., 3D trusses and 3D frames). 

 

The number of equations of static equilibrium may be increased for structures with internal hinges (h), each 

providing an additional equation for BM = 0. Therefore stability requires the number of equations to be 

greater than (The number of equations of statics + h); e.g., (3 + h) for 2D frames and (6 + h) for 3D frames. 

This condition is not applicable for trusses though, because truss members are axially loaded only and have 

no bending moment.  

 

However, structures can be unstable despite having adequate number of external reactions; i.e., they can be 

internally unstable. In general, the static stability of a structure depends on the number of unknown forces 

and the equations of statics available to determine these forces. This requires 

* The number of structural members = m, e.g., each having one unknown (axial force) for trusses, three 

(axial force, shear force, bending moment) for 2D frames and six (axial force, two shear forces, torsional 

moment, two bending moments) for 3D frames 

* The number of external reactions = r 

* The number of joints = j, e.g., each having two equations of equilibrium for 2D trusses (Fx = 0, Fy = 0), 

three for 2D frames (Fx = 0, Fy = 0, Mz = 0), three for 3D trusses (Fx = 0, Fy = 0, Fz = 0) and six 

for 3D frames (Fx = 0, Fy = 0, Fz = 0, Mx = 0, My = 0, Mz = 0). 

 

Eventually, the term ‘Degree of Statical Indeterminacy (dosi)’ is used to denote the difference between the 

available equations of static equilibrium and the number of unknown forces. The structure is classified as 

statically unstable, determinate or indeterminate depending on whether dosi is  0, = 0 or  0. Table 1 shows 

the conditions of static stability and determinacy of 2D and 3D trusses and frames. 

 

 

Table 1: Statical Stability and Determinacy of Trusses and Frames 

 

Structure 
Unknown Forces for Equations at Stability 

Dosi 
Member Reaction Joint Internal Hinge Reaction Dosi 

2D Truss m r 2j * r ≥ 3 

Dosi ≥ 

0 

m + r  2j 

2D Frame 3m r 3j h r ≥ 3 + h 3m + r  3j h 

3D Truss m r 3j * r ≥ 6 m + r  3j 

3D Frame 6m r 6j h r ≥ 6 + h 6m + r  6j h 
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Problems on Structural Stability and Determinacy 

Determine the static/geometric stability and statical indeterminacy of the following structures.  

 

1.        2. 

 

             

              

3.        4. 

 

             

              

 

5.        6. 

 

             

              

7.        8. 

 

             

             

              

 

 

             
 

9.        10.     

  

 

 

 

 

 

 

 

          

11.        12. 

 

 

 

 

 

 

 

13.        14. 

 

 

 

 

 

 

 

 

15.         16. 
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Axial Force, Shear Force and Bending Moment Diagram of Frames 

Frame is an assembly of several flexural members oriented in different directions and connected by rigid 

joints. Therefore, the axial force, shear force and bending moment diagrams of frame consist of drawing the 

individual AFD, SFD and BMD for each member (similar to beams) and assembling the diagrams for entire 

the frame, using the free-body diagram of each member. The equilibrium (i.e., Fx = 0, Fy = 0, Mz = 0) of 

each joint must be considered while drawing the member free-bodies. 

Example 2.1 

Draw the axial force, shear force and bending moment diagrams of the frames loaded as shown below. 

 

 

 

 

 

 
 

      

      

  (i)                             (ii) 
Solution 

(i) For this frame, dosi = 3  3 + 3  3  4 = 0; i.e., It is statically determinate 

Fx = 0  10 + HA  5 = 0  HA = 5 k 

MA = 0  10  10  VD  15 = 0  VD = 6.67 k 

Fy = 0  VA + VD = 0  VA = 6.67 k 

 

 

 

 

 

 

 

 

 
 

Reactions        AFD (k)    SFD (k)       BMD (k-ft) 

 

(ii) dosi = 3  6 + 6  3  7  3 = 0; i.e., It is statically determinate 

BMF = 0  HA  5 + MA = 0  MA = 5HA; Similarly BME = 0  MD = 5HD 

BMG = 0  HA  10 + VA  7.5 + MA = 0  5HA 10 HA + 7.5VD = 0  HA = 1.5VA  

And also  HD  10 VD  7.5 + MD = 0  5HD 10 HD 7.5VD = 0  HD = 1.5VD 

Fy = 0  VA + VD = 0  VD = VA 

and Fx = 0  HA + HD + 10 = 0  1.5VA 1.5VD = 10  3VA = 10  VA = 3.33 k 

 VD = VA = 3.33 k 

HA = 1.5VA = 5 k and HD = 1.5VD = 5 k 

 

 

 

 

 

 

 

 

 
 

Reactions          AFD (k)    SFD (k)       BMD (k-ft) 
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(iii) dosi = 3  3 + 6  3  4 = 3; Assume internal hinges at E, F, G 

Free-body of Member EF  YE = YF = 1  16/2 = 8 k 

Member FCG  YG = YF + 1  2 = 10 k, XG = XF, and YF  2 1  2 2/2 + XF  8 = 0  XF = 2.25 k  

 XG = XF = 2.25 k 

Member GD  YD = YG = 10 k, XD = XG = 2.25 k, and MD + XG  4 = 0  MD = 9 k-ft 

Overall Fx = 0  XA + XD = 0  XA = 2.25 k,  

   Fy = 0  YA = 1  20  10 = 10 k, and MA = 0  MA MD = 0  MA = 9 k-ft 
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Axial Force, Shear Force and Bending Moment Diagram of Multi-Storied Frames 

 

Example 2.2 

Draw the axial force, shear force and bending moment diagrams of the three-storied frame loaded as shown 

below, assuming (i) equal share of story shear forces between columns, (ii) internal hinge at column 

midspans. 

 

 

 

 

 

 

            

 

 

 

                  
 

 

 

 

 

 

             

             

             

             

             

             

             

             

             

             

             

             

             

             

             

             

              
Example 2.3 

Draw the AFD, SFD and BMD of the three-storied, two-bay frame loaded as shown below, assuming  

(i) internal hinge at the midspan of each column and beam, (ii) no axial force at middle columns. 
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m = 9, r = 6, j = 8  dosi = 3 × 9 + 6  3 × 8 = 9 

Nine assumptions needed for statical determinacy 

Equal shear among story columns  

VEG = VFH = 12/2 = 6
k
, VCE = VDF = (12 + 8)/2 = 20/2 = 10

k
  

VAC = VBD = (12 + 8 + 4)/2 = 24/2 = 12
k
 

End bending moments in columns are 

MEG = MFH = 610/2 = 30
k
, MCE = MDF = 1010/2 = 50

k
  

MAC = MBD = 1212/2 = 72
k
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The rest of the calculations follow from the free-body diagrams 
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 m = 15, r = 9, j = 12  dosi = 3 × 15 + 9  3 × 12 = 18 

18 assumptions needed for statical determinacy  

Internal hinges  BM = 0, at midspan of 6 beams and 9 columns 

No axial force at mid columns  XBE = XEH = XHK = 0
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The rest of the calculations follow from the free-body diagrams 
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Problems on AFD, SFD, BMD of Frames 

1.  Draw the AFD, SFD and BMD of the beam bcd in the frame abcde loaded as shown below. 

              
 

 

 

    

 

 

 

 

2. Determine the degree of statical indeterminacy (dosi) of the frame abcd shown below.  

Also draw the Axial Force, Shear Force and Bending Moment diagram of the member ab, assuming the 

horizontal reactions at support a and d are equal. 

 

 

 

 

 

 

 

3. Determine the degree of statical indeterminacy (dosi) of the frame shown below.  

Also draw the Axial Force, Shear Force and Bending Moment diagram of the member ab, assuming the 

horizontal reactions at support a and  f are equal. 

 

 

         

        

 

    

 

 

 

 
 

4.  Figure (a) below shows the column shear forces (kips) in a 2-storied frame. 

(A) Determine the degree of statical indeterminacy (dosi) of the frame.  

(B) Calculate the applied loads F1, F2 and draw the (i) beam AFD, (ii) column BMD, (iii) beam BMD 

(assuming internal hinges at member midspans). 

             

             

             

             

             

             

             

              Fig. (a)         Fig. (b)  

5.  The support reaction R1 for the 2-storied frame (loaded by equal UDLs on beams only) in Fig. (b) [shown 

above] is 50 kips. Calculate the reactions R2, R3 and draw the (i) column AFD, (ii) beam SFD, (iii) beam 

BMD and (iv) column BMD (making appropriate assumptions). 
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Live Loads and Influence Lines 

Live Loads 

Live Loads, either moving or movable, produce varying effects in a structure, depending on the location of 

the part being considered, the force function being considered (i.e., reaction, shear, bending moment, etc), 

and the position of the loads producing the effect. It is necessary to determine the critical position of the 

loading system which will produce the greatest force (i.e., reaction, shear or bending moment) and to 

calculate that force after having found the critical position. 

 

Influence Lines 

An influence line is a diagram showing the variation of a particular force (i.e., reaction, shear, bending 

moment at a section, stress at a point or other direct function) due to a unit load moving across the structure. 

Influence Line can be defined to be a curve the ordinate of which at any point equals the value of some 

particular function due to a unit load (say 1-lb load) acting at that point, and is constructed by plotting 

directly under the point where the unit load is placed an ordinate the height of which represents the value of 

the particular function being studied when the load is in that position. Influence Lines are often useful in 

studying the effect of a system of moving loads across a structure. 

 

Example 3.1 

Draw the influence lines of RA, VC and MC for the simply supported beam AB shown below in Fig. 3.1. 

 

 
 

   

             

             

             

             

             

              

The forces RA, VC and MC are shown in Fig. 3.2, which is the free-body diagram of AC. Table 3.1 shows the 

values of RA, VC and MC calculated for various values of the distance x, while Fig. 3.3 shows the respective 

influence lines. 

 

Table 3.1: Calculated Forces 

x (ft) RA VC MC (ft) 

0 1.0 0.0 0.0 

1 0.9 0.1 0.4 

2 0.8 0.2 0.8 

3 0.7 0.3 1.2 

4 0.6 0.4 1.6 

5 0.5 0.5 2.0 

6 0.4 0.6, 0.4 2.4 

7 0.3 0.3 1.8 

8 0.2 0.2 1.2 

9 0.1 0.1 0.6 

10 0.0 0.0 0.0 
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Fig. 3.3: Influence Lines of RA, VC, MC 
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Equations of Influence Lines using Singularity Functions 

Influence Lines and Singularity Functions 

The calculations shown before for influence lines can be carried out more conveniently by deriving their 

general equations based on singularity functions. The following examples illustrate this method for two 

simple cases; i.e., a simply supported beam and a cantilever beam. 

Example 3.2 

Derive the equations for the influence lines of RA, VC and MC for the simply supported beam AB shown 

below. 

 

 
 

 

 

 

 

 

w(x) = 1  x x0*
1       

………………….(3.1) 

 V(x) = 1  x x0
0 
+ C1      ………………….(3.2)

 

 M(x) = 1  x x0
1 
+ C1 x + C2     ………………….(3.3) 

Boundary conditions: M(0) = 0  C2 = 0, M(10) = 0  C1 = 1 x0/10 

V(x) = 1  x x0
0 
+ (1 x0/10)

 

   M(x) = 1  x x0
1 
+ (1 x0/10) x 

 RA = C1 = 1 x0/10       ………………….(3.4) 

     VC = V(6) = 1  6 x0
0 
+ (1 x0/10)    ………………….(3.5) 

     MC = M(6) = 1  6 x0
1 
+ (1 x0/10) 6    ………………….(3.6) 

Example 3.3 

Derive the equations for the influence lines of RB, VC and MC for the cantilever beam AB shown below. 

 

 
 

 

 

 

 

 

w(x) = 1  x x0*
1       

………………….(3.7) 

 V(x) = 1  x x0
0 
+ C1      ………………….(3.8)

 

 M(x) = 1  x x0
1 
+ C1 x + C2     ………………….(3.9) 

Boundary conditions: V(0) = 0  C1 = 0, M(0) = 0  C2 = 0 

V(x) = 1  x x0
0  

   M(x) = 1  x x0
1  

 RB = 1  C1  = 1       ………………….(3.10) 

     VC = V(6) = 1  6 x0
0
      ………………….(3.11) 

     MC = M(6) = 1  6 x0
1
      ………………….(3.12) 

C A B 
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C A B 
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6′ 
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10′ 

Fig. 3.4: Simply Supported Beam with Unit Load 

Fig. 3.5: Cantilever Beam with Unit Load 
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Influence Lines of Beams using Müller-Breslau’s Principle 

Although it is possible to derive the equations of influence lines using Singularity Functions, the method is 

still quite laborious and too mathematical to be used for practical purpose. Therefore faster and less 

complicated methods are desirable. The Müller-Breslau’s Principle, based on deflected shapes of modified 

structures, is a widely used method particularly for drawing qualitative influence lines of beams. 

Müller-Breslau’s Principle 

The ordinates of the influence line for any force ( i.e., reaction, shear force, bending moment) of any 

structure are equal to those of the deflected shape obtained by removing the restraint corresponding to that 

element from the structure and introducing in its place a corresponding unit deformation into the modified 

structure.  

Therefore, a unit deflection of support is used for the influence line of support reaction (after removing the 

support), unit discontinuity of section is used for influence line of its shear force (after inserting a sectional 

shear cut) while a unit rotation is used for influence line of bending moment (after inserting an internal 

hinge). 

Example 3.4 

Draw the influence lines (as mentioned) for the simply supported beam and cantilever beam shown below. 

             

             

             

             

             

             

             

             

             

             

             

             

             

             

             

            
Example 3.5 

Draw the influence lines RA, VB(L), VB(R) and MD and MB the beam shown below. 
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Example 3.6 

For the beam shown below, draw the influence lines for  

(i) RA, RC, (ii) VB, VCL, VCR, VE, (iii) MB, MC, ME. 

 
 A      B              C   D         E            F      G                              H 
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Problems on Influence Lines of Beams 

 

1.  For the beam shown below, draw the influence lines for  

(i) RB, (ii) VBL, VBR, VC, (iii) MB, MC.  

 

 

 

 

 
     

2.  For the beam shown below, draw the influence lines for 

(i) RA, RE, (ii) VB, VCL, VCR, (iii) MB, ME.  

 

 

 

 

 
     

3.  For the beam shown below, draw the influence lines for  

(i) RA, (ii) VBL, VBR, VC, (iii) MA, MC.  

 

 

 

 

 
     

4.  For the beam shown below, draw the influence lines for  

(i) RA, RC, RE, (ii) VB, VCL, VCR, VD, (iii) MC, ME.  

 

 

 

 

 
     

5.  For the beam shown below, draw the influence lines for  

(i) RA, RC, (ii) VB, VCL, VCR, VE, (iii) MB, MC, ME. 
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Influence Lines of Frames 

 

Example 3.7 

For the frame shown below, draw the influence lines for  

(i) YE, YF, (ii) VD, VB(AC)R, (iii) MD, MB(AC), if the unit load moves over  

(a) beam AC, (b) column EA. 
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Influence Lines of Frames using Müller-Breslau’s Principle 
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Example 3.8 

For the frame shown below, draw the influence lines for 

(i) XE, YE, (ii) VG, VD, (iii) MB(AC), MD,  

if the unit load moves over (a) column EA, (b) column FB. 

 

Example 3.9 

For the frame shown below, draw the influence lines for 

(i) XC, YC, (ii) VF, VE, (iii) MC, ME,  

if the unit load moves over column DB. 
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10.0 
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Problems on Influence Lines of Frames 

 

1. Determine the degree of statical indeterminacy (dosi) of the frame abcde shown below, and draw the 

influence lines of Xa, Ya, Vc, Ma and Mb(be), if the unit load moves over (i) beam be, (ii) column ab. 

 
 

 

 

 

 

 

2. Determine the degree of statical indeterminacy (dosi) of the frame abcdefg shown below, and draw the 

influence lines of Xa, Ya, Ve(L), Ma and Mc(ac), if the unit load moves over (i) beam bf, (ii) column eg. 

 
 

 

 

 

 

 

 

3. Determine the degree of statical indeterminacy (dosi) of the frame abcdef shown below, and draw the 

influence lines of Ya, Xb, Vc(R) and Mc(bf), if the unit load moves over (i) beam bf, (ii) column ac. 

 
 

 

 

 

 

 

 

4. Determine the degree of statical indeterminacy (dosi) of the frame abcdef shown below, and draw the 

influence lines of Xf, Yb, Vd and Mc(ac), if the unit load moves over (i) beam bf, (ii) column ac. 

 
 

 

 

 

 

 

 

 

 

10 

c b d e 

a 

15 10 5 

4m 

c b d e 

a 

6m 6m 2m 

f 

g 

2m 

d is an Internal Hinge 

10 

c b 
d e 

a 

15 

 
5 

 

f 

10 

d is an Internal Hinge 

10 

10 

c b d e 

a 

20 

 

10 

 

f 

10 

d and e are Internal Hinges 

10 

c is an Internal Hinge 
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Influence Lines of Girders with Floor Beams 

The loads to which a beam or girder is subjected are not often applied to it directly but to a secondary 

framing system which is supported by the beam or girder. A typical construction of this kind is shown below 

in Fig. 1(a). In such a structure, the loads are applied to the longitudinal members S, which are called 

stringers. These are supported by the transverse members FB, called floor beams. The floor beams are in 

turn supported by girders G. Therefore, no matter where the loads are applied to the stringers as a uniformly 

distributed load or as some system of concentrated loads, their effect on the girder is that of concentrated 

loads applied by the floor beams at points a, b, c, d and e.  

 

 

 

 

 

 

 

 

 

 

Fig. 1: Floor Beam System for (a) Plate Girder Bridge, (b) Truss Bridge 

Fig. 1(b) shows another example of such a support system for a bridge truss. This will be discussed in more 

detail in subsequent lectures.  

Example 3.10             Example 3.11 

 

 

FB 

G 

S 
FB 

S 

FB 

G 

G 

S 
FB 

a 
b c d 

e 
a 

b c d 
e 

FB 

S 

a 
b c d 

e 

For the floor beam system shown, draw influence lines for  

(i) FBRa, FBRb, FBRc, (ii) Ra, (iii) Vab, Vbc, (iv) Mb, Mc 
 

1.0 

1.0 

1.0 

1.0 

0.75 

0.5 

0.25 

4@20′ = 80′ 

15.0 

FBRa 

FBRb 

FBRc 

Ra 

Vab = Ra FBRa 

 

Vbc = Vab FBRb 

 

Mb = 20Ra 20FBRa 

 

Mc = 40Ra40FBRa 

20FBRb 

20.0 
10.0 

10.0 

0.5 

For the floor beam system shown, draw influence lines for  

(i) FBRa, FBRb, FBRc, (ii) Ra, (iii) Vab, Vbc, (iv) Mb, Mc 
 

a 
b c d 

20′ 

FBRa 

FBRb 

FBRc 

Ra 

Vab = Ra FBRa 

 

Vbc = Vab FBRb 

 

Mb = 20Ra 20FBRa 

 

Mc = 40Ra40FBRa 

20FBRb 

20′ 20′ 10′ 10′ 

1.0 

1.0 

1.0 

1.0 

1.5 

1.5 

0.5 

0.5 
1.0 

10.0 
20.0 

0.5 

0.5 

20.0 
10.0 
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Influence Lines of Trusses 

 

Example 3.12             Example 3.13 

 

 

 

 

 

a 
b c d 

e 

For the truss shown, draw influence lines for  

(i) FBRa, FBRb, FBRc, (ii) Ra, (iii) Faf, Fbf, Fcf, Fgf 
 

1.0 

1.0 

1.0 

1.0 

1.06 

4@20′ = 80′ 

0.35 

FBRa 

FBRb 

FBRc 

Ra 

Faf = 1.414 (FBRaRa) 

 

Fbf = FBRb 

 

Fcf = Faf 1.414 Fbf 

Fgf = 2Ra + 2FBRa 

+ FBRb 

1.0 
0.5 

0.71 

For the truss shown, draw influence lines for 

(i) FBRa, FBRc, (ii) Re, Ra, (iii) Faf, Fbf, Fcf, Fgf 

a 
b c d 

20′ 

FBRa 

FBRc 

Re 

Ra = FBRa + FBRc/3 

20′ 20′ 10′ 10′ 

1.0 

1.0 

1.0 

1.25 

0.25 

f g h f g 

1.0 

20′ e 

Fbf = 0 

  

Fgf = 0.707 (Faf  Fcf) 

0.42 

0.59 

0.59 

0.83 

Faf = 1.414 (FBRaRa) 

 

Fcf = Faf 1.414 Fbf 
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Problems on Influence Lines of Plate Girders and Trusses 

 

1. For the plate girder shown below, draw the influence lines for RA, RE, VD and MC. 
          

                           

           

                                       A        B         C               D         E         F 

                     

 

        10             10  10            10          10             10 

 

2.  For the plate girder shown below, draw the influence lines for RA, RE , VD and MC. 

                           

           

                            A      

             B        C                D          E         F 

 

                        10 10       10          10             10 

 

3. For the plate girder shown below, draw the influence lines for RB, RF, VC(R) and MD. 
          

                           

           

                        A   B     C           D                E         F              G 

                     

 

        10             10  10            10          10             10 

 

4. For the truss shown below, draw the influence lines for forces in members U3U4, L3U4 and L3L4 

[Note: There are floor-beams over the bottom-cords].    

U3 

  

       10 

            U2                  U4  

             

       10 

             L1          L2       L4          L5 

   

                        

        10       10        10       10        
      
5. For the truss shown below, draw the influence lines for forces in members U2U3, U2L3 and L2L3 

[Note: There are floor-beams over the bottom-cords].    

    U3 

        

            U2                  U4                 

             

       20 

             L1          L2       L4          L5 

   

                        

        20       20         20       20 

10 

L3 

L3 
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Force Calculation using Influence Lines 

 

Application of Influence Lines 

 

Force Calculation for Concentrated Loads 

 

………………..Eq. (3.1) 

 

Force Calculation for Uniformly Distributed Loads 

 

………………..Eq. (3.2) 

 

Example 3.14 
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Maximum Force and Design Force Diagrams for Moving Loads 

 

Example 3.15  

(i)  Calculate the maximum shear force at A, B and bending moment at D, B for the beam shown below, for 

a Dead Load of 1.5 k/, and moving Live Load of 1.0 k/. 

 

          A            D                     B   C 

 

 

      7.5             7.5       5 

 

                  

 

  1.0 

 

              IL of VA 

 

             -0.33 

 

              IL of VB (L) 

        

             -0.33 

         -1.0 

   

             1.0 

           

             IL of VB (R)  

 

               

 

             IL of MD () 

          

                         -2.5 

 

             IL of MB () 

 

             -5.0 

              

Loading Cases [DL = 1.5 k/, moving LL = 1.0 k/] 

  

1. DL + LL throughout the beam 

 

                  2.5 k/ 

 

 

     

 

2. DL + LL on ADB, DL on BC 

 

                        1.5 k/ 

 

 

     

2.5 k/ 

3.75 

Maximum (+ve or –ve) values of  

VB (L) = (1  15/2 + 0.33  5/2)  2.5  

         = 20.83 k 

VB (R) = 1  5  2.5 = 12.5 k 

MB = 5  5/2  2.5 = 31.25 k-ft 

Maximum values of  

VA = (1  15/2)  2.5  (0.33  5/2)  1.5 

     = 17.5 k 

MD = (3.75  15/2)  2.5 (2.5  5/2)  1.5 

      = 60.94 k-ft 
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(ii)  Draw the design Shear Force and Bending Moment Diagrams of the beam loaded as described before. 

Case 1 

           

 16.67       

                 12.5 

 

              SFD (k) 

      

     

                55.56                                    -20.83 

 

        

 

 

       BMD (k) 

 

 

        -31.25 

Case 2 

 

  17.5       

                   7.5 

 

              SFD (k) 

      

    61.25 

     

 

       -20.0 

 

 

       BMD (k) 

 

        -18.75 

 

Design SFD and BMD                     

        

       17.5            12.5 

                
            Design SFD (k) 

       

 
   61.25 
             -20.83      

             

             

     

            Design BMD (k) 

 

                
        -31.25 
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Maximum ‘Support Reaction’ due to Wheel Loads 

Consider the simply supported beam AB of length L, being subjected to the wheel load arrangement as 

shown in Fig. 1. The maximum reaction at support A will obviously be due to placement of one of the wheel 

loads directly on the support itself. 

 

 

          L 

(i) 

 

       

 

 

           

(ii) 

 

 

 

 

 

           

(iii) 

Fig. 1: Wheel Loads with ‘Reaction Type’ Influence Line 

Considering the difference of support reaction at A (R) between cases with wheel W1 at A [(ii) in Fig. 1] 

and wheel W2 at A [(iii) in Fig. 1], the increase in support reaction is due to the shift d1 of load ∑P; i.e., an 

increase of ordinate by an amount d1/L. Moreover, there is an additional increase due to the new load P 
moving a distance e within the influence line (ordinate increases e/L). However, since the load P1 has moved 

out of the influence line; i.e., its ordinate decreases by 1, there is a further decrease of P1 in the support 

reaction. 

Therefore, the overall change of reaction between (ii) and (iii) is given by 

R = {(∑P) d1 + P e}/L − P1      

 …………………………..(3.3) 

Since derivation of (3.3) is based on the shape of influence line, it is valid for all influence lines of similar 

shape. 

Example 3.16 

Calculate the maximum value of RA for the wheel load arrangement shown below. 

 

 

 
          60 

        15        20                  3@12 = 36             15                3@12 = 36  

                                                                        

Between W1 and W2, ∑P = 10 + 3 × 30 = 100 k, d1 = 15, P = 30 k, e = 4, P1 = 10 k  

R12 = {100 × 15 + 30 × 4}/60 − 10 = 17 k      

Between W2 and W3, ∑P = 4 × 30 = 120 k, d1 = 20, P = 15 k, e = 9, P1 = 10 k 

R23 = {120 × 20 + 15 × 9}/60 − 10 = 32.25 k 

Between W3 and W4, ∑P = 3 × 30 + 15 = 105 k, d1 = 12, P = 15 k, e = 9, P1 = 30 k  

 R 34 = {105 × 12 + 15 × 9}/60 − 30 = − 6.75 k     

RA is maximum when W3 is at A  RA(Max) = 30 × (60 + 48 + 36 + 24)/60 + 15 × 9/60 = 86.25 kips 

 

A 

A 

1 

1 

W1     W2 

W1     W2 

∑P P 
P1 

d1 
L 

e 

A B 

 W1    W2          W3        W4        W5        W6                 W7         W8        W9        W10 

A B 

 10
k
    10

k
           30

k
       30

k
        30

k
        30

 k
                15

 k
       15

 k
       15

 k
        15

 k 

 x = 0       15          35        47        59         71 86        98         110      122 
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Maximum ‘Shear Force’ due to Wheel Loads 

Using similar arguments as mentioned for ‘support reactions’, the change in shear force between successive 

wheel arrivals at a section is given by  

 

V = {(∑P) d1 + P e + P0 e0}/L − P1     

 …………………………..(3.4) 

where ∑P = Load remaining on the influence line throughout the wheel movement, d1 = Shift of the wheels,  

P = New load moving a distance e within the influence line, P1 = Load which shifted off the section,  

and P0 = Load moving off the influence line from a distance e0 inside.  

These terms are illustrated in (i) and (ii) of Fig. 1, demonstrating transition from W2 to W3 at a critical 

section.  

 

 

 

 

           

        L     (i) 

 

 

 

 

 

           

         L     (ii) 

 

Fig. 1: Wheel Loads with ‘Shear Type’ Influence Line 

Example 3.17 

Calculate the maximum value of VC for the wheel load arrangement shown below. 

 

 

 
     20                      40 

        15        20                  3@12 = 36             15                3@12 = 36  

                                                                        

Between W1 and W2, ∑P = 2 × 10 + 30 = 50 k, d1 = 15, P = 30 k, e = 8, P0 = 0, P1 = 10 k 

V12 = {50 × 15 + 30 × 8}/60 − 10 = 6.5 k      

Between W2 and W3, ∑P = 10 + 2 × 30 = 70 k, d1 = 20, P = 30 k, 30 k, e = 16, 4, P0 = 10 k, e0 = 5, P1 = 10 

k 

V23 = {70 × 20 + 30 × 16 + 30 × 4 + 10 × 5}/60 − 10 = 24.17 k 

Between W3 and W4, ∑P = 4 × 30 = 120 k, d1 = 12, P = 15 k, e = 1, P0 = 10 k, e0 = 0, P1 = 30 k  

V 34 = {120 × 12 + 15 × 1 + 10 × 0}/60 − 30 = −5.75 k     

VC is maximum when W3 is at C  VC(Max) = 30 × (40 + 28 + 16 + 4)/60 − 15 × 0/60 = 44 kips 

 

 

 

 

 

 

 

 

A B 

 10
k
    10

k
           30

k
       30

k
        30

k
        30

 k
                15

 k
       15

 k
       15

 k
        15

 k 

 x = 0       15          35        47        59         71 86        98         110      122 

A 

e0 

A 
W1     W2         W3 

∑P P P0 

e 

P1 

P1 

C 
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Maximum ‘Moment’ and Greatest Maximum Moment 

Maximum ‘Moment’ for Wheel Loads 

Fig. 1 (i) and (ii) demonstrate transition from W2 to W3 to obtain the maximum moment at a section that 

splits the influence line into two lengths, a and b. If i = maximum ordinate of the influence line, the change 

in bending moment due to the transition can be obtained as 

M = (P2 d1 + P e) (i/b) − (P1 d1 + P0 e0) (i/a)     …………………………..(3.5) 

where P2 = Load remaining on the right (increasing) portion during wheel movement,  

P1 = Load remaining on the left (decreasing) portion during wheel movement, d1 = Shift of the wheels,  

P = New load moving a distance e within the influence line,  

and P0 = Load moving off the influence line from a distance e0 inside.  

 

 

 

 

      a              b    

             (i) 

 

 

 

 

           

                  a              b           (ii) 

Fig. 1: Wheel Loads with ‘Moment Type’ Influence Line 

Greatest Maximum Moment 

For a given group of wheel loads, it is often required to obtain the location of the maximum possible 

moment in a beam and also its value. This is called the ‘Greatest Maximum Moment’ (GMM) of the beam 

for the given loads, and for a simple span L under total load ∑P, it is possible to derive the value of GMM as 

M(Max) = (∑P/L) (L/2 −a/2)
2
 −P b, located a/2 from the beam midspan  

 …………………………..(3.6) 

where a = Distance of the centroid of all loads from ‘critical’ load (often the load closest to centroid of 

loads),  

P = Load on the shorter side of the critical section, b = Distance of the centroid of load P from the ‘critical’ 

load. 

Example 3.18 

Calculate the maximum value of MC for the wheel load arrangement shown below. 

 

 

 
        20                      40 

        15        20                  3@12 = 36             15                3@12 = 36  

                                                                        

Between W3 and W4, P1 = 30 k, P2 = 3 × 30 = 90 k, d1 = 12, P = 15 k, e = 1, P0 = 10 k, e0 = 0 

M34 = i {(90 × 12 + 15 × 1)/40 − (30 × 12 + 10 × 0)/20} = i {27.375 − 18} = + ve 

Between W4 and W5, P1 = 30 k, P2 = 2 × 30 + 15 = 75 k, d1 = 12, P = 15 k, e = 1, P0 = 30 k, e0 = 8 

M45 = i {(75 × 12 + 15 × 1)/40 − (30 × 12 + 30 × 8)/20} = i {22.875 − 30} = − ve  

MC is maximum when W4 is at C, with i = 13.33  

 MC(Max) = 13.33 [30 × 8/20 + {30 × (40 + 28 + 16) + 15 × 1}/40] = 13.33 [12 + 63.375] = 1005 k-ft 

Assuming W3 to W7 to be on the beam for greatest maximum moment under W5, their CG is at a distance  

a = [120 × 6 − 15 × 27]/135 = 2.33 from W5       

M(Max) = (135/60) [(60−2.33)/2]
2 

−30 × 12 −15 × 27 = 1105.56 k-ft, at (60 − 2.33)/2 = 28.83 from either 

side.  

A B 

 10
k
    10

k
           30

k
       30

k
        30

k
        30

 k
                15

 k
       15

 k
       15

 k
        15

 k 

 x = 0       15          35        47        59         71 86        98         110      122 

A 

e0 

A 
W1     W2         W3 

P2 
P 

P0 

e 

P1 

P1 

C 

i 

13.33 
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Problems on Load Calculation using Influence Lines 

1. For the truss shown below, calculate the maximum tension and compression in members U4L5, U3U4, 

L3U4 and L3L4 for a uniformly distributed dead load of 1 k/ft and a concentrated live load of 20 k
 

[Note: Stringers are simply supported on floor-beams at bottom-cord joints].   

U3 

  

       10 

            U2                  U4  

             

       10 

             L1          L2       L4          L5 

   

                      10       10        10       10  

2.  For the beam shown below, calculate the maximum and minimum values of  

(i) RA, RC, (ii) VB, VCL, VCR, VE, (iii) MB, MC, ME  

for a uniformly distributed dead load of 1 k/ft and a live load of 2 k/ft. 

 A     B              C  D          E           F       G                             H 

                              

 

         50            50       30      40        40      30        100 

3.  For the beam loaded as described in Question 2, use the influence lines of  

(i) VA, VC(L) to draw the Design SFD, and (ii) MB, MC to draw the Design BMD. 

4.  Calculate the maximum values of RC, VE, MC and ME for the beam described in Question 2, using both 

the wheel loads shown below. 

 

           

 
10

k 
           10

k 
           40

k 
           40

k  
          20

k        
4

k 
              16

k  
          16

k 
         

 

        10           10             10            10                14           14 

Wheel Loads 1               Wheel Loads 2 

5.  Use both the wheel loads described in Question 4 to calculate the greatest maximum moment within the 

span DF of the beam described in Question 2. 

6.  For the Wheel Loads1 shown in Question 4, calculate the maximum values of FBRA, RC, VD(R) and MD 

for the plate girder shown below. 
                           

           

                            A                   F 

             B        C                D          E               

            10  10      10         10             10 

7. For the truss shown below, calculate the maximum reaction at support L5 and maximum forces in 

members U2U3 and L2L3 for the (i) distributed loads described in Question 1, (ii) Wheel Loads1 shown 

in Question 4 [Note: Stringers are simply supported on floor-beams at bottom-cord joints].   

        

            U2                  U4                

             

                   20 

             L1          L2       L4          L5 

   

                       20        20         20       20  

         

L3 

D and F are Internal Hinges 

10 

L3 

U3 
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Wind Pressure and Coefficients 

Basic Wind Pressure 

The basic wind pressure on a surface is given by qb = air Vb
2
/2           .……….(1) 

where air = Density of air = 0.0765/32.2 = 23.76  10
-4

 slug/ft
3
 

           Vb = Basic wind speed, ft/sec = 1.467  Basic wind speed, mph 

Eq. (1)  qb = 23.76  10
-4

  (1.467 Vb)
2
/2 = 0.00256 Vb

2
           .……….(2) 

where  qb is in psf (lb/ft
2
) and Vb is in mph (mile/hr). 

 

The basic wind speeds at different important locations of Bangladesh are given below. A more detailed map 

for the entire country is available in BNBC 1993. 

 

 

 

 

 

 

 

 

 

Sustained Wind Pressure 

The wind velocity (and pressure) increases from zero at the base of the structure and is also a function of the 

exposure (i.e., open terrain or congested area). Moreover one has to account for the importance of the 

structure; i.e., design the sensitive structures more conservatively. 

 

The sustained wind pressure on a building surface at any height z above ground is given by 

qz = 0.00256 CI Cz Vb
2
               .……….(3) 

where CI = Structural importance coefficient, Cz = Height and exposure coefficient. 

 

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Design Wind Pressure 

The design wind pressure can be calculated by multiplying the sustained wind pressure by appropriate 

pressure coefficients due to wind gust and turbulence as well as local topography. 

 

The design wind pressure on a surface at any height z above ground is given by 

pz = CG Ct Cp qz                .……….(4) 

where CG = Wind gust coefficient, Ct = Local topography coefficient, Cp = Pressure coefficient. 

 

Height z (ft) 
Cz 

Exp A Exp B Exp C 

0~15 0.368 0.801 1.196 

50 0.624 1.125 1.517 

100 0.849 1.371 1.743 

150 1.017 1.539 1.890 

200 1.155 1.671 2.002 

300 1.383 1.876 2.171 

400 1.572 2.037 2.299 

500 1.736 2.171 2.404 

650 1.973 2.357 2.547 

1000 2.362 2.595 2.724 

 

 

Location Vb (mph) 

Dhaka 130 

Chittagong 160 

Rajshahi 95 

Khulna 150 

 

 

Category CI 

Essential facilities 1.25 

Hazardous facilities 1.25 

Special occupancy 1.00 

Standard occupancy 1.00 

Low-risk structure 0.80 
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The value of CG for slender structures (height  5 times the minimum width) would be determined by 

dynamic analysis. Although code-based formulae are available, it is unlikely to exceed 2.0.  

 

The pressure coefficient Cp for rectangular buildings with flat roofs may be obtained as follows 

       

 

 

 

 

 

 

 

 

 

 

The pressure coefficient Cp for the windward surfaces of trusses or inclined surfaces are approximated by 

Cp = 0.7, for 0    20 

Cp = (0.072.1), for 20    30 

Cp = (0.030.9), for 30    60 

     Cp = 0.9, for 60    90                         ……….…(5(a)~(d)) 

For leeward surface, Cp = 0.7, for any value of                       …...………….(5(e)) 

 

Vortex Induced Vibration (VIV) 

This phenomenon, has been (and still is) extensively studied in various branches of structural as well as fluid 

dynamics. The pressure difference around a bluff body in flowing fluid may result in separated flow and 

shear layers over a large portion of its surface. The outermost shear layers (in contact with the fluid) move 

faster than the innermost layers, which are in contact with the structure. If the fluid velocity is large enough, 

this causes the shear layers to roll into the near wake and form periodic vortices. The interaction of the 

structure with these vortices causes it to vibrate transverse to the flow direction, and this vibration is called 

VIV.  

 

The frequency of vortex-shedding is called Strouhal frequency (after Strouhal 1878) and is given by the 

simple equation 

fs = SU/D                        .…………….(6) 

where U = Fluid Velocity, D = Transverse dimension of the structure, S = Strouhal number, which is a 

function of Reynolds number and the geometry of the structure. For circular cylinders, S  0.20. 

 

Height z (ft) 
CG (for non-slender structures) 

Exp A Exp B Exp C 

0~15 1.654 1.321 1.154 

50 1.418 1.215 1.097 

100 1.309 1.162 1.067 

150 1.252 1.133 1.051 

200 1.215 1.114 1.039 

300 1.166 1.087 1.024 

400 1.134 1.070 1.013 

500 1.111 1.057 1.005 

650 1.082 1.040 1.000 

1000 1.045 1.018 1.000 

 

H 

Wind 

Lu 
H/2 

L0  1.5 Lu, 2.5H  

*  L0/1.5  

* 

* 
* 

 

H/2Lu Ct 

0.05 1.19 

0.10 1.39 

0.20 1.85 

0.30 2.37 

 

 

h/B 
L/B 

0.1 0.5 0.65 1.0 2.0  3.0 

 0.5 1.40 1.45 1.55 1.40 1.15 1.10 

1.0 1.55 1.85 2.00 1.70 1.30 1.15 

2.0 1.80 2.25 2.55 2.00 1.40 1.20 

 4.0 1.95 2.50 2.80 2.20 1.60 1.25 

 

Wind h 

L 
L 

B 
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Graphs for Wind Coefficients 

Fig. 2.2: Gust Response Factor, CG
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Fig. 2.1: Gust Response Factor, CG
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Fig. 1.1: Height and Exposure Coefficient, Cz
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Calculation of Wind Load 

 

Wind Load on a Building 

Calculate the wind load at each story of a six-storied hospital building (shown below) located at a flat terrain 

in Dhaka. Assume the structure to be subjected to Exposure B. 

 

 

 

 

 

 

 

 

 

 

 
        Side Elevation        Building Plan 

Solution 

The design wind pressure at a height z is given by pz = 0.00256 CI Cz CG Ct Cp Vb
2
   

Since the building is located in Dhaka, the basic wind speed Vb = 130 mph 

For the hospital building (essential facility), Structural importance coefficient CI = 1.25 

In plane terrain, Local topography coefficient Ct = 1.0 

Building height h = 62, dimensions L = 40 and B = 50; i.e., h/B = 1.24 and L/B = 0.80  Cp  1.98 

pz = 0.00256   1.25   Cz   CG  1.00   1.98   (130)
2
 = 107.08 Cz CG 

The corresponding force Fz = B heff pz = 50 heff pz; where heff = Effective height of the tributary area 

heff = 6 + 5 = 11 at 1
st
 floor, (5 + 5 =) 10 between 2

nd
 and 5

th
 floor and 5 at 6

th
 floor  

The coefficients Cz, CG and the design wind pressure pz and force Fz at different heights are shown below. 

 
Story z (ft) Cz CG pz (psf) Fz (kips) Fframes (kips) 

1 12 0.801 1.321 113.30 62.32 9.35 15.58 12.46 15.58 9.35 

2 22 0.866 1.300 120.55 60.27 9.04 15.07 12.05 15.07 9.04 

3 32 0.958 1.270 130.28 65.14 9.77 16.29 13.03 16.29 9.77 

4 42 1.051 1.239 139.44 69.72 10.46 17.43 13.94 17.43 10.46 

5 52 1.135 1.213 147.42 73.71 11.06 18.43 14.74 18.43 11.06 

6 62 1.184 1.202 152.39 38.10 5.72 9.53 7.62 9.53 5.72 

 

 

Wind Load on a Truss 

Calculate the wind load at each joint of the industrial truss (30 separated) located at a hilly terrain in 

Chittagong (with H = 20, Lu = 100). Assume the structure subjected to Exposure C. 

 

 

 

 

 

 

 

pz (windward) = 0.00256  1.25  1.30  1.10  1.39  (0.24)  (160)
2
 = 39.08 psf 

pz (leeward) = 0.00256  1.25  1.30   1.10  1.39  (0.70)  (160)
2
 = 113.98 psf 

F (windward, horizontal) = 39.08  30  5/1000 = 5.86 k, 11.72 k and 5.86 k   

   F (windward, vertical) = 39.08  30  10/1000 = 11.72 k, 23.45 k and 11.72 k   

F (leeward, horizontal) = 113.98  30  5/1000 = 17.10 k, 34.20 k and 17.10 k   

   F (leeward, vertical) = 113.98  30  10/1000 = 34.20 k, 68.40 k and 34.20 k   

5
@

1
0
=

5
0
 

1
2
 

15 

 

10 

 
15 

 

10 15 15 

10 

15 

15 

10 

Wind 

20 

20 

4@20= 80 

Solution 

Angle  = tan
-1

(20/40) = 26.6 

 Cp = (0.07  26.62.1)= 0.24 (windward)  

     Cp = 0.70 (leeward) 

Using Vb = 160 mph, CI = 1.25, H/2Lu = 0.10  Ct = 1.39 

and assuming Cz = 1.30, CG = 1.10 (uniform) 
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Seismic Vibration and Structural Response 

 

Earthquakes have been responsible for millions of deaths and an incalculable amount of damage to property. 

While they inspired dread and superstitious awe since ancient times, little was understood about them until 

the 20
th
 century. Seismology, which involves the scientific study of all aspects of earthquakes, has yielded 

plausible answers to such long-standing questions as why and how earthquakes occur. 

 

Cause of Earthquake 

According to the Elastic Rebound Theory (Reid 1906), earthquakes are caused by pieces of the crust of the 

earth that suddenly shift relative to each other. The most common cause of earthquakes is faulting; i.e., a 

break in the earth’s crust along which movement occurs. Most earthquakes occur in narrow belts along the 

boundaries of crustal plates, particularly where the plates push together or slide past each other. At times, the 

plates are locked together, unable to release the accumulating energy. When this energy grows strong 

enough, the plates break free. When two pieces that are next to each other get pushed in different directions, 

they will stick together for many years, but eventually the forces pushing on them will cause them to break 

apart and move. This sudden shift in the rock shakes the ground around it. 

 

Earthquake Terminology 

The point beneath the earth’s surface where the rocks break and move is called the focus of the earthquake. 

The focus is the underground point of origin of an earthquake. Directly above the focus, on earth’s surface, 

is the epicenter. Earthquake waves reach the epicenter first. During an earthquake, the most violent shaking 

is found at the epicenter. 

 

Earthquakes release the strain energy stored within the crustal plates through ‘seismic waves’. There are 

three main types of seismic waves. Primary or P-waves vibrate particles along the direction of wave, 

Secondary or S-waves that vibrate particles perpendicular to the direction of wave while Raleigh or R-waves 

and Love or L-waves move along the surface. 

 

Earthquake Magnitude 

A number of measures of earthquake ‘size’ are used for different purposes. From a seismologic point of 

view, the most important measure of size is the amount of strain energy released at the source, indicated 

quantitatively as the earthquake magnitude. Charles F. Richter introduced the concept of magnitude, which 

is the logarithm of the maximum amplitude measured in micrometers (10
-6

 m) of the earthquake record 

obtained by a standard short-period seismograph, corrected to a distance of 100 km; i.e.,  

 

ML = log10 (A/A0)             ..………………..(1)  

 

where A is the maximum trace amplitude in micrometers recorded on a seismometer and A0 is a correction 

factor as a function of distance. Earthquake intensity is another well-known measure of earthquake severity 

at a point, most notable of which is the Modified Marcelli (MM) scale.   

 

Nature of Earthquake Vibration 

Earthquake involves vibration of the ground typically for durations of 10~40 seconds, which increases 

gradually to the peak amplitude and then decays. It is primarily a horizontal vibration, although some 

vertical movement is also present. Since the vibrations are time-dependent, earthquake is essentially a 

dynamic problem and the only way to deal with it properly is through dynamic analysis of the structure. 

Figs. 1~4 show the temporal variation of ground accelerations recorded during some of the best known and 

widely studied earthquakes of the 20
th
 century. The El Centro earthquake (USA, 1940) data has over the last 

sixty years been the most used seismic data. However, Figs. 1 and 2 show that the ground accelerations 

recorded during this earthquake were different at different stations. It is about 6.61 ft/sec
2 
for the first station 

and 9.92 ft/sec
2
 for the second, which shows that the location of the recording station should be mentioned 

while citing the peak acceleration in an earthquake. The earthquake magnitudes calculated from these data 

are also different.  
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Figs. 3 and 4 show the ground acceleration from the Northridge (1994) and Kobe (1995) earthquake, both of 

which caused major destructions in the recent past in two of the better-prepared nations. The maximum 

ground accelerations they represent can only provide a rough estimate of their nature. The Fourier amplitude 

spectra need to be obtained and studied in order to gain better insight into their nature.  Fourier amplitude 

spectra for the El Centro2 and Kobe earthquake ground acceleration are shown in Figs. 5 and 6. 
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Fig. 22.2: El Centro2 Ground Acceleration
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Fig. 22.1: El Centro1 Ground Acceleration
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Fig. 1: El Centro1 Ground Acceleration Fig. 2: El Centro2 Ground Acceleration 

Fig. 22.3: Kobe Ground Acceleration
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Fig. 4: Kobe Ground Acceleration Fig. 22.4: Northridge Ground Acceleration
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Fig. 3: Northridge Ground Acceleration 

Fig. 22.7: El Centro Ground Acceleration 
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Fig. 5: El Centro Ground Acceleration 

Spectrum 
Fig. 22.8: Kobe Ground Acceleration 
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Frequency of Earthquakes Worldwide 

A rough idea of frequency of occurrence of large earthquakes is given by the following tables (Table 1 and 

Table 2). These are collected from Internet sources as data reported by the National Earthquake Information 

Center (NEIC) of the United States Geological Survey (USGS). 

 

Table 1: Frequency of Occurrence of Earthquakes (Based on Observations since 1900) 

Descriptor  Magnitude  Average Annually  

Great 8 and higher 1 

Major  7 - 7.9  18  

Strong  6 - 6.9  120  

Moderate  5 - 5.9  800  

Light  4 - 4.9  6,200 (estimated)  

Minor  3 - 3.9  49,000 (estimated)  

Very Minor  < 3.0  
Magnitude 2 - 3: about 1,000 per day  

Magnitude 1 - 2: about 8,000 per day  

 

Table 2: The Number of Earthquakes Worldwide for 1992 - 2001 (Located by the USGS-NEIC)  

Magnitude  1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 

8.0 and higher 0 1 2 3 1 0 2 0 4 1 

7.0 - 7.9 23 15 13 22 21 20 14 23 14 6 

6.0 - 6.9 104 141 161 185 160 125 113 123 157 45 

5.0 - 5.9 1541 1449 1542 1327 1223 1118 979 1106 1318 382 

4.0 - 4.9 5196 5034 4544 8140 8794 7938 7303 7042 8114 2127 

3.0 - 3.9 4643 4263 5000 5002 4869 4467 5945 5521 4741 1624 

2.0 - 2.9 3068 5390 5369 3838 2388 2397 4091 4201 3728 1319 

1.0 - 1.9 887 1177 779 645 295 388 805 715 1028 225 

0.1 - 0.9 2 9 17 19 1 4 10 5 6 0 

Less than 0.1 4084 3997 1944 1826 2186 3415 2426 2096 3199 749 

Total 19548 21476 19371 21007 19938 19872 21688 20832 22309 6478 

Estimated Deaths 3814 10036 1038 7949 419 2907 8928 22711 231 14923 

 

History of Earthquakes in Bangladesh 

During the last 150 years, seven major earthquakes (with M>7.0) have affected the zone that is now within 

the geographical borders of Bangladesh. Out of these, three had epicenters within Bangladesh. The 

earthquakes and their effects are described in Table 3. 

 

Table 3: List of major Earthquakes affecting Bangladesh 

 

Date 
Name of 

Earthquake 

Magnitude 

(Richter) 

Epicentral distance from 

Dhaka (km) 
Affected zone 

10
th

 Jan, 

1869 

Cachar 

Earthquake 
7.5 250 Tremor mainly in Sylhet 

14
th 

July, 

1885 
Bengal Earthquake 7.0 170 

Damage in Jamalpur Sherpuur, 

Bogra 

12
th

 June, 

1897 

Great Indian 

Earthquake 
8.7 230 

Damage in Sylhet, 

Mymensingh 

8
th

 July, 

1918 

Srimongal 

Earthquake 
7.6 150 Tremor in Sylhet 

2
nd

 July, 

1930 

Dhubri 

Earthquake 
7.1 250 

Damage in Eastern part of 

Rangpur 

15
th

 Jan, 

1934 

Bihar-Nepal 

Earthquake 
8.3 510 None 

15
th 

Aug, 

1950 

Assam 

Earthquake 
8.5 780 Tremor throughout the country 
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Response Spectrum Analysis 

The main objective of seismic design methods is to conveniently calculate the peak displacements and forces 

resulting from a particular design ground motion. The Response Spectrum Analysis (RSA) is an 

approximate method of dynamic analysis that can be readily used for a reasonably accurate prediction of 

dynamic response. The governing equation of motion for a single-degree-of-freedom (SDOF) system 

subjected to ground motion ug(t) is given by 

 

m d
2
ur/dt

2 
+ c dur/dt + k ur =   m d

2
ug/dt

2
                   .…..…..……………(2) 

 

Since the loads themselves (on the right side of the equations) are proportional to the structural properties, 

each of these equations can be normalized in terms of the system properties (natural frequency n and 

damping ratio ) and the ground motion (acceleration or displacement and velocity).  

 

d
2
ur/dt

2 
+ 2n dur/dt + n

2
 ur =   d

2
ug/dt

2
          .…..…..……………(3) 

 

For a specified ground motion data (e.g., the El Centro2 or Kobe data shown in Fig. 2 or 4) the temporal 

variation of structural displacement, velocity and acceleration depends only on its natural frequency n and 

the damping ratio . From the time series thus obtained, the maximum parameters can be identified easily as 

the maximum design criteria for that particular structure (and that particular ground motion). Such maximum 

values can be similarly obtained for structures with different natural frequency (or period) and damping 

ratio. Since natural period (Tn) is a more familiar concept than n, the peak responses can be represented as 

functions of Tn and  for the ground motion under consideration. 

 

If a ‘standard’ ground motion data can be chosen for the design of all SDOF structures, the maximum 

responses thus obtained will depend on the two structural properties only. A plot of the peak value of the 

response quantity as a function of natural Tn and  is called the response spectrum of that particular quantity. 

If such curves can be obtained for a family of damping ratios (), they can provide convenient curves for 

seismic analysis of SDOF systems. For example, the peak responses for the relative acceleration (a) are 

called the response spectra for the acceleration; i.e., 

 

a0(Tn, ) = Maxa(t, Tn, )      …………………......(4) 

 

Such response spectra have long been used as useful tools for the seismic analysis of SDOF and MDOF 

(multi-degree-of-freedom) systems, which can be decomposed into several SDOF systems by Modal 

Analysis. Once the peak responses for all the modes are calculated from the response spectra, they can be 

combined statistically to obtain the approximate maximum response for the whole structure.  

 

In order to account for the amplification of waves while propagating through soft soils, some simplified 

wave propagation analyses can be performed. Such works, performed statistically for a variety of soil 

conditions, provide the acceleration response spectra shown in Fig. 7 and code-specified spectra in Fig. 8. 
 

 

            a/g                    a/g 

                      Soft Soil        Soft Soil 

             Medium                           Medium 

          Hard          Hard  

 

 

 

                     

    Tn               Tn  

 

Fig. 7: Response Spectra for different sites      Fig. 8: Code Specified Response Spectra 

 

The analogy of this formulation to the ‘Equivalent Static Force Method’ is added later. 
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Equivalent Static Force Method 

 

The ‘Equivalent’ Static Analysis of seismic vibration is based on the concept of replacing the inertia forces 

at various ‘lumped masses’ (i.e., story levels) by equivalent horizontal forces that are proportional the weight 

of the body (therefore its mass) and its displacement (therefore its acceleration). The summation of these 

concentrated forces is balanced by a ‘base shear’ at the base of the structure. 

 

This method may be used for calculation of seismic lateral forces for all structures specified in the building 

codes. The following provisions are taken from the Bangladesh National Building Code (BNBC, 1993) for 

most part. 

 

(1) Design Base Shear 

The total design base shear in a given direction is determined from the following relation: 

  V = (ZIC/R) W                     ……………(5) 

 where,  Z = Seismic zone coefficient given in Table 6.2.22 and Fig. 6.2.10 (BNBC 1993);  

i.e., Z = 0.075, 0.15 and 0.25 for Seismic Zones 1, 2 and 3 respectively 

  I = Structure importance coefficient given in Table 6.2.23, similar to CI for wind 

  R = Response modification coefficient for structural systems given in Table 4;  

       i.e., 6.2.24 in BNBC 

  W = The total seismic dead load 

The ‘Seismic Dead Load’ is not only the dead load (including permanent partitions) of the structure but also 

has to include some live loads as and when they superimpose on the dead loads.  

  C = Numerical coefficient given by the relation: 

C = 1.25 S/T
2/3

                         …..………………(6) 

  S = Site coefficient for soil characteristics as provided in Table 5; i.e., 6.2.25 in BNBC 

T = Fundamental period of vibration of the structure in the direction considered (in sec) 

The value of C need not exceed 2.75. Except for those requirements where Code prescribed forces are scaled 

up by 0.375R, the minimum value of the ratio C/R is 0.075. 

 

(2) Structural Period 

The value of T may be approximated by the equation T = Ct (hn)
3/4

                    …………….(7) 

          where,  Ct  = 0.083 for steel moment resisting frames  

                  = 0.073 for RCC moment resisting frames, and eccentric braced steel frames                    

   = 0.049 for all other structural systems 

           hn = Height (in meters) above the base to level n. 

There are alternative ways of calculating T and Ct. 

 

(3) Vertical Distribution of Lateral Forces 

In the absence of a more rigorous procedure, the total lateral force which is the base shear V, is distributed 

along the height of the structure in accordance with Eqs. (8)~(10). 

  V = Ft + Fi                         …..………(8) 

where, Fi  =  Lateral force applied at storey level i and  

Ft = Additional concentrated lateral force considered at the top of the building 

The concentrated force, Ft acting at the top of the building is determined as follows:  

  Ft = 0.07 TV  0.25V when T > 0.7 second, and = 0, when T  0.7 second      .…………(9) 

 

The remaining portion of the base shear (V–Ft), is distributed over the height of the building, including level 

n, according to the relation 

  Fj = (V–Ft) [wj hj/wi hi]                       …...…..…..(10) 

 

The design story shear Vx in any story x is the sum of the forces Fx and Ft above that story.     
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Table 4: Response Modification Coefficient, R for Structural Systems 

Basic Structural System Description Of Lateral Force Resisting System R 

(a) Bearing Wall 

System 

Light framed walls with shear panels 

Shear walls 

Light steel framed bearing walls with tension only bracing 

Braced frames where bracing carries gravity loads 

6~8 

6 

4 

4~6 

(b) Building  Frame 

System 

Steel eccentric braced frame (EBF) 

Light framed walls with shear panels 

Shear walls 

Concentric braced frames (CBF) 

10 

7~9 

8 

8 

(c) Moment Resisting 

Frame System 

Special moment resisting frames (SMRF) 

(i) Steel 

(ii) Concrete 

Intermediate moment resisting frames (IMRF), concrete 

Ordinary moment resisting frames (OMRF) 

(i) Steel 

(ii) Concrete
 

12 

12 

8 

 

6 

5 

(d) Dual System 

Shear walls 

Steel EBF 

Concentric braced frame (CBF) 

7~12 

6~12 

6~10 

(e) Special Structural 

Systems 
According to Sec 1.3.2, 1.3.3, 1.3.5 of BNBC  

 

Table 5: Site Coefficient, S for Seismic Lateral Forces 

Site Soil Characteristics Coefficient, 

S Type Description 

S1 

A soil profile with either: 

A rock–like material characterized by a shear–wave velocity greater than 762 m/s or by other 

suitable means of classification, or 

Stiff or dense soil condition where the soil depth exceeds 61 meters 

1.0 

S2 A soil profile with dense or stiff soil conditions, where the soil depth exceeds 61 meters 1.2 

S3 
A soil profile 21 meters or more in depth and containing more than 6 meters of soft to medium 

stiff clay but not more than 12 meters of soft clay 

 

1.5 

 

S4 
A soil profile containing more than 12 meters of soft clay characterized by a shear wave velocity 

less than 152 m/s 
2.0 

 

Structural Dynamics in Building Codes 

The Equivalent Static Force Method (ESFM) tries to model the dynamic aspects of seismic loads in an 

approximate manner. Therefore it is natural that the ESFM includes several equations that are derived from 

Structural Dynamics. The following are worth noting, as formulated in the ‘Response Spectrum Analysis’. 

 

Peak ground acceleration due to earthquake = ag. 

Maximum acceleration amax of the structure due to this force = ag  Ordinate of Response Spectrum (C) 

Maximum ‘earthquake force’ on the structure = m amax = (W/g) (ag  C) = (ag/g) (C) W = Z C W 

(1) The zone factor Z can be interpreted as the ratio of the maximum ground acceleration and g (= ag/g), 

while the factor C is the ordinate of the Response Spectrum. Including I (the importance factor for 

different structures), the Ve = (ZIC) W gives the maximum elastic force on the building. Therefore 

the factor R is the building resistance factor that accounts for the ductility of the building, i.e., its 

ability to withstand inelastic deformations and thereby reduce the elastic force. 

(2) The distribution of story shear [Eq. (10)] in proportion to the mass and height of the story is an 

approximation of the 1
st
 modal shape, which is almost linear for shorter buildings but tends to be 

parabolic to include higher modes of vibration. Therefore, a concentrated load is added at the top to 

approximately add the 2
nd

 mode of vibration for taller buildings. 

(3) Factor S is introduced in the factor C to account for amplification of seismic waves in soft soils.  

(4) The equation of the natural frequency [Eq.(7)] is very similar to the equation of natural frequency of 

continuous dynamic systems. 
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Calculation of Seismic Load 

 

Seismic Load on a Building 

Use the Equivalent Static Force Method to calculate the seismic load at each story of a six-storied hospital 

building (shown below) located in Dhaka. Assume the structure to be an Ordinary Moment Resisting Frame 

(OMRF) built on soil condition S2, carrying a Dead Load of 150 lb/ft
2
 and Live Load 40 lb/ft

2
. 

 

 

 

 

 

 

 

 

 

 

 
        Side Elevation        Building Plan 

Solution 

(1) Base shear 

The total design base shear V = (ZIC/R) W 

where, Z = Seismic zone coefficient in Dhaka = 0.15 

            I = Structure importance coefficient for hospital building = 1.25 

            R = Response modification coefficient for OMRF (concrete) = 5.0 

            w = Total seismic DL pressure = DL + 25% of LL = 150 + 0.25  40 = 160 lb/ft
2
 = 0.16 k/ft

2
 

            W = 0.16  Total Floor Area = 0.16  6  40  50 = 1920 kips 

            Numerical Coefficient C = 1.25 S/T
2/3 

               

where, S = Site coefficient for soil type S2 = 1.2 

            T = Fundamental period of vibration = Ct (hn)
3/4

 = 0.073 (62/3.28)
3/4

 = 0.661 sec 

        C = 1.25 S/T
2/3 

= 1.25  1.2/(0.661)
2/3 

= 1.975, which is  2.75; i.e., OK 

        Total design base shear, V = (ZIC/R)W = (0.15  1.25  1.975/5)  1920 = 0.074  1920  

  = 142.22 kips 

 

(2) Vertical Distribution of Lateral Forces 

Since T = 0.661 sec  0.7 sec, Ft = 0  

  Fj = (V–Ft) [wjhj/wi hi] = (142.2–0)[320 hj/{320 (12 + 22 + 32 + 42 + 52 + 62)} 

       = 0.641 hj  

 

The design story shear Vj in any story j is the sum of the forces Fj and Ft above that story. 

 
Story hj (ft) wj (kips) Fj (kips) Vj (kips) Fframes (kips) 

1 12 320 7.69 142.22 1.15 1.92 1.54 1.92 1.15 

2 22 320 14.09 134.53 2.11 3.52 2.82 3.52 2.11 

3 32 320 20.50 120.44 3.07 5.12 4.10 5.12 3.07 

4 42 320 26.91 99.94 4.04 6.73 5.38 6.73 4.04 

5 52 320 33.31 73.03 5.00 8.33 6.66 8.33 5.00 

6 62 320 39.72 39.72 5.96 9.93 7.94 9.93 5.96 

5
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Problems on Calculation of Lateral Loads 

 

1.  The basic wind pressure on the surface of a (10  10  10) overhead water tank (essential facility) 

shown below and located at a flat terrain with Exposure B is 30 psf. Calculate the  

(i) sustained wind pressure, (ii) design wind pressure, (iii) design wind force on the tank.  

 

 

 

 

 

 

2. Calculate the (i) sustained wind pressure, (ii) sustained wind force at each story of the four-storied 

residential building (shown below) subjected to a basic wind pressure is 30 psf with Exposure B. 

 

 

 

 

 

 

 

 

            
          Side Elevation        Building Plan 

 

3. Calculate the (i) design wind pressure, (ii) design wind force at each story of the four-storied residential 

building (shown in Question 2) if the sustained wind pressure q1 at the first story is 35 psf. Assume the 

structure to be located at a hilly terrain (with H = 10, Lu = 100). 

 

4. Calculate the design wind pressures on an industrial truss located at a hilly terrain (with H = 10, Lu = 

100) under Exposure C if the windward pressure is (i) zero, (ii) equal to the suction pressure at the 

leeward surface [Given: Sustained wind pressure = 40 psf]. 

 

 

 

 

 

 

5. Calculate the design wind pressures on the industrial truss shown below if it is located at a flat terrain in 

Khulna at Exposure B and the wind blows (i) from left, (ii) from right. 

 

 

 

 

 

 

6.  Calculate seismic base shear force for the structure shown in Question 1, if it is located on medium stiff 

soil (type S3) in Dhaka, has a natural frequency of 3 Hz and has a response modification factor R = 4. 

Neglect the weight of the column and assume the entire weight of the structure to be concentrated at the 

tank, which is filled with water (unit weight 62.5 lb/ft
3
).  

 

7. Calculate the (i) seismic base shear force, (ii) seismic force at each story of the four-storied residential 

building shown in Question 2, if the seismic force at the first story is 5 kips.   
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Solution of Problems on Calculation of Lateral Loads 

 

1. Basic wind pressure qb = 30 psf  

(i) Sustained wind pressure qz = CI Cz qb 

where CI = 1.25, Cz  at height (30 + 10/2 = 35) = 1.05 

The sustained wind pressure qz = 1.25  1.05  30 = 39.38 psf 

(ii) Design wind pressure pz = CG Ct Cp qz 

where CG  at 35 = 1.25, Ct at flat terrain = 1.0, Cp (for h/B = 10/10 = 1.0, L/B = 10/10 = 1.0) = 1.7 

The design wind pressure pz = 1.25  1.0  1.7  39.38 = 83.67 psf 

(iii) Design wind force Fz = B h0 pz; where B = 10, h0 = 10 

The design wind force Fz = 10  10  83.67 = 8367 lb = 8.37 kips 

 

2. Basic wind pressure qb = 30 psf  

(i) Sustained wind pressure qz = CI Cz qb 

where CI = 1.0, Cz  changes with height as shown below 

(ii) Sustained wind force Fz = qz  Tributary Area = qz  Effective height h0  Effective width B   

 
Story z (ft) CI Cz qz (psf) h0z (ft) B (ft) Qz (kips) 

1 12 

1.0 

0.801 24.03 11 

30 

7.93 

2 22 0.866 25.98 10 7.79 

3 32 0.958 28.74 10 8.62 

4 42 1.051 31.53 5 4.73 

 

3.  Design wind pressure pz = CG Ct Cp qz 

where Ct (for H/2Lu = 10/200 = 0.05) = 1.19, Cp (for h/B = 42/30 = 1.4, L/B = 40/30 = 1.33) = 1.65 

Also Cz  and CG  change with height as shown below.  

Since q1 = 35 psf at z = 12 ft, the sustained pressures at other heights can be calculated from Cz   

 

Story z (ft) Cz qz (psf) CG Ct Cp pz (psf) h0z (ft) B (ft) Fz (kips) 

1 12 0.801 35.00 1.321 

1.19 1.65 

90.78 11 

30 

29.96 

2 22 0.866 37.84 1.300 96.59 10 28.98 

3 32 0.958 41.86 1.270 104.38 10 31.32 

4 42 1.051 45.92 1.239 111.72 5 16.76 

 

4.  If the windward pressure = 0, then 0.07  2.1 = 0   = 30  Height of truss = 60 tan 30 = 34.64 

If the windward pressure = Leeward suction pressure = 0.7, then 0.03  0.9 = 0.7   = 53.33 

 Height of truss = 60 tan 53.33 = 80.53 

Using H/2Lu = 0.05  Ct = 1.19 and assuming CG = 1.10 (uniform) reasonably for both (i) and (ii). 

(i) pz (windward) = 0 and pz (leeward) = 1.10  1.19  (0.70)  40 = 33.32 psf 

(ii) pz (windward) = 33.32 psf, and pz (leeward) = 33.32 psf 

 

5.  For a flat terrain in Khulna, Vb = 150 mph  qz = 0.00256 (150)
2
 = 57.6 psf  

CI = 1.25, Ct = 1.0, and assuming height = 30/2 = 15 for Exposure B, Cz = 0.801, CG = 1.321 

qz = 1.25  0.801  57.6 = 57.67 psf     

(i) If wind blows from left,  = tan
-1

(30/30) = 45,  

Cp (windward) = 0.03  45  0.9 = 0.45, and Cp (leeward) = 0.7 

pz (windward) = 1.321  1.0  (0.45)  57.67 = 34.28 psf and  

pz (leeward) = 1.321  1.0  (0.7)  57.67 = 53.33 psf 

(ii) If wind blows from right,  = tan
-1

(30/60) = 26.6,  

Cp (windward) = 0.07  26.6  2.1 = 0.24, and Cp (leeward) = 0.7 

pz (windward) = 1.321  1.0  (0.24)  57.67 = 18.13 psf and pz (leeward) = 53.33 psf 
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6.  For an essential structure in Dhaka, Z = 0.15, I = 1.25  

Also natural frequency fn = 3 Hz  Time period T = 1/3 = 0.33 sec 

For soil type S3, S = 1.5  C = 1.25 S/T
2/3

 = 1.25  1.5/0.33
2/3

 = 3.90  2.75; i.e., C = 2.75    

Also response modification factor R = 4.0 

Neglecting the weight of the column and tank and considering the weight of water only,  

The total seismic weight W = 10  10  10  62.5/1000 = 62.5 kips 

Seismic base shear force V = (ZIC/R) W = (0.15  1.25  2.75/4.0)  62.5 = 8.06 kips 

 

7. The seismic force distribution is given by the equation, V = Ft + Fi    

where, Fi  = Lateral force applied at storey level i, and  

Ft = Additional concentrated lateral force considered at the top of the building 

     Here, T = Fundamental period of vibration = Ct (hn)
3/4

 = 0.073 (42/3.28)
3/4

 = 0.49 sec  0.70 sec  

Ft = 0  

Fj = V [wj hj/wi hi] = V hj/ hi, if floor weights are assumed constant  

Seismic forces are assumed to be proportional to height from base 

F1 = 5
 k
  F2 = 5  22/12 = 9.17

 k
, F3 = 5  32/12 = 13.33

 k
, F4 = 5  42/12 = 17.50

 k
     

Base shear force V = F1 + F2 + F3 + F4 = 5 + 9.17 + 13.33 + 17.50 = 45.0 kips      
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Dynamic Force, Dynamic System and Equation of Motion 

Dynamic Force and System 

Time-varying loads are called dynamic loads. Structural dead loads and live loads have the same magnitude 

and direction throughout their application and are thus static loads. However there are several examples of 

forces that vary with time, i.e., those caused by wind, vortex, water wave, vehicle, blast or ground motion. 

A dynamic system is a simple representation of physical systems and is modeled by mass, damping and 

stiffness. Stiffness is the resistance it provides to deformations, mass is the matter it contains and damping 

represents its ability to decrease its own motion with time. A dynamic system resists external forces by a 

combination of forces due to its stiffness (spring force), damping (viscous force) and mass (inertia force). 

Formulation of the Single-Degree-of-Freedom (SDOF) Equation 

For the system shown in Fig. 1.1, k is the stiffness, c the viscous damping, m the mass and u(t) is the 

dynamic displacement due to the time-varying excitation force f(t). Such systems are called Single-Degree-

of-Freedom (SDOF) systems because they have only one dynamic displacement [u(t) here]. 

   
        m               f(t), u(t)          f(t)  

        

                      

           k          c 

        

 

  Fig. 1.1: Dynamic SDOF system subjected to dynamic force f(t) 

Considering the free body diagram of the system, f(t)  fS  fV = ma  ma + fV + fS = f(t)       ………..(1.1) 

where fS = Spring force = Stiffness times the displacement = k u          ..………(1.2) 

          fV = Viscous force = Viscous damping times the velocity = c du/dt         ..………(1.3) 

          fI = Inertia force = Mass times the acceleration = m d
2
u/dt

2
                       …………(1.4) 

Combining the equations (1.2)-(1.4) with (1.1), the equation of motion for a SDOF system is derived as, 

m d
2
u/dt

2
 + c du/dt + ku = f(t)                         ..………(1.5) 

This is a 2
nd

 order ordinary differential equation, which needs to be solved in order to obtain the dynamic 

displacement u(t). Eq. (1.5) has several limitations; but it still has wide applications in Structural Dynamics. 

Several important derivations and conclusions in this field have been based on it. 

Governing Equation of Motion for Systems under Seismic Vibration 

The loads induced by earthquake are not body-forces; rather it is a ground vibration that induces certain 

forces in the structure. For the SDOF system subjected to ground displacement ug(t) 

   
        m               u(t)          u(t)  

        

                      

           k          c 

        

 

 

Fig. 1.2: Dynamic SDOF system subjected to ground displacement ug(t) 

fS = Spring force = k (uug), fV = Viscous force = c (du/dtdug/dt), fI = Inertia force = m d
2
u/dt

2
               

Combining the equations, the equation of motion for a SDOF system is derived as,  

m d
2
u/dt

2
 + c (du/dtdug/dt) + k (uug) = 0  m d

2
u/dt

2
 + c du/dt + k u =  c dug/dt + k ug ...……(1.6) 

 m d
2
ur/dt

2 
+ c dur/dt + k ur = m d

2
ug/dt

2
                     ..…..……………(1.7) 

where ur = uug is the relative displacement of the SDOF system with respect to the ground displacement. 

Eqs. (1.6) and (1.7) show that the ground motion appears on the right side of the equation of motion just like 

a time-dependent load. Therefore, although there is no body-force on the system, it is still subjected to 

dynamic excitation by the ground displacement. 

fS fV 

m a 

fS fV 

m a 

ug(t) ug(t) 
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Free Vibration of Damped Systems 

As mentioned in the previous section, the equation of motion of a dynamic system with mass (m), linear 

viscous damping (c) & stiffness (k) undergoing free vibration is,  

m d
2
u/dt

2
 + c du/dt + ku = 0                                              …………………(1.5) 

 d
2
u/dt

2 
+ (c/m) du/dt + (k/m) u = 0  d

2
u/dt

2 
+ 2n du/dt + n

2
 u = 0        …...…..…………(2.1) 

where n = (k/m), is the Natural Frequency of the system           ...……..…………(2.2)  

and  = c/(2mn) = cn/(2k) = c/2(km), is the Damping Ratio of the system               ...…………….…(2.3) 

If 1, the system is called an Underdamped System. Practically, most structural systems are underdamped. 

The displacement u(t) for such a system is 

u(t) = e
nt

 [C1 cos (dt) + C2 sin (dt)]                                 ...………………(2.4) 

where d = n(1
2
) is called the Damped Natural Frequency of the system        ………………...(2.5)  

If u(0) = u0 and v(0) = v0, then the equation for free vibration of a damped system is given by 

u(t) = e
nt

 [u0 cos (dt) + {(v0 + nu0)/d} sin (dt)]             ……………...(2.6) 

Eq (2.6)  The system vibrates at its damped natural frequency (i.e., a frequency of d radian/sec).  

Since d [= n(1
2
)] is less than n, the system vibrates more slowly than the undamped system. 

Moreover, due to the exponential term e
nt

, the amplitude of the motion of an underdamped system 

decreases steadily, and reaches zero after (a hypothetical) ‘infinite’ time of vibration. 

 

Example 2.1 

A damped structural system with stiffness (k) = 25 k/ft and mass (m) = 1 k-sec
2
/ft is subjected to an initial 

displacement (u0) = 1 ft, and an initial velocity (v0) = 4 ft/sec. Plot the free vibration of the system vs. time if 

the Damping Ratio () is (a) 0.00 (undamped system), (b) 0.05, (c) 0.50 (underdamped systems). 

 

Solution 

The equations for u(t) are plotted against time for various damping ratios (DR) and shown below in Fig. 2.1. 

These figures show that the underdamped systems have sinusoidal variations of displacement with time. 

Their natural periods are lengthened (more apparent for  = 0.50) and maximum amplitudes of vibration 

reduced due to damping. 

Fig. 2.1: Displacement vs. Time for free vibration of damped systems
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Damping of Structures 

Damping is the element that causes impedance of motion in a structural system. There are several sources of 

damping in a dynamic system. It can be due to internal resistance to motion between layers, friction between 

different materials or different parts of the structure (called frictional damping), drag between fluids or 

structures flowing past each other, etc. Sometimes, external forces themselves can contribute to (increase or 

decrease) the damping. Damping is also increased in structures artificially by external sources like dampers 

acting as control systems. 

 

Viscous Damping of SDOF systems 

Linear viscous damping is the most used damping and provides a force directly proportional to the structural 

velocity. This is a fair representation of structural damping in many cases and is often convenient to assume 

for the purpose of analysis. Viscous damping is usually an intrinsic property of the material and originates 

from internal resistance to motion between different layers within the material itself. 

The free vibration response of SDOF system with linear viscous damping was found to be  

u(t) = e
-nt

 [u0 cos (dt) + {(v0 + nu0)/d} sin (dt)]             ………………..(2.6) 

Therefore the displacement at N time periods (Td = 2/d) later than u(t) is  

u(t+NTd) = e
-n(t+2N/d)

 [u0 cos(dt+2N) + {(v0 + nu0)/d} sin(dt+2N)] = e
-n(2N/d) 

u(t) ..(2.7) 

From which, using d = n(1-
2
)  /(1-

2
) = ln[u(t)/u(t +NTd)]/2N =    = /(1+

2
)   ...…...…(2.8) 

For lightly damped structures (i.e., 1),    = ln[u(t)/u(t +NTd)]/2N        ..…..……….(2.9) 

 

For example, if the free vibration amplitude of a SDOF system decays from 1.5 to 0.5 in 3 cycles  

 = ln(1.5/0.5)/(23) = 0.0583 = 5.83% 

The damping ratio,  = /(1+
2
) = 0.0582 = 5.82% 

 

Table 2.1: Recommended Damping Ratios for different Structural Elements 

Stress Level Type and Condition of Structure   (%) 

Working stress 

Welded steel, pre-stressed concrete, RCC with slight cracking 2-3 

RCC with considerable cracking 3-5 

Bolted/riveted steel or timber 5-7 

Yield stress 

Welded steel, pre-stressed concrete 2-3 

RCC 7-10 

Bolted/riveted steel or timber 10-15 
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Forced Vibration and Dynamic Magnification 

Unlike free vibration, forced vibration is the dynamic motion caused by the application of external force 

(with or without initial displacement and velocity). Therefore, f(t)  0 in the equation of motion for forced 

vibration; rather, they have different equations for different variations of the applied force with time. The 

equations for displacement for various types of applied force are now studied analytically for undamped and 

underdamped vibration systems. The following cases are studied 

Case1: Step Loading 

For a constant static load of p0, the equation of motion becomes 

m d
2
u/dt

2
 + c du/dt + ku = p0                               …………..(3.1) 

If initial displacement u(0) = 0 and initial velocity v(0) = 0, then 

u(t) = (p0/k)[1  e
-nt

{cos (dt) + n/d sin (dt)}]                                                  ……....…...(3.2) 

For an undamped system,  = 0, d = nu(t) = (p0/k)[1  cos (nt)]                    .....………...(3.3) 

 

Example 3.1 

For the system mentioned in Example 2.1 (i.e., k = 25 k/ft, m = 1 k-sec
2
/ft), plot the displacement vs. time if 

a static load p0 = 25 k is applied on the system if the Damping Ratio () is  

(a) 0.00 (undamped system), 0.05, (c) 0.50 (underdamped systems). 

 

Solution 

In this case, the static displacement is = p0/k = 25/25 = 1 ft. The dynamic solutions are obtained from Eq. 3.2 

and plotted below in Fig. 3.1. The main features of these results are 

For Step Loading, the maximum dynamic response for an undamped system (i.e., 2 ft in this case) is twice 

the static response and continues indefinitely without converging to the static response.  

Here, the maximum dynamic response for damped systems is between 1 and 2 ft, and eventually converges 

to the static solution (1 ft). The larger the damping ratio, the less the maximum response and the quicker it 

converges to the static solution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Case2: Harmonic Loading 

For a harmonic load of amplitude p0 and frequency , the equation of motion is 

m d
2
u/dt

2
 + c du/dt + ku = p0 cos(t), for t  0                         ...………………(3.4) 

If initial displacement u(0) = 0 and initial velocity v(0) = 0, then 

u(t) = (p0/kd)[cos(t-)  e
-nt

{cos cos(dt) + (/d sin + n/d cos) sin(dt)}] ……...…(3.5) 

For an undamped system, u(t) = [p0/(k  
2
m)] [cos(t)  cos(nt)]                     ....………..(3.6) 

 

Fig. 3.1: Dynamic Response to Step Loading
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Dynamic Magnification 

If the motion of a SDOF system subjected to harmonic loading is allowed to continue for long (theoretically 

infinite) durations, the total response converges to the steady state solution given by the particular solution 

of the equation of motion. 

usteady(t) = up(t) = (p0/kd) cos(t)               ……………..…(3.5) 

   [where kd = {(k
2
m)

2 
+ (c)

2
},  = tan

-1
{(c)/ (k

2
m)}] 

Putting the value of kd in Eq. (3.5), the amplitude of steady vibration is found to be 

uamplitude = p0/kd = p0/{(k
2
m)

2 
+ (c)

2
}                        .……………..….(3.8) 

Using ustatic = p0/k  uamplitude/ustatic = 1/{(1
2
/n

2
)

2 
+ (2/n)

2
}           ………...….……(3.9) 

 

Eq. (3.9) gives the ratio of the dynamic and static amplitude of motion as a function of frequency  (as well 

as structural properties like n and ). This ratio is called the steady state dynamic magnification factor 

(DMF) for harmonic motion. Putting the frequency ratio /n = r, Eq. (3.9) can be rewritten as  

DMF = 1/{(1r
2
)

2 
+ (2r)

2
}                                        ………………(3.10) 

From which the maximum value of DMF is found = (1/2)/(1
2
), when r = (12

2
)  …………....(3.11) 

 

The variation of the steady state dynamic magnification factor (DMF) with frequency ratio (r = /n) is 

shown in Fig. 3.2 for different values of  (= DR). The main features of this graph are 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. The curves for the smaller values of  show pronounced peaks [1/(2)] at /n  1. This situation is 

called Resonance and is characterized by large dynamic amplifications of motion. This situation can be 

derived from Eq. (3.10), where 1  DMFmax  1/(4
2
) = (1/2), when r (12

2
) = 1. 

2. For undamped system, the resonant peak is infinity. 

3. Since resonance is such a critical condition from structural point of view, it should be avoided in practical 

structures by making it either very stiff (i.e., r1) or very flexible (i.e., r 1) with respect to the frequency 

of the expected harmonic load. 

4. The resonant condition mentioned in (1) is not applicable for large values of , because the condition of 

maxima at r = (12
2
) is meaningless if r is imaginary; i.e.,   (1/2 =) 0.707. Therefore, another way of 

avoiding the critical effects of resonance is by increasing the damping of the system. 

Fig. 3.2: Steady State Dynamic Magnification Factor
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Problems on the Dynamic Analysis of SDOF Systems 

 

1.  For the (20  20  20) overhead water tank shown below supported by a 25  25 square column, 

calculate the undamped natural frequency for (i) horizontal vibration (k = 3EI/L
3
), (ii) vertical vibration 

(k = EA/L). Assume the total weight of the system to be concentrated in the tank  

[Given: Modulus of elasticity of concrete = 400  10
3
 k/ft

2
, Unit weight of water = 62.5 lb/ft

3
].  

 

 

 

 

 

 

2.  The free vibration responses of two underdamped systems (A and B) are shown below.  

(i) Calculate the undamped natural frequency and damping ratio of system B. 

(ii) Explain (qualitatively) which one is stiffer and which one is more damped of the two systems. 

              

           

 

 

 

 

 

 

 

 

 

 

 

 

3.  For the undamped water tank described in Question 1, calculate the  

(i) maximum displacement when subjected to a sustained wind pressure of 40 psf,  

(ii) maximum steady-state displacement when subjected to a harmonic wind pressure of [40 cos(2t)] psf. 

 

4.  A SDOF system with k = 10 k/ft, m = 1 k-sec
2
/ft, with c = 0, and 0.5 k-sec/ft is subjected to a force (lbs) 

(i) p(t) = 500,  (ii) p(t) = 500 cos(3t).  

Calculate maximum displacement of the system for (i) and maximum steady-state displacement for (ii). 

 

5.  An undamped SDOF system suffers resonant vibration when subjected to a harmonic load (i.e., of 

frequency  = n). Of the control measures suggested below, explain which one will minimize the 

steady-state vibration amplitude. 

(i) Doubling the structural stiffness, (ii) Doubling the structural stiffness and the mass,  

(iii) Adding a damper to make the structural damping ratio = 10%.  
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Solution of Problems on the Dynamic Analysis of SDOF Systems 

 

1.  Mass of the tank (filled with water), m = 20  20  20  62.5/32.2 = 15528 lb-ft/sec
2
  

Modulus of elasticity E = 400  10
3
 k/ft

2 
= 400  10

6
 lb/ft

2
, Length of column L = 30 ft 

(i) Moment of inertia, I = (25/12)
4
/12 = 1.570 ft

4
 

Stiffness for horizontal vibration, kh = 3EI/L
3
 = 3  400  10

6
  1.570/(30)

3 
= 69770 lb/ft 

Natural frequency, nh = (kh/m) = (69770/15528) = 2.120 rad/sec    

(ii) Area, A = (25/12)
2
 = 4.340 ft

2
  

Stiffness for vertical vibration, kv = EA/L = 400  10
6
  4.340/30 = 5787  10

4
 lb/ft 

Natural frequency, nv = (kv/m) = (5787  10
4
/15528) = 61.05 rad/sec    

 

2. (i) System B takes 1.0 second to complete two cycles of vibration.  

Damped natural period Td for system B = 1.0/2 = 0.50 sec 

Damped natural frequency, d = 2/Td = 12.566 rad/sec 

Using as reference the displacements at t = 0 (1.0 ft) and t = 2.0 sec (0.5 ft); i.e., for N = 4 

 = ln[u(0.0)/u(2.0)]/(24) = ln[1.0/0.5]/8 = 0.0276   = /(1+
2
) = 0.0276 

Undamped natural frequency, n = d/(1
2
) = 12.566/(10.0276

2
) = 12.571 rad/sec 

(ii) System A completes only two vibrations while (in 2.0 sec) system B completes four vibrations.  

System B is stiffer. 

However, system A decays by the same ratio (i.e., 0.50 or 50%) in two vibrations system B decays in 

four vibrations.  

System A is more damped. 

 

3.  For the water tank filled with water, 

Mass, m = 15528 lb-ft/sec
2
, Stiffness for horizontal (i.e., due to wind) vibration, kh = 69770 lb/ft 

Natural frequency, nh = 2.120 rad/sec    

(i) p(t) = p0  = 40  20  20 = 16000 lb 

For the undamped system, umax = 2(p0/kh) = 2 (16000/69770) = 0.459 ft 

(ii) p(t) = p0 cos(t)  = 16000 cos(2t) 

For the undamped system, u(steady)max = p0/(kh
2
m) = 16000/(697702

2
  15528) = 2.09 ft 

 

4.  For the SDOF system, k = 10 k/ft, m = 1 k-sec
2
/ft, c = 0, and c = 0.5 k-sec/ft 

Natural frequency, n =(k/m) =(10/1) = 3.162 rad/sec, Damping Ratio  = c/(2n) = 0, and  = 0.079 

(i) p(t) = p0 = 500 lb = 0.5 kip 

For undamped system, umax = 2 (p0/k) = 2 (0.5/10) = 0.10 ft 

For damped system, umax = (p0/k) [1 + e
{−/(12)}

] = (0.5/10) [1 + exp{−0.079/(10.079
2
)}] = 0.089 ft 

(ii) p(t) = 0.5 cos(3t) 

For undamped system, u(steady)max = p0/(k
2
m) = (0.50)/(10 3

2 
 1) = 0.50 ft 

For damped system, u(steady)max = p0/√{(k
2
m)

2
 + (c)

2
}= (0.50)/√{(103

2
1)

2
 + (3

 
0.5)

2
} = 

0.277 ft 

 

5.  Maximum dynamic response amplitude, umax = p0/(k
2
m) 

 If  = n, umax = p0/(kn
2 
m) = p0/(kk) =  

(i) Doubling the structural stiffness  umax = p0/(2kk) = p0/k  

(ii) Doubling the structural stiffness and the mass  umax = p0/(2kn
2 
2m) = p0/(2k2k) =  

(iii) Adding a damper to make the structural damping ratio,  = 10% = 0.10 

 umax = p0/{(kn
2 
m)

2
 + (nc)

2
} = (p0/k)/(2) = 5 (p0/k) 

Option (i) is the most effective [since it minimizes umax]. 
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Vortex Induced Vibration (VIV) 

The pressure difference around a bluff body in flowing fluid may result in separated flow and shear layers 

over a large portion of its surface. The outermost shear layers (in contact with the fluid) move faster than the 

innermost layers, which are in contact with the structure. If the fluid velocity is large enough, this causes the 

shear layers to roll into the near wake and form periodic vortices. The interaction of the structure with these 

vortices causes it to vibrate transverse to the flow direction, and this vibration is called VIV. 

The frequency of vortex-shedding is called Strouhal frequency (after Strouhal 1878), given by 

fs = SU/D                ………………(4.1) 

where U = Fluid Velocity, D = Transverse dimension (diameter) of the structure, and S = Strouhal number, 

which is a function of Reynolds number and the geometry of the structure. For circular cylinders, S  0.20. 

Experimental results suggest that VIV usually causes structural vibrations at the frequency fs. However, if fs 

is near (about 0.9-1.2 times) the natural frequency (fn) of the structure, the structure vibrates at its natural 

frequency. Obviously, this is the most significant feature of VIV and is known as synchronization or lock-in. 

 

For a structure, VIV can be important enough to cause fatigue or instability failure; and over the years it has 

been observed in both wind-driven as well as marine structures. The research on the fundamental nature of 

VIV has developed in two different directions. One is the rigorous treatment by computational fluid 

dynamics using Navier-Stokes equations. Although it has enjoyed success, this approach is still not 

developed enough for practical design purposes. The other direction has been primarily aimed at predicting 

structural response and modeling the associated fluid-dynamic phenomena by coupled/uncoupled dynamic 

equations of motion. Since we primarily aim to predict structural responses due to VIV, and therefore focus 

on a simple dynamic model, developed by Iwan and Blevins (1974). 

Incorporating experimental results into the equation of motion is equivalent to adding a harmonic load and 

an additional damping into the system. The harmonic load has a frequency e  s = 2fs, and is similar to 

the form  

0.5 U
2
D CL sin (et), where CL  0.50, for several experimental data. 

Also, the added damping/length is  0.4 UD         ……………….(4.2) 

Therefore, for uniform structural dimensions throughout its length L, the dynamic SDOF system is modeled 

as 

m d
2
u/dt

2
 + (c + 0.4 UDL) du/dt + ku = 0.25 U

2
DL sin(st)    ..………………(4.3) 

 

Example 4.1 

Calculate the dynamic force and added damping due to wind-driven VIV for a cylindrical water tank of 20-

diameter, 20-height and supported by two 30-high concrete columns of 25-diameter each, considering  

(i) Design wind speed in Dhaka, (ii) Lock-in phenomenon. 

 

Mass of the tank (filled with water), m = (/4)  20
2
  20  62.5/32.2 = 12196 lb-ft/sec

2
  

Modulus of elasticity E = 400  10
6
 lb/ft

2
, Length of column L = 30 ft 

Moment of inertia, I = (25/12)
4
/64 = 0.925 ft

4
 

Stiffness for horizontal vibration, kh = 2  3EI/L
3
 = 82196 lb/ft, Natural frequency, n = 2.60 rad/sec 

If U = 130 mph = 190.67 ft/sec, s = 2  (0.2  190.67/20) = 11.98 rad/sec  

 = Density of air = 0.0765/32.2 = 23.76  10
-4

 slug/ft
3  

 Dynamic force amplitude = 0.25 U
2 
DL = 0.25  23.76  10

-4 
 (190.67)

2 
 20  20

 
= 8638 lb 

Added damping = 0.4 UDL = 0.4  23.76  10
-4 
 190.67

 
 20  20 =

 
72.48 lb-sec/ft 

Since s/n = 11.98/2.60 = 4.611, VIV is not very important at this velocity.  

Lock-in occurs when s = n = 2.60 rad/sec  2  (0.2  U/20) = 2.60  U = 41.32 ft/sec = 28.2 mph 

 Dynamic force amplitude = 0.25 U
2 
DL = 0.25  23.76  10

-4 
 (41.32)

2 
 20  20

 
= 405 lb 

Added damping cadd = 0.4 UDL = 0.4  23.76  10
-4 
 41.32

 
 20  20 =

 
15.71 lb-sec/ft 

Added damping ratio add = cadd/[2√(km)] = 15.71/[2√(82196  12196)] = 0.00025, which is very small 

Therefore, unless the system itself is sufficiently damped, the static deflection of (405/82196 =) 0.0049 ft 

will be hugely amplified. 
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Different Types of Dynamic Loads 

Hydrodynamic Force 

Morison’s equation is easily the most used equation for calculation of hydrodynamic force on 

marine/offshore structures. According to the Morison’s equation, the horizontal wave-force on a structure of 

height L for a water-depth of d is given by 

 f(t)
 
= Inertia Force + Drag Force = fI

 
 + fD            .……………(4.4) 

For regular waves, the ‘linearized’ force can be calculated (after adjustments for structural acceleration) as  

           fI 
(1) 

 = KI (a
2
/k)[1− sinh(k(d−L))/sinh(kd)] sin  = fI 0 sin ()        ..……………(4.5) 

and fD 
(1) 
(4/3KD(a

2
[{2kL+sinh(2kd)−sinh(2k(d−L))}/sinh

2
 kd] cos  cos  = fD0 cos  cos  ……..(4.6) 

with additional damping ca 
 
(4/3KD(ak)

 
[1− sinh(k(d−L)/sinh kd]                  …………….(4.7) 

where KI = CIA, KD= CDR,  = kx −t + 

  = Water density, CI = Inertia coefficient, CD = Drag coefficient 

 A = Cross-sectional area, R = Radius = Half-width of projected surface 

 ax = Horizontal wave-acceleration, ur = Horizontal (wave velocity – structural velocity) 

 

Vehicular Load 

As shown in Fig. 4.1, a wheel load of p0 is traveling with a velocity v over a simply supported beam of 

length L. The wheel traveling with a velocity v takes time td = L/v to cross the bridge. Its position at any time 

t is as shown in Fig 4.1. 
 

Wheel Load p0, Velocity v 

 

 

 

 
Fig. 4.1: Single wheel on Simply Supported Beam 

 

The moving load can be described mathematically as 

f(t) = p0 sin(vt/L), when 0  t  td 

= 0, when t  td               ..………………...(4.8) 

Blast Loading 

According to BNBC, the internal overpressure (q) developed from an internal explosion such as due to leaks 

in gas pipes, evaporation of volatile liquids, etc. in typical room sizes may be calculated from the following 

time-dependent function 

 

     q(t)     q0         where q0 is a function of window area and volume of the room 

                while 0.1  t1  1.0 sec, 1.0  t2  10 sec 
 

 

 

                               

 

Machine Vibrations 

The centrifugal force due to vibration of a mass m rotating at an angular velocity  and radius r0 that 

transfers to a machine foundation can be calculated from 

f(t) = m2
 r0 sin(t)            ………..…..(4.9) 

t1 t2 
t 
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Wave Force using Morison’s Equation 

Morison’s equation is easily the most used equation for calculation of hydrodynamic force on 

marine/offshore structures. According to the (modified) Morison’s equation, the horizontal wave-force on a 

differential vertical segment dz is given (after adjustments for structural acceleration) by 

 FI
(1) 

= KI (a
2
/k)[1− sinh(k(d−L))/sinh(kd)] sin  = FD0 sin       ..……………(4.10) 

 dFx = [KI ax + KD|ur|u] dz        ..………………...(4.4) 

where KI = CIA, KD= CDR  

  = Water density, CI = Inertia coefficient, CD = Drag coefficient 

 A = Cross-sectional area, R = Radius = Half-width of projected surface 

 ax = Horizontal wave-acceleration, ur = Horizontal (wave velocity – structural velocity) 

In equation (4.4), the first term gives the inertia force, and the second is the drag force.  

Total horizontal force Fx = dFx, where  implies integration between z = −L (bottom of the structure) and z =  

(instantaneous wave-elevation). 

Once the forces are calculated, the structural dynamic problem can be modeled as 

 M d
2
u/dt

2 
+ C du/dt + k u = Fx      ..…………….….(4.5) 

However, the mass M is now a combination of the structural mass m and the ‘added’ mass ma. The ‘added’ mass 

is obtained from the mathematical adjustment of the equation of motion and is proportional to mass m added by 

the mass of water occupying the same volume as the structure. For example, ma for a uniform cylinder is = 

R
2
L 

 he effective mass, M = m + ma                          …………………...(4.6) 

The damping C is a combination of the structural damping c and the damping ca added from the relative velocity 

(drag) term of the load vector, which is obtained from the mathematical adjustment of the equation of motion. 

 he mass-matrix, C = c + ca                           …………………...(4.7) 

Common values of CI are 2.0 for a cylinder and 1.5 for sphere. However, the drag coefficient CD strongly 

depends on the Reynolds number (= uD/); whereas it converges to nearly 0.6-0.7 for high Reynolds 

numbers, it can be as high as 3.0 for small Reynolds numbers (i.e., for thinner structural elements like truss 

members).  

First Order Inertia Force 

Integration of the 1
st
 order inertia force over the depth of the structure gives the 1

st
 order potential force with  

 FI
(1) 

= KI  (aii
2
/ki)[1− sinh(ki(d−L))/sinh(kid)] sin i      ………………...(4.8) 

where, i  = ki x −it + i and ‘wave number’ ki can be obtained from i
2
 = g ki tanh (kid) ....…...…(4.9) 

For regular waves, it simplifies to FI
(1) 

= KI (a
2
/k)[1− sinh(k(d−L))/sinh(kd)] in  = FD0 sin     …………(4.10) 

First Order (Linearized) Drag 

The drag force is given by KD|ur
(1)

|u
(1)

dz, which can be approximately ‘linearized’. In addition to the drag force 

involved, this turns out to be a major contributor to the damping of the system.  

For irregular Gaussian waves, the total ‘linearized’ drag force FD
(1)  
8/ KDur(1) u

 
dz      …....……(4.11) 

However for regular waves, the following equation can be used conveniently 

        FD
(1) 
(4/3KD(a

2
[{2kL+sinh(2kd)−sinh(2k(d−L))}/sinh

2
 kd] cos  cos  = FD0 cos  cos  …..(4.12) 

and the additional damping 

ca 
 
(4/3KD(ak)

 
[1− sinh(k(d−L)/sinh kd]           …………….(4.13) 

The maximum hydrodynamic force from Eq. (4.4) is Fmax = √(FI0
2
 + FD0

2
)         …………….(4.14) 

In addition to the inertia and drag forces, a mean drift force acts on the structure that cannot be predicted by 

Morison’s equation. However the drag term in Morison’s equation can account for the force (Fc) and damping 

(cc) due to uniform current of velocity Uc, the force being given by 

 Fc KDUc
2 
L           ………………(4.15) 

 cc
 
 KDUc

 
L           ………………(4.16) 

  

 


