
 1 

Structural Dynamics, Dynamic Force and Dynamic System 

 

Structural Dynamics 

Conventional structural analysis is based on the concept of statics, which can be derived from Newton’s 

1
st
 law of motion. This law states that it is necessary for some force to act in order to initiate motion of a 

body at rest or to change the velocity of a moving body. Conventional structural analysis considers the 

external forces or joint displacements to be static and resisted only by the stiffness of the structure. 

Therefore, the resulting displacements and forces resulting from structural analysis do not vary with time.  

 

Structural Dynamics is an extension of the conventional static structural analysis. It is the study of 

structural analysis that considers the external loads or displacements to vary with time and the structure to 

respond to them by its stiffness as well as inertia and damping. Newton’s 2
nd

 law of motion forms the 

basic principle of Structural Dynamics. This law states that the resultant force on a body is equal to its 

mass times the acceleration induced. Therefore, just as the 1
st
 law of motion is a special case of the 2

nd
 

law, static structural analysis is also a special case of Structural Dynamics. 

 

Although much less used by practicing engineers than conventional structural analysis, the use of 

Structural Dynamics has gradually increased with worldwide acceptance of its importance. At present, it 

is being used for the analysis of tall buildings, bridges, towers due to wind, earthquake, and for 

marine/offshore structures subjected wave, current, wind forces, vortex etc. 

 

Dynamic Force 

The time-varying loads are called dynamic loads. Structural dead loads and live loads have the same 

magnitude and direction throughout their application and are thus static loads. However there are several 

examples of forces that vary with time, such as those caused by wind, vortex, water wave, vehicle, 

impact, blast or ground motion like earthquake. 

 

Dynamic System 

A dynamic system is a simple representation of physical systems and is modeled by mass, damping and 

stiffness. Stiffness is the resistance it provides to deformations, mass is the matter it contains and damping 

represents its ability to decrease its own motion with time.  

 

Mass is a fundamental property of matter and is present in all physical systems. This is simply the weight 

of the structure divided by the acceleration due to gravity. Mass contributes an inertia force (equal to mass 

times acceleration) in the dynamic equation of motion.  

 

Stiffness makes the structure more rigid, lessens the dynamic effects and makes it more dependent on 

static forces and displacements. Usually, structural systems are made stiffer by increasing the cross-

sectional dimension, making the structures shorter or using stiffer materials.  

 

Damping is often the least known of all the elements of a structural system. Whereas the mass and the 

stiffness are well-known properties and measured easily, damping is usually determined from 

experimental results or values assumed from experience. There are several sources of damping in a 

dynamic system. Viscous damping is the most used damping system and provides a force directly 

proportional to the structural velocity. This is a fair representation of structural damping in many cases 

and for the purpose of analysis, it is convenient to assume viscous damping (also known as linear viscous 

damping). Viscous damping is usually an intrinsic property of the material and originates from internal 

resistance to motion between different layers within the material itself. However, damping can also be 

due to friction between different materials or different parts of the structure (called frictional damping), 

drag between fluids or structures flowing past each other, etc. Sometimes, external forces themselves can 

contribute to (increase or decrease) the damping. Damping is also increased in structures artificially by 

external sources. 
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Free Vibration of Undamped Single-Degree-of-Freedom (SDOF) System 

 

Formulation of the Single-Degree-of-Freedom (SDOF) Equation 

A dynamic system resists external forces by a combination of forces due to its stiffness (spring force), 

damping (viscous force) and mass (inertia force). For the system shown in Fig. 2.1, k is the stiffness, c the 

viscous damping, m the mass and u(t) is the dynamic displacement due to the time-varying excitation 

force f(t). Such systems are called Single-Degree-of-Freedom (SDOF) systems because they have only 

one dynamic displacement [u(t) here]. 

 

   
        m               f(t), u(t)          f(t)  

        

                      

           k          c 

        

 

 
  Fig. 2.1: Dynamic SDOF system subjected to dynamic force f(t) 

 

Considering the free body diagram of the system, f(t)  fS  fV = ma   …………..(2.1) 

where fS = Spring force = Stiffness times the displacement = k u    …..………(2.2)  

          fV = Viscous force = Viscous damping times the velocity = c du/dt   …..………(2.3)  

          fI = Inertia force = Mass times the acceleration = m d
2
u/dt

2
                 ..…………(2.4) 

 

Combining the equations (2.2)-(2.4) with (2.1), the equation of motion for a SDOF system is derived as, 

m d
2
u/dt

2
 + c du/dt + ku = f(t)                   …..………(2.5) 

 

This is a 2
nd

 order ordinary differential equation (ODE), which needs to be solved in order to obtain the 

dynamic displacement u(t). As will be shown subsequently, this can be done analytically or numerically. 

 

Eq. (2.5) has several limitations; e.g., it is assumed on linear input-output relationship [constant spring (k) 

and dashpot (c)]. It is only a special case of the more general equation (2.1), which is an equilibrium 

equation and is valid for linear or nonlinear systems. Despite these, Eq. (2.5) has wide applications in 

Structural Dynamics. Several important derivations and conclusions in this field have been based on it. 

 

Free Vibration of Undamped Systems 

Free Vibration is the dynamic motion of a system without the application of external force; i.e., due to 

initial excitement causing displacement and velocity.  

 

The equation of motion of a general dynamic system with m, c and k is, 

m d
2
u/dt

2
 + c du/dt + ku = f(t)                   …..………(2.5) 

For free vibration, f(t) = 0; i.e., m d
2
u/dt

2
 + c du/dt + ku = 0 

For undamped free vibration, c = 0  m d
2
u/dt

2
 + ku = 0  d

2
u/dt

2 
+ n

2
 u = 0                 ..…………(2.6) 

where n = (k/m), is called the natural frequency of the system                ..…………(2.7) 

 

Assume u = e
st
, d

2
u/dt

2
 = s

2
e

st 
 s

2
 e

st 
+ n

2
e

st
 = 0  s =  i n                     . 

 u (t) = A e
i n t

 + B e
-i n t

 = C1 cos ( nt) + C2 sin ( nt)       …..………(2.8) 

v (t) = du/dt = -C1 n sin ( nt) + C2 n cos ( nt)                 ....……..…(2.9) 

If u(0) = u0 and v(0) = v0, then C1 = u0 and C2 n = v0  C2 = v0/ n                                      ……..…..(2.10) 

 u(t) = u0 cos ( nt) + (v0/ n) sin ( nt)                                    …...…….(2.11) 

 

fS fV 

m a 
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Natural Frequency and Natural Period of Vibration 

Eq (2.11) implies that the system vibrates indefinitely with the same amplitude at a frequency of n 

radian/sec. Here, n is the angular rotation (radians) traversed by a dynamic system in unit time (one 

second). It is called the natural frequency of the system (in radians/sec).  

 

Alternatively, the number of cycles completed by a dynamic system in one second is also called its 

natural frequency (in cycles/sec or Hertz). It is often denoted by fn.  fn = n/2   …………(2.12) 

 

The time taken by a dynamic system to complete one cycle of revolution is called its natural period (Tn). 

It is the inverse of natural frequency. 

Tn = 1/fn = 2 / n                                    …………..(2.13) 

 

Example 2.1 

An undamped structural system with stiffness (k) = 25 k/ft and mass (m) = 1 k-sec
2
/ft is subjected to an 

initial displacement (u0) = 1 ft and an initial velocity (v0) = 4 ft/sec.  

(i) Calculate the natural frequency and natural period of the system. 

(ii) Plot the free vibration of the system vs. time. 

 

Solution 

(i) For the system, natural frequency, n = (k/m) = (25/1) = 5 radian/sec 

 fn = n/2  =  5/2  = 0.796 cycle/sec 

 Natural period, Tn = 1/fn = 1.257 sec 

 

(ii) The free vibration of the system is given by Eq (2.11) as  

u(t) = u0 cos ( nt) + (v0/ n) sin ( nt) = (1) cos (5t) + (4/5) sin (5t) = (1) cos (5t) + (0.8) sin (5t) 

The maximum value of u(t) is = (1
2 
+ 0.8

2
) = 1.281 ft. 

The plot of u(t) vs. t is shown below in Fig. 2.2. 

 

    

Fig. 3.1: Displacement vs. Time for free vibration of an undamped system
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Fig. 2.2: Displacement vs. Time for Free Vibration of an Undamped System 



 4 

Free Vibration of Damped Systems 

 

As mentioned in the previous section, the equation of motion of a dynamic system with mass (m), linear 

viscous damping (c) & stiffness (k) undergoing free vibration is,  

m d
2
u/dt

2
 + c du/dt + ku = 0                                        .…………………(2.5) 

 d
2
u/dt

2 
+ (c/m) du/dt + (k/m) u = 0  d

2
u/dt

2 
+ 2 n du/dt + n

2
 u = 0   …...…..…………(3.1) 

where n = (k/m), is the natural frequency of the system      ...……..…………(2.7)  

and  = c/(2m n) = c n/(2k) = c/2 (km), is the damping ratio of the system            ……………….…(3.2) 

 

Assume u = e
st
, d

2
u/dt

2
 = s

2
e

st 
 s

2
 e

st
 + 2 n s e

st
 + n

2
e

st
 = 0  s = n ( (

2
1)) ……....……….(3.3) 

 

1. If 1, the system is called an overdamped system. Here, the solution for s is a pair of different real 

numbers [ n( + (
2

1)), n( (
2

1))]. Such systems, however, are not very common. The 

displacement u(t) for such a system is  

 

u(t) = e
- n t

 (A e
1 t

 + B e
- 1 t

)                   ……….………….(3.4) 

 where 1 = n (
2

1) 

 

2. If  = 1, the system is called a critically damped system. Here, the solution for s is a pair of identical 

real numbers [ n, n]. Critically damped systems are rare and mainly of academic interest only. 

The displacement u(t) for such a system is  

 

u(t) = e
n t

 (A + Bt)                                ….……………….(3.5) 

 

3. If 1, the system is called an underdamped system. Here, the solution for s is a pair of different 

complex numbers [ n( +i (1
2
)), n( -i (1

2
))].  

Practically, most structural systems are underdamped. 

The displacement u(t) for such a system is 

 

u(t) = e
nt
 (A e

i d t
 + B e

-i d t
) = e

nt
 [C1 cos ( dt) + C2 sin ( dt)]             …...………………(3.6) 

where d = n (1
2
) is called the damped natural frequency of the system. 

 

Since underdamped systems are the most common of all structural systems, the subsequent discussion 

will focus mainly on those. Differentiating Eq (3.6), the velocity of an underdamped system is obtained as 

 

v(t) = du/dt  

= e
nt
 [ d{ C1 sin( dt) + C2 cos( dt)}  n{C1 cos( dt) + C2 sin( dt)}]  …...……………...(3.7) 

If u(0) = u0 and v(0) = v0, then 

C1 = u0 and dC2 nC1 = v0  C2= (v0 + nu0)/ d                …..…..…..….……(3.8) 

u(t) = e
nt
 [u0 cos ( dt) + {(v0 + nu0)/ d} sin ( dt)]   …………………...(3.9) 

 

Eq (3.9)  The system vibrates at its damped natural frequency (i.e., a frequency of d radian/sec). 

Since the damped natural frequency d [= n (1
2
)] is less than n, the system vibrates more slowly 

than the undamped system.  

 

Moreover, due to the exponential term e
nt
, the amplitude of the motion of an underdamped system 

decreases steadily, and reaches zero after (a hypothetical) ‘infinite’ time of vibration. 

 

Similar equations can be derived for critically damped and overdamped dynamic systems in terms of their 

initial displacement, velocity and damping ratio. 
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Example 3.1 

A damped structural system with stiffness (k) = 25 k/ft and mass (m) = 1 k-sec
2
/ft is subjected to an initial 

displacement (u0) = 1ft and an initial velocity (v0) = 4 ft/sec. Plot the free vibration of the system vs. time 

if the Damping Ratio ( ) is  

(a) 0.00 (undamped system),        

(b) 0.05, (c) 0.50 (underdamped systems), 

(d) 1.00 (critically damped system),  

(e) 1.50 (overdamped system). 

 

Solution 

The equations for u(t) are plotted against time for various damping ratios (DR) and shown below in Fig. 

3.1. The main features of these figures are 

 

(1) The underdamped systems have sinusoidal variations of displacement with time. Their natural periods 

are lengthened (more apparent for  = 0.50) and maximum amplitudes of vibration reduced due to 

damping. 

 

(2) The critically damped and overdamped systems have monotonic rather than harmonic (sinusoidal) 

variations of displacement with time. Their maximum amplitudes of vibration are less than the amplitudes 

of underdamped systems. 

 

 

Fig. 4.1: Displacement vs. Time for free vibration of damped systems

-1.5

-1

-0.5

0

0.5

1

1.5

0 1 2 3 4 5

Time (sec)

D
is

p
la

c
e
m

e
n
t 

(f
t)

DR=0.00 DR=0.05 DR=0.50 DR=1.00 DR=1.50

Fig. 3.1: Displacement vs. Time for free Vibration of Damped Systems 
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Damping of Structures 

Damping is the element that causes impedance of motion in a structural system. There are several sources 

of damping in a dynamic system. Damping can be due to internal resistance to motion between layers, 

friction between different materials or different parts of the structure (called frictional damping), drag 

between fluids or structures flowing past each other, etc. Sometimes, external forces themselves can 

contribute to (increase or decrease) the damping. Damping is also increased in structures artificially by 

external sources like dampers acting as control systems. 

 

Viscous Damping of SDOF systems 

Viscous damping is the most used damping and provides a force directly proportional to the structural 

velocity. This is a fair representation of structural damping in many cases and for the purpose of analysis 

it is convenient to assume viscous damping (also known as linear viscous damping). Viscous damping is 

usually an intrinsic property of the material and originates from internal resistance to motion between 

different layers within the material itself. 

 

While discussing different types of viscous damping, it was mentioned that underdamped systems are the 

most common of all structural systems. This discussion focuses mainly on underdamped SDOF systems, 

for which the free vibration response was found to be  

u(t) = e
- nt

 [u0 cos ( dt) + {(v0 + nu0)/ d} sin ( dt)]        ………………..(3.9) 

 

Eq (3.9)  The system vibrates at its damped natural frequency (i.e., a frequency of d radian/sec). Since 

d [= n (1-
2
)] is less than n, the system vibrates more slowly than the undamped system. Due to the 

exponential term e
- nt

 the amplitude of motion decreases steadily and reaches zero after (a hypothetical) 

‘infinite’ time of vibration.  

 

However, the displacement at N time periods (Td = 2 / d) later than u(t) is  

u(t +NTd) = e
- n(t+2 N/ d)

 [u0 cos ( dt +2 N) + {(v0 + nu0)/ d} sin ( dt +2 N)]  

   = e
- n(2 N/ d) 

u(t)        ....….………..…(3.10) 

From which, using d = n (1-
2
)  / (1-

2
) = ln[u(t)/u(t +NTd)]/2 N =   

  = / (1+
2
)         ……………...…(3.11) 

For lightly damped structures (i.e., 1),    = ln[u(t)/u(t +NTd)]/2 N      …....…..……….(3.12) 

 

For example, if the free vibration amplitude of a SDOF system decays from 1.5  to 0.5  in 3 cycles, the 

damping ratio,  = ln(1.5/0.5)/(2 3) = 0.0583 = 5.83%. 

 

Table 3.1: Recommended Damping Ratios for different Structural Elements 

Stress Level Type and Condition of Structure   (%) 

Working stress 

Welded steel, pre-stressed concrete, RCC with slight cracking 2-3 

RCC with considerable cracking 3-5 

Bolted/riveted steel or timber 5-7 

Yield stress 

Welded steel, pre-stressed concrete 2-3 

RCC 7-10 

Bolted/riveted steel or timber 10-15 
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Forced Vibration 

 

The discussion has so far concentrated on free vibration, which is caused by initialization of displacement 

and/or velocity and without application of external force after the motion has been initiated. Therefore, 

free vibration is represented by putting f(t) = 0 in the dynamic equation of motion. 

 

Forced vibration, on the other hand, is the dynamic motion caused by the application of external force 

(with or without initial displacement and velocity). Therefore, f(t)  0 in the equation of motion for forced 

vibration. Rather, they have different equations for different variations of the applied force with time. 

 

The equations for displacement for various types of applied force are now derived analytically for 

undamped and underdamped vibration systems. The following cases are studied 

 

1. Step Loading; i.e., constant static load of p0; i.e., f(t) = p0, for t  0 

 

           

                    

                   

 

 

 
  Fig. 4.1: Step Loading Function 

  

2. Ramped Step Loading; i.e., load increasing linearly with time up to p0 in time t0 and remaining constant 

thereafter; i.e., f(t) = p0(t/t0), for 0  t  t0 

     = p0, for t t0 

 

     

                    

                   

 

 

 

           

 
Fig. 4.2: The Ramped Step Loading Function 

  

3. Harmonic Load; i.e., a sinusoidal load of amplitude p0 and frequency ; i.e., f(t) = p0 cos( t), for t 0 

In all these cases, the dynamic system will be assumed to start from rest; i.e., initial displacement u(0) and 

velocity v(0) will both be assumed zero. 

 
 

 

 

 

 

 

 

 

 

 

Fig. 4.3: The Harmonic Load Function  
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Case 1 - Step Loading: 

For a constant static load of p0, the equation of motion becomes 

m d
2
u/dt

2
 + c du/dt + ku = p0                     ………………..(4.1) 

 

The solution of this differential equation consists of two parts; i.e., the general solution and the particular 

solution. The general solution assumes the excitation force to be zero and thus it will be the same as the 

free vibration solution (with two arbitrary constants). The particular solution of u(t) will satisfy Eq. 4.1. 

The total solution will be the summation of these two solutions. 

 

The general solution for an underdamped system is (using Eq. 3.6) 

ug(t) = e
- nt

 [C1 cos ( dt) + C2 sin ( dt)]         …….…………...(4.2) 

and the particular solution of Eq. 4.1 is up(t) = p0/k       ………….……...(4.3) 

Combining the two, the total solution for u(t) is 

u(t) = ug(t) + up(t) = e
- nt

 [C1 cos ( dt) + C2 sin ( dt)] + p0/k      ....……….……...(4.4) 

v(t) = du/dt = e
- nt

 [ d{ C1 sin( dt) + C2 cos( dt)} n{C1 cos( dt) + C2 sin( dt)}] …......(4.5) 

If initial displacement u(0) = 0 and initial velocity v(0) = 0, then 

C1 + p0/k = 0  C1 =  p0/k, and dC2 - nC1 = 0  C2 =  n (p0/k)/ d      ……...………...(4.6) 

Eq. (4.4)  u(t) = (p0/k)[1  e
- nt

{cos ( dt) + n/ d sin ( dt)}]                ...………....…...(4.7) 

For an undamped system,  = 0, d = n u(t) = (p0/k)[1  cos ( nt)]         ….......………...(4.8) 

 

Example 4.1 

For the system mentioned in Examples 2.1 and 3.1 (i.e., k = 25 k/ft, m = 1 k-sec
2
/ft), plot the 

displacement vs. time if a static load p0 = 25 k is applied on the system if the Damping Ratio ( ) is  

(a) 0.00 (undamped system), 0.05, (c) 0.50 (underdamped systems). 

 

Solution 

In this case, the static displacement is = p0/k = 25/25 = 1 ft. The dynamic solutions are obtained from Eq. 

4.7 and plotted below in Fig. 4.4. The main features of these results are 

 

(1) For Step Loading, the maximum dynamic response for an undamped system (i.e., 2 ft in this case) is 

twice the static response and continues indefinitely without converging to the static response. 

 

(2) The maximum dynamic response for damped systems is between 1 and 2, and eventually converges to 

the static solution. The larger the damping ratio, the less the maximum response and the quicker it 

converges to the static solution. In general, the dynamic response converges to the particular solution of 

the dynamic equation of motion, and is therefore called the steady state response. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.2: Dynamic Response to Step Loading
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Fig. 4.4: Dynamic Response to Step Loading 
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Case 2 - Ramped Step Loading: 

For a ramped step loading up to p0 in time t0, the equation of motion is 

m d
2
u/dt

2
 + c du/dt + ku = p0(t/t0), for 0  t  t0 

   = p0, for t t0                     …...………………….(4.9) 

  

The solution will be different (u1 and u2) for the two stages of loading. The loading in the first stage is a 

linearly varying function of time, while that of the second stage is a constant.  

 

The general solution for an underdamped system has been shown in Eq. 3.6 and 4.2, while the particular 

solution is u1p(t) = (p0/kt0) (t  c/k)                             …….………….(4.10) 

u1(t) = e
- nt

 [C1 cos ( dt) + C2 sin ( dt)] + (p0/kt0)(t  c/k)              …….…….…....(4.11) 

v1(t) = e
- nt

[ d{ C1 sin( dt) + C2 cos( dt)} n{C1 cos( dt) + C2 sin( dt)}] + p0/kt0  .....….(4.12) 

If initial displacement u1(0) = 0, initial velocity v1(0) = 0, then C1  (p0/k)(c/kt0) = 0  C1 = (p0/k)(c/kt0) 

and dC2  nC1 + p0/kt0 = 0  C2 = (p0/k)( nc/k  1)/( d t0)                    …………...….(4.13) 

u1(t) = (p0/kt0)[(t  c/k) + e
- nt

{(c/k) cos( dt) + ( nc/k  1)/( d) sin( dt)}] ………...…..(4.14) 

For an undamped system, u1(t) = (p0/k) [t/t0 – sin( nt)/( nt0)]                …………….(4.15)  

The second stage of the solution may be considered as the difference between two ramped step functions, 

one beginning at t = 0 and another at t = t0.  

u2(t) = u1(t)  u1(t  t0) = u1(t)  u1(t ); where t  = t  t0       ..…………......(4.16) 

For undamped system, u2(t) = (p0/k) [1 – {sin( nt) – sin( nt )}/( nt0)]         …...………….(4.17) 

 

Example 4.2 

For the system mentioned in Example 4.1, plot the displacement vs. time if a ramped step load with p0 = 

25 k is applied on the system with  = 0.00 if t0 is (a) 0.5 second, (b) 2 seconds. 

 

Solution 

In this case, the static displacement is = p0/k = 25/25 = 1 ft. The dynamic solutions are obtained from Eqs. 

4.14~4.17 and plotted in Fig. 4.5. The main features of these results are 

 

(1) For Ramped Step Loading, the maximum dynamic response for an undamped system is less than the 

response due to Step Loading, which is twice as much as the static response (i.e., 2 ft in this case). 

 

(2) The larger the ramp duration, the smaller the maximum dynamic response. Eventually the dynamic 

response takes the form of an oscillating sinusoid about the steady state (static in this case) response. 

 

(3) The response for damped system is not shown here. However, the response for a damped system 

would be qualitatively similar for an undamped system and would eventually converge to the steady state 

solution. 

 

 

 

Fig. 5.4: Dynamic Response to Ramped Step Loading
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Case 3 - Harmonic Loading: 

For a harmonic load of amplitude p0 and frequency , the equation of motion is 

m d
2
u/dt

2
 + c du/dt + ku = p0 cos( t), for t 0                .....………………(4.18) 

The general solution for an underdamped system has been shown before, and the particular solution  

            up(t) = [p0/ {(k
2
m)

2
+( c)

2
}] cos( t ) = (p0/kd) cos( t- )   ……………...…..(4.19) 

[where kd = {(k
2
m)

2 
+ ( c)

2
},  = tan

-1
{( c)/(k  

2
m)}] 

          u(t) = e
- nt

 [C1 cos ( dt) + C2 sin ( dt)] + (p0/kd) cos( t )  …...………......…(4.20) 

v(t) = e
- nt

[ d{ C1 sin( dt) + C2 cos( dt)} n{C1 cos( dt) + C2 sin( dt)}]  (p0 /kd) sin( t )  

                                         …...…….…....….(4.21) 

If initial displacement u(0) = 0 and initial velocity v(0) = 0, then 

C1 + (p0/kd) cos( ) = 0  C1 = (p0/kd) cos  

and dC2  n C1 + (p0 /kd) sin  = 0  C2 = (p0/kd) (  sin  + n cos )/ d  ………….(4.22) 

 

u(t) = (p0/kd)[cos( t- )  e
- nt

{cos  cos( dt) + ( / d sin  + n/ d cos ) sin( dt)}] ...…(4.23) 

For an undamped system, u(t) = [p0/(k  
2
m)] [cos( t)  cos( nt)]      ……....………..(4.24) 

 

Example 4.3 

For the system mentioned in previous examples, plot the displacement vs. time if a harmonic load with p0 

= 25 k is applied on the system with  = 0.05 and 0.00, if  is (a) 2.0, (d) 5.0, (e) 10.0 radian/sec.  

 

Solution 

The variation of load f(t) with time in shown in Fig. 4.3. The solutions for u(t) are obtained from Eqs. 

4.23 and 4.24 and are plotted in Figs. 4.6~4.8. The main features of these results are 

(1) The responses for undamped systems are larger than the damped responses. This is true in general for 

all three loading cases. 

(2) The responses for the second loading case are larger than the other two, because the frequency of the 

load is equal to the natural frequency of the system. As will be explained later, this is the resonant 

condition. At resonance, the damped response reaches a maximum amplitude (the steady state amplitude) 

and oscillates with that amplitude subsequently. This amplitude is 10 ft, which the damped system would 

eventually reach if it were allowed to vibrate ‘long enough’. The amplitude of the undamped system, on 

the other hand, increases steadily with time and would eventually reach infinity. 

 

 

 

Fig. 5.6: Dynamic Response to 25 Cos(2t)
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Fig. 4.6: Dynamic Response to 25 Cos(2t) 

Fig. 5.7: Dynamic Response to 25 Cos(5t)
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Fig. 5.8: Dynamic Response to 25 Cos(10t)
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Dynamic Magnification 

 

In Section 4, it was observed that the maximum dynamic displacements are different from their static 

counterparts. However, the effect of this magnification (increase or decrease) was more apparent in the 

harmonic loading case. There, for sinusoidal loads (cosine functions of time) of the same amplitude (25 k) 

the maximum vibrations varied between 0.5 ft to 12 ft depending on the frequency of the harmonic load. 

 

If the motion is allowed to continue for long  (theoretically infinite) durations, the total response 

converges to the steady state solution given by the particular solution of the equation of motion. 

usteady(t) = up(t) = (p0/kd) cos( t )        ……………..…(4.19) 

   [where kd = {(k
2
m)

2 
+ ( c)

2
},  = tan

-1
{( c)/ (k

2
m)}] 

Putting the value of kd in Eq. (4.19), the amplitude of steady vibration is found to be 

uamplitude = p0/kd = p0/ {(k
2
m)

2 
+ ( c)

2
}                   .……………..….(5.1) 

This can be written as, uamplitude = (p0/k) / {(1
2
m/k)

2 
+ ( c/k)

2
} 

Using ustatic = p0/k, m/k = 1/ n
2
, c/k = 2 / n  uamplitude/ustatic = 1/ {(1

2
/ n

2
)

2 
+ (2 / n)

2
} ….……(5.2) 

 

Eq. (5.2) gives the ratio of the dynamic and static amplitude of motion as a function of frequency  (as 

well as structural properties like n and ). This ratio is called the steady state dynamic magnification 

factor (DMF) for harmonic motion. Putting the frequency ratio / n = r, Eq. (6.2) can be rewritten as  

DMF = 1/ {(1 r
2
)

2 
+ (2 r)

2
}                                  ..…………………(5.3) 

From which the maximum value of DMF is found to be = (1/2 )/ (1
2
), when r = (1 2

2
)  ……....(5.4) 

 

The variation of the steady state dynamic magnification factor (DMF) with frequency ratio (r = / n) is 

shown in Fig. 5.1 for different values of  (= DR). The main features of this graph are 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. The curves for the smaller values of  show pronounced peaks [ 1/(2 )] at / n  1. This situation is 

called resonance and is characterized by large dynamic amplifications of motion. This situation can be 

derived from Eq. (5.4), where 1  DMFmax  1/ (4
2
) = (1/2 ), when r (1 2

2
) = 1. 

2. For undamped system, the resonant peak is infinity, which is consistent with the earlier conclusion 

from Section 4 that and vibration amplitude of an undamped system tends steadily to infinity. 

3. Since resonance is such a critical condition from structural point of view, it should be avoided in 

practical structures by making it either very stiff (i.e., r 1) or very flexible (i.e., r 1) with respect to the 

frequency of the expected harmonic load. 

4. The resonant condition mentioned in (1) is not applicable for large values of , because the condition of 

maxima at r = (1 2
2
) is meaningless if r is imaginary; i.e., (1/ 2 =) 0.707. Therefore, another way of 

avoiding the critical effects of resonance is by increasing the damping of the system. 

Fig. 6.1: Steady State Dynamic Magnification Factor
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Numerical Solution of SDOF Equation 

 

So far the equation of motion for a SDOF system has been solved analytically for different loading 

functions. For mathematical convenience, the dynamic loads have been limited to simple functions of 

time and the initial conditions had been set equal to zero. Even if the assumptions of linear structural 

properties and initial ‘at rest’ conditions are satisfied; the practical loading situations can be more 

complicated and not convenient to solve analytically. Numerical methods must be used in such situations. 

 

The most widely used numerical approach for solving dynamic problems is the Newmark-  method. 

Actually, it is a set of solution methods with different physical interpretations for different values of . 

The total simulation time is divided into a number of intervals (usually of equal duration t) and the 

unknown displacement (as well as velocity and acceleration) is solved at each instant of time. The method 

solves the dynamic equation of motion in the (i + 1)
th
 time step based on the results of the i

th
 step. 

 

The equation of motion for the (i +1)
th
 time step is 

 

m (d
2
u/dt

2
)i+1 + c (du/dt)i+1 + k (u)i+1 = f i+1  m ai+1 + c vi+1 + k ui+1 = f i+1  …..………(6.1) 

 

where ‘a’ stands for the acceleration, ‘v’ for velocity and ‘u’ for displacement. 

 

To solve for the displacement or acceleration at the (i + 1)
th
 time step, the following equations are 

assumed for the velocity and displacement at the (i + 1)
th
 step in terms of the values at the i

th
 step. 

 

vi+1 = vi + {(1 ) ai +  ai+1} t         …………………………(6.2) 

ui+1 = ui + vi t + {(0.5 ) ai +  ai+1} t
2
        …………………………(6.3) 

 

By putting the value of vi+1 from Eq. (6.2) and ui+1 from Eq. (6.3) in Eq. (6.1), the only unknown variable 

ai+1 can be solved from Eq. (6.1). 

 

In the solution set suggested by the Newmark-  method, the Constant Average Acceleration (CAA) 

method is the most popular because of the stability of its solutions and the simple physical interpretations 

it provides. This method assumes the acceleration to remain constant during each small time interval t, 

and this constant is assumed to be the average of the accelerations at the two instants of time ti and ti+1. 

The CAA is a special case of Newmark-  method where  = 0.50 and  = 0.25. Thus in the CAA method, 

the equations for velocity and displacement [Eqs. (6.2) and (6.3)] become 

 

vi+1 = vi + (ai + ai+1) t/2                      ……………(6.4) 

ui+1 = ui + vi t + (ai + ai+1) t
2
/4                     ……………(6.5) 

 

Inserting these values in Eq. (6.1) and rearranging the coefficients, the following equation is obtained, 

 

(m + c t /2 + k t
2
/4)ai+1 = fi+1 – kui – (c + k t)vi – (c t/2 + k t

2
/4)ai     ….….…..(6.6) 

 

To obtain the acceleration ai+1 at an instant of time ti+1 using Eq. (6.6), the values of ui, vi and ai at the 

previous instant ti have to be known (or calculated) before. Once ai+1 is obtained, Eqs. (6.4) and (6.5) can 

be used to calculate the velocity vi+1 and displacement ui+1 at time ti+1. All these values can be used to 

obtain the results at time ti+2. The method can be used for subsequent time-steps also.  

 

The simulation should start with two initial conditions, like the displacement u0 and velocity v0 at time t0 = 

0. The initial acceleration can be obtained from the equation of motion at time t0 = 0 as 

 

a0 = (f0 – cv0 – ku0)/m                  ……………(6.7) 
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Example 6.1 

For the undamped SDOF system described before (m = 1 k-sec
2
/ft, k = 25 k/ft, c = 0 k-sec/ft), calculate 

the dynamic response for a Ramped Step Loading with p0 = 25 k and t0 = 0.5 sec. 

 

Results using the CAA Method (for time interval t = 0.05 sec) as well as the exact analytical equation 

are shown below in tabular form. 

 

Table 6.1: Acceleration, Velocity and Displacement for t = 0.05 sec 

m (k-sec
2
/ft) c (k-sec/ft) k (k/ft) t0 (sec) dt (sec) meff (k-sec

2
/ft) ceff (k-sec/ft) m1 (k-sec

2
/ft) 

1.00 0.00 25.00 0.50 0.05 1.0156 1.2500 0.0156 

 

 

i t (sec) fi (kips) ai (ft/sec
2
) vi (ft/sec) ui (ft) uex (ft) 

0 0.00 0.0 0.0000 0.0000 0.0000 0.0000 

1 0.05 2.5 2.4615 0.0615 0.0015 0.0010 

2 0.10 5.0 4.7716 0.2424 0.0091 0.0082 

3 0.15 7.5 6.7880 0.5314 0.0285 0.0273 

4 0.20 10.0 8.3867 0.9107 0.0645 0.0634 

5 0.25 12.5 9.4693 1.3571 0.1212 0.1204 

6 0.30 15.0 9.9692 1.8431 0.2012 0.2010 

7 0.35 17.5 9.8556 2.3387 0.3058 0.3064 

8 0.40 20.0 9.1354 2.8135 0.4346 0.4363 

9 0.45 22.5 7.8531 3.2382 0.5859 0.5888 

10 0.50 25.0 6.0876 3.5867 0.7565 0.7606 

11 0.55 25.0 1.4858 3.7760 0.9406 0.9463 

12 0.60 25.0 -3.2073 3.7330 1.1283 1.1353 

13 0.65 25.0 -7.7031 3.4603 1.3081 1.3159 

14 0.70 25.0 -11.7249 2.9746 1.4690 1.4769 

15 0.75 25.0 -15.0251 2.3058 1.6010 1.6082 

16 0.80 25.0 -17.4007 1.4952 1.6960 1.7017 

17 0.85 25.0 -18.7055 0.5925 1.7482 1.7516 

18 0.90 25.0 -18.8592 -0.3466 1.7544 1.7547 

19 0.95 25.0 -17.8523 -1.2644 1.7141 1.7109 

20 1.00 25.0 -15.7468 -2.1044 1.6299 1.6230 

21 1.05 25.0 -12.6723 -2.8149 1.5069 1.4962 

22 1.10 25.0 -8.8179 -3.3521 1.3527 1.3387 

23 1.15 25.0 -4.4209 -3.6831 1.1768 1.1600 

24 1.20 25.0 0.2481 -3.7874 0.9901 0.9715 

25 1.25 25.0 4.9019 -3.6586 0.8039 0.7846 

26 1.30 25.0 9.2540 -3.3048 0.6298 0.6112 

27 1.35 25.0 13.0367 -2.7475 0.4785 0.4620 

28 1.40 25.0 16.0171 -2.0211 0.3593 0.3462 

29 1.45 25.0 18.0118 -1.1704 0.2795 0.2711 

30 1.50 25.0 18.8981 -0.2477 0.2441 0.2412 

31 1.55 25.0 18.6214 0.6903 0.2551 0.2586 

32 1.60 25.0 17.1989 1.5858 0.3120 0.3220 

33 1.65 25.0 14.7179 2.3837 0.4113 0.4276 

34 1.70 25.0 11.3312 3.0350 0.5468 0.5688 

35 1.75 25.0 7.2472 3.4994 0.7101 0.7368 

36 1.80 25.0 2.7172 3.7485 0.8913 0.9212 

37 1.85 25.0 -1.9800 3.7670 1.0792 1.1105 

38 1.90 25.0 -6.5553 3.5536 1.2622 1.2929 

39 1.95 25.0 -10.7273 3.1215 1.4291 1.4570 

40 2.00 25.0 -14.2391 2.4974 1.5696 1.5928 

 

Fig. 6.1: Acceleration vs. Time
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Fig. 6.2: Velocity vs. Time
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Fig. 6.3: Displacement vs. Time
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Problems on the Dynamic Analysis of SDOF Systems 

 

1. The force vs. displacement relationship of a spring is shown below. If the spring weighs 10 lb, 

calculate its natural frequency and natural period of vibration. If the damping ratio of the spring is 5%, 

calculate its damping (c, in lb-sec/in).         

 

 

 

 

 

 

 

 

 

 

 

2.  For the (20   20   20 ) overhead water tank shown below supported by a 25   25  square column, 

calculate the undamped natural frequency for (i) horizontal vibration (k = 3EI/L
3
), (ii) vertical 

vibration (k = EA/L). Assume the total weight of the system to be concentrated in the tank  

[Given: Modulus of elasticity of concrete = 400  10
3
 k/ft

2
, Unit weight of water = 62.5 lb/ft

3
].  

 

 

 

 

 

 

3.  The free vibration of an undamped system is shown below. Calculate its 

(i) undamped natural period, (ii) undamped natural frequency in Hz and radian/second, (iii) stiffness if 

its mass is 2 lb-sec
2
/ft.  

 

 

 

 

 

 

 

 

 

 

 

4. If a linear viscous damper 1.5 lb-sec/ft is added to the system described in Question 3, calculate its  

(i) damping ratio, (ii) damped natural period,  (ii) free vibration at t = 2 seconds [Initial velocity = 0]. 

 

5. The free vibration response of a SDOF system is shown in the figure below. Calculate its 

 (i) damped natural frequency, (ii) damping ratio, (iii) stiffness and damping if its weight is 10 lb. 
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6.  The free vibration responses of two underdamped systems (A and B) are shown below.  

(i) Calculate the undamped natural frequency and damping ratio of system B. 

(ii) Explain (qualitatively) which one is stiffer and which one is more damped of the two systems. 

              

           

 

 

 

 

 

 

 

 

 

 

 

 

7.  A SDOF system with k = 10 k/ft, m = 1 k-sec
2
/ft, c = 0 is subjected to a force (in kips) given by  

(i) p(t) = 50,  (ii) p(t) = 100 t, (iii) p(t) = 50 cos(3t).  

In each case, calculate the displacement (u) of the system at time t = 0.1 seconds, if the initial 

displacement and velocity are both zero. 

 

8.  Calculate the maximum displacement of the water tank described in Problem 2 when subjected to  

(i) a sustained wind pressure of 40 psf, (ii) a harmonic wind pressure of 40 cos(2t) psf. 

 

9.  An undamped SDOF system suffers resonant vibration when subjected to a harmonic load (i.e., of 

frequency  = n). Of the control measures suggested below, explain which one will minimize the 

steady-state vibration amplitude. 

(i) Doubling the structural stiffness, (ii) Doubling the structural stiffness and the mass,  

(iii) Adding a damper to make the structural damping ratio = 10%.  

 

10. For the system defined in Question 7, calculate u(0.1) in each case using the CAA method. 
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Solution of Problems on the Dynamic Analysis of SDOF Systems 

 

1. From the force vs. displacement relationship, spring stiffness k = 200/2.0 = 100 lb/in 

Weight of the spring is W = 10 lb  Mass m = 10/(32.2  12) = 0.0259 lb-sec
2
/in 

Natural frequency, n = (k/m) = (100/0.0259) = 62.16 rad/sec  fn= n/2  = 9.89 Hz 

Natural period, Tn= 1/fn= 0.101 sec 

Damping ratio,  = 5% = 0.05  

 Damping, c = 2 (km) = 2  0.05 (100  0.0259) = 0.161 lb-sec/in        

 

2.  Mass of the tank (filled with water), m = 20  20  20  62.5/32.2 = 15528 lb-ft/sec
2
  

Modulus of elasticity E = 400  10
3
 k/ft

2 
= 400  10

6
 lb/ft

2
, Length of column L = 30 ft 

(i) Moment of inertia, I = (25/12)
4
/12 = 1.570 ft

4
  

Stiffness for horizontal vibration, kh = 3EI/L
3
 = 3  400  10

6
  1.570/(30)

3 
= 69770 lb/ft 

Natural frequency, nh = (kh/m) = (69770/15528) = 2.120 rad/sec    

(ii) Area, A = (25/12)
2
 = 4.340 ft

2
  

Stiffness for vertical vibration, kv = EA/L = 400  10
6
  4.340/30 = 5787  10

4
 lb/ft 

Natural frequency, nv = (kv/m) = (5787  10
4
/15528) = 61.05 rad/sec    

 

3.  (i) The same displacement (2 ft) is reached after 1.0 second intervals.  

Undamped natural period, Tn = 1.0 sec  

(ii) Undamped natural frequency, fn = 1/Tn = 1.0 Hz  n = 2 fn = 6.283 radian/second 

(iii) Mass, m = 2 lb-sec
2
/ft.  

Stiffness, k = m n
2
 = 78.96 rad/sec 

 

4. If a linear viscous damper, c = 1.5 lb-sec/ft, (i) damping ratio, (ii) damped natural period,  (iii) free 

vibration at t = 2 seconds [Initial velocity = 0]. 

(i) Damping ratio,  = c/[2 (km)] = 1.5/[2 (78.96  2)] = 0.0597  = 5.97% 

(ii) Damped natural period, Td = Tn/ (1
2
) = 1.0/ (1 0.0597

2
) = 1.002 sec 

 (iii) Damped natural frequency, d = 2 /Td = 6.272 rad/sec 

  u(t) = e
nt
 [u0 cos( dt) + {(v0 + nu0)/ d} sin( dt)] 

        = e
0.0597  6.283  2

 [2  cos(6.272  2) + {(0 + 0.0597  6.283  2)/6.272} sin(6.272  2)] 

        = 0.943 ft 

 

5. (i) The figure shows that the peak displacement is repeated in every 1.0 second 

Damped natural period, Td = 1.0 sec 

Damped natural frequency, d = 2 /Td = 6.283 rad/sec 

(ii) Damping ratio,  = / (1+
2
); where  = ln[u(t)/u(t +NTd)]/2 N 

Using as reference the displacements at t = 0 (6.0 ft) and t = 2.0 sec (3.0 ft); i.e., for N = 2 

 = ln[u(0.0)/u(2.0)]/(2 2) = ln[6.0/3.0]/4  = 0.0552   = / (1+
2
) = 0.0551 

(iii) Weight, W = 10 lb  Mass, m = 10/32.2 = 0.311 lb-sec
2
/ft 

Undamped natural frequency, n = d/ (1
2
) = 6.283/ (1 0.0551

2
) = 6.293 rad/sec 

Stiffness, k = m n
2
 = 0.311  6.293

2
 = 12.30 k/ft    

and Damping, c = 2 (km) = 2  0.0515 (12.30  0.311) = 0.215 lb-sec/ft 

 

6. (i) System B takes 1.0 second to complete two cycles of vibration.  

Damped natural period Td for system B = 1.0/2 = 0.50 sec 

Damped natural frequency, d = 2 /Td = 12.566 rad/sec 

Using as reference the displacements at t = 0 (1.0 ft) and t = 2.0 sec (0.5 ft); i.e., for N = 4 

 = ln[u(0.0)/u(2.0)]/(2 4) = ln[1.0/0.5]/8  = 0.0276   = / (1+
2
) = 0.0276 

Undamped natural frequency, n = d/ (1
2
) = 12.566/ (1 0.0276

2
) = 12.571 rad/sec 
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(ii) System A completes only two vibrations while (in 2.0 sec) system B completes four vibrations.  

System B is stiffer. 

However, system A decays by the same ratio (i.e., 0.50 or 50%) in two vibrations system B decays 

in four vibrations.  

System A is more damped. 

 

7.  For the SDOF system, k = 10 k/ft, m = 1 k-sec
2
/ft, c = 0 

Natural frequency, n = (k/m) = (10/1) = 3.162 rad/sec 

(i) p(t) = p0 = 50 

For an undamped system, u(t) = (p0/k)[1 cos( nt)] 

 u(0.1) = (50/10)[1 cos(3.162  0.1)] = 0.248 ft 

(ii) p(t) = 100 t 

For an undamped system, u(t) = (p0/k) [t/t0 – sin( nt)/( nt0)] = (p0/t0)/k [t – sin( nt)/ n] 

 u(0.1) = (100)/10 [0.1  sin(3.162  0.1)/3.162] = 0.0166 ft 

(iii) p(t) = 50 cos(3t) 

For an undamped system, u(t) = [p0/(k
2
m)] [cos( t)  cos( nt)] 

 u(0.1) = (50)/(10 3
2 

 1) [cos(3 
 

 0.1)  cos(3.162 
 

 0.1)] = 0.246 ft 

 

8.  For the water tank filled with water,  

Mass, m = 15528 lb-ft/sec
2
, Stiffness for horizontal (i.e., due to wind) vibration, kh = 69770 lb/ft 

Natural frequency, nh = 2.120 rad/sec    

(i) p(t) = p0  = 40  20  20 = 16000 lb 

For an undamped system, umax = 2(p0/kh) = 2 (16000/69770) = 0.459 ft 

(ii) p(t) = p0 cos( t)  = 16000 cos(2t) 

For an undamped system, u(t) = [p0/(k
2
m)] [cos( t) cos( nt)]  

 = [p0/(k
2
m)] [cos(2t) cos(2.120t)] 

Possible umax  p0/(kh
2
m) [1  ( 1)]  2p0/(kh

2
m) [when t = ] 

    = 2  16000/(69770 2
2
  15528) = 4.178 ft 

 

9.  Maximum dynamic response amplitude, umax = p0/(k
2
m) 

 If  = n, umax = p0/(k n
2 
m)= p0/(k k) =  

(i) Doubling the structural stiffness  umax = p0/(2k k) = p0/k  

(ii) Doubling the structural stiffness and the mass  umax = p0/(2k n
2 
2m) = p0/(2k 2k) =  

(iii) Adding a damper to make the structural damping ratio,  = 10% = 0.10 

 umax = p0/ {(k n
2 
m)

2
 + ( nc)

2
} = (p0/k)/(2 ) = 5 (p0/k) 

Option (i) is the most effective [since it minimizes umax]. 

 

10. Using k = 10 k/ft, m = 1 k-sec
2
/ft, c = 0, t = 0.1 sec, u0 = u(0) = 0, v0 = v(0) = 0, also f0 = f(0), f1 = 

f(0.1), a0 = a(0), u1 = u(0.1), v1 = v(0.1), a1 = a(0.1), the basic equations of the CAA method become 

a0 = f0                     …………… using (6.7) 

(1.025) a1 = f1 – 0.025 a0                   …….….….. using (6.6)  

u1 = 0.0025 (a0 + a1)            …………… using (6.5) 

(i) a0 = f0 = 50 ft/sec
2
 

(1.025) a1 = 50 – 0.025  50  a1 = 47.561 ft/sec
2
  

u1 = 0.0025 (50 + 47.561) = 0.244 ft 

(ii) a0 = f0 = 0 ft/sec
2
 

(1.025) a1 = 100
 

 0.1 – 0.025  0  a1 = 9.756 ft/sec
2
  

u1 = 0.0025 (0  + 9.756) = 0.0244 ft 

(iii) a0 = f0 = 50 ft/sec
2
 

(1.025) a1 = 50 cos(3
 

 0.1)  – 0.025  50  a1 = 45.382 ft/sec
2
  

u1 = 0.0025 (50 + 45.382) = 0.238 ft 
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Computer Implementation of Numerical Solution of SDOF Equation 

The numerical time-step integration method of solving the SDOF dynamic equation of motion using the 

Newmark-  method or its special case CAA (Constant Average Acceleration) method can be used for any 

dynamic system with satisfactory agreement with analytical solutions. Numerical solution is the only 

option for problems that cannot be solved analytically. They are particularly useful for computer 

implementation, and are used in the computer solution of various problems of structural dynamics. These 

are implemented in standard softwares for solving structural dynamics problems. 

 

A computer program written in FORTRAN77 for the Newmark-  method is listed below for a general 

linear system and dynamic loading. Although the forcing function is defined here (as the Ramped Step 

Function mentioned before) the algorithm can be used in any version of FORTRAN to solve dynamic 

SDOF problems, with slight modification for the forcing function. Also, the resulting acceleration, 

velocity and displacement are printed out only once in every twenty steps solved numerically. This can 

also be modified easily depending on the required output. The program listing is shown below. 
       

OPEN(1,FILE='SDOF.IN',STATUS='OLD') 

 OPEN(2,FILE='OUT',STATUS='NEW') 

    

       READ(1,*)RM0,RK0,DRATIO 

 READ(1,*)DT,NSTEP 

 

       C0=2.*DRATIO*SQRT(RK0*RM0) 

 

TIME=0. 

       DIS0=0. 

       VEL0=0. 

       FRC=0. 

        

       ACC0=(FRC RK0*DIS0 C0*VEL0)/RM0 

       WRITE(2,4)TIME,ACC0,VEL0,DIS0 

 

       RKEFF=RK0 

       CEFF=C0+RK0*DT 

       RMEFF=C0*DT/2.+RK0*DT**2/4. 

       DO 10 I=1,NSTEP 

         TIME=DT*I 

 

        FRC=25. 

 IF(TIME.LE.0.5)FRC=50.*TIME 

 

ACC=(FRC-RKEFF*DIS0 CEFF*VEL0-RMEFF*ACC0)/(RM0+RMEFF) 

        VEL=VEL0+(ACC0+ACC)*DT/2. 

        DIS=DIS0+VEL0*DT+(ACC0+ACC)*DT**2/4. 

 

        IF(I/20.EQ.I/20.)WRITE(2,4)TIME,ACC,VEL,DIS 

 

        DIS0=DIS 

        VEL0=VEL 

        ACC0=ACC 

   10  CONTINUE 

 

    4  FORMAT(10(2X,F8.4)) 

END 
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Example 7.1 

For the SDOF system described before (m = 1 k-sec
2
/ft, k = 25 k/ft) with damping ratio = 0 (c = 0 k-

sec/ft), calculate the dynamic displacements for a Ramped Step Loading with p0 = 25 k and t0 = 0.5 sec. 

 

The output file for the FORTRAN77 program listed in the previous section is shown below in tabular 

form (in Table 7.1). The numerical integrations are carried out for time intervals of t = 0.01 sec and 

results are printed in every 0.20 second up to 5.0 seconds. 

 

Table 7.1: Acceleration, Velocity and Displacement for 

t = 0.01 sec (Results shown in 0.20 second intervals) 

Time  

(sec) 

Acceleration  

(ft/sec
2
) 

Velocity  

(ft/sec) 

Displacement  

(ft) 

0.0000 0.0000 0.0000 0.0000 

0.2000 8.4136 0.9190 0.0635 

0.4000 9.0947 2.8315 0.4362 

0.6000 -3.3760 3.7351 1.1350 

0.8000 -17.5373 1.4506 1.7015 

1.0000 -15.5811 -2.1670 1.6232 

1.2000 0.6949 -3.7931 0.9722 

1.4000 16.3322 -1.9331 0.3467 

1.6000 16.9595 1.7034 0.3216 

1.8000 2.0003 3.7745 0.9200 

2.0000 -14.7973 2.3766 1.5919 

2.2000 -17.9955 -1.2055 1.7198 

2.4000 -4.6550 -3.6797 1.1862 

2.6000 12.9636 -2.7721 0.4815 

2.8000 18.6681 0.6832 0.2533 

3.0000 7.2158 3.5105 0.7114 

3.2000 -10.8682 3.1116 1.4347 

3.4000 -18.9638 -0.1471 1.7586 

3.6000 -9.6308 -3.2706 1.3852 

3.8000 8.5533 -3.3883 0.6579 

4.0000 18.8766 -0.3920 0.2449 

4.2000 11.8514 2.9645 0.5259 

4.4000 -6.0657 3.5965 1.2426 

4.6000 -18.4082 0.9231 1.7363 

4.8000 -13.8327 -2.5986 1.5533 

5.0000 3.4557 -3.7322 0.8618 
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Fig. 8.1: Acceleration, Velocity & Displacement vs. Time
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The numerical results (i.e., displacements only) obtained for t = 0.01 are presented in Table 7.2 along 

with exact analytical results and results for t = 0.025 and 0.05 sec. In the table, it is convenient to notice 

the deterioration of accuracy with increasing t, although those results are also very accurate and the 

deterioration of accuracy cannot be detected in Fig. 7.2, where they are also plotted. 

 

Numerical predictions are worse for larger t but the CAA guarantees convergence for any value of t, 

even if the results are not very accurate. Table 7.2 also shows the results for t = 0.10 and 0.20 sec. These 

results are clearly unsatisfactory compared to the corresponding exact results, but overall there is only a 

shift in the dynamic responses and there if no tendency to diverge towards infinity. 

 

Table 7.2: Exact Displacement and Displacement for t = 0.01, 0.025, 0.05, 0.10, 0.20 sec 

Time  

(sec) 

Displacement (ft) 

Exact t = 0.01 sec t = 0.025 sec t = 0.05 sec t = 0.10 sec t = 0.20 sec 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.2000 0.0634 0.0635 0.0637 0.0645 0.0678 0.0800 

0.4000 0.4363 0.4362 0.4358 0.4346 0.4299 0.4160 

0.6000 1.1353 1.1350 1.1336 1.1283 1.1080 1.0192 

0.8000 1.7017 1.7015 1.7003 1.6960 1.6787 1.5670 

1.0000 1.6230 1.6232 1.6247 1.6299 1.6482 1.6612 

1.2000 0.9715 0.9722 0.9761 0.9901 1.0435 1.2265 

1.4000 0.3462 0.3467 0.3494 0.3593 0.4003 0.6105 

1.6000 0.3220 0.3216 0.3194 0.3120 0.2883 0.3061 

1.8000 0.9212 0.9200 0.9136 0.8913 0.8068 0.5569 

2.0000 1.5928 1.5919 1.5871 1.5696 1.4964 1.1621 

2.2000 1.7194 1.7198 1.7220 1.7291 1.7463 1.6377 

2.4000 1.1846 1.1862 1.1947 1.2246 1.3351 1.6031 

2.6000 0.4801 0.4815 0.4888 0.5156 0.6271 1.0860 

2.8000 0.2536 0.2533 0.2518 0.2477 0.2494 0.5002 

3.0000 0.7134 0.7114 0.7010 0.6650 0.5366 0.3142 

 

The accuracy of the results depends on the choice of t with respect to the natural period of the system or 

the period of the forcing function itself. For example, whereas t = 0.1 and 0.2 sec do not give accurate 

results for the given system (with natural frequency = 5.0 rad/sec, natural period = 1.257 seconds) it gives 

much more accurate predictions for ‘System2’ where m = 1 k-sec
2
/ft and k = 4 k/ft (i.e., natural frequency 

= 2 rad/sec, natural period = 3.142 seconds). The results are shown in Table 7.3. 

 

Table 7.3: Exact Displacement and Displacement for t = 0.1 and 0.2 sec for System2 

Time (sec)  [Exact]  [ t = 0.1 sec] [ t = 0.2 sec] 

0.0000 0.0000 0.0000 0.0000 

0.2000 0.0661 0.0738 0.0962 

0.4000 0.5165 0.5281 0.5621 

0.6000 1.6664 1.6714 1.6628 

0.8000 3.5317 3.5205 3.4211 

1.0000 5.8261 5.7978 5.6146 

1.2000 8.1874 8.1459 7.9059 

1.4000 10.2429 10.1967 9.9424 

1.6000 11.6679 11.6284 11.4109 

1.8000 12.2376 12.2166 12.0853 

2.0000 11.8620 11.8689 11.8621 

2.2000 10.6004 10.6399 10.7754 

2.4000 8.6519 8.7224 8.9926 

2.6000 6.3242 6.4170 6.7877 

2.8000 3.9848 4.0855 4.5002 

3.0000 2.0031 2.0935 2.4819 
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Fig. 8.3: Displacement vs. Time for 'large' time steps

0

0.5

1

1.5

2

0 1 2 3 4 5

Time (sec)

D
is

p
la

c
e
m

e
n
t 

(f
t)

Exact time step=0.1 sec time step=0.2 sec

Fig. 8.2: Displacement vs. Time for different time steps

0

0.5

1

1.5

2

0 1 2 3 4 5
Time (sec)

D
is

p
la

ce
m

en
t 
(f

t)

Exact time step=0.01 sec time step=0.025 sec time step=0.05 sec

Fig. 8.4: Displacement vs. Time for System2

0

3

6

9

12

15

0 1 2 3 4 5
Time (sec)

D
is

p
la

c
em

en
t 

(f
t)

Exact time step = 0.1 sec time step = 0.2 sec

Fig. 7.4: Displacement vs. Time for System2 

Fig. 7.3: Displacement vs. Time for ‘large’ time steps 

Fig. 7.2: Displacement vs. Time for ‘small’ time steps 



 22 

Introduction to Multi-Degree-of-Freedom (MDOF) System 

 

The lectures so far had dealt with Single-Degree-of-Freedom (SDOF) systems, i.e., systems with only one 

displacement. Although important concepts like free vibration, natural frequency, forced vibration, 

dynamic magnification and resonance were explained, the conclusions based on such a simplified model 

have limitations while applying to real structures. Real systems can be modeled as SDOF systems only if 

it is possible to express the physical properties of the system by a single motion. However, in most cases 

the SDOF system is only a simplification of real systems modeled by assuming simplified deflected 

shapes that satisfy the essential boundary conditions. 

 

Real structural systems often consist of an infinite number of independent displacements/rotations and 

need to be modeled by several degrees of freedom for an accurate representation of their structural 

response. Therefore, real structural systems are called Multi-Degree-of-Freedom (MDOF) systems in 

contrast to the SDOF systems discussed before.  

 

A commonly used dynamic model of a 1-storied building is as shown in Fig. 8.1(b), represented by the 

story sidesway only. Since weight carried by the building is mainly concentrated at the slab and beams 

while the columns provide the resistance to lateral deformations, the SDOF model assumes a spring and a 

dashpot for the columns and a mass for the slabs. However the SDOF model may not be an adequate 

model for real building structures, which calls for modeling as MDOF systems. The infinite number of 

deflections and rotations of the 1-storied frame shown in Fig. 8.1(a) (subjected to the vertical and 

horizontal loads as shown) can also be represented by the joint displacements and rotations. A detailed 

formulation of the 1-storied building frame would require at least three degrees of freedom per joint; i.e., 

twelve degrees of freedom overall for the four joints (reduced to six after applying boundary conditions). 

The models become even more complicated for larger structures. 

 

 

 

 

 

 

 

 

 (a)           (b) 

Fig. 8.1: One-storied building frame (a) with infinite degrees of freedom, (b) modeled as a SDOF system 

 

Some of the comparative features of the SDOF and MDOF systems are  

1.  Several basic concepts used for the analysis of SDOF systems like free and forced vibration, dynamic 

magnification can also be used for MDOF systems.  

2.  However, some differences between the analyses of SDOF and MDOF systems are mainly due to the 

more elaborate nature of the MDOF systems. For example, the basic SDOF concepts are valid for each 

degree of freedom in a MDOF system. Therefore, the MDOF system has several natural frequencies, 

modes of vibration, damping ratios, modal masses. 

3. The basic method of numerical analysis of SDOF systems can be applied for MDOF systems after 

replacing the displacement, velocity and acceleration by the corresponding vectors and the stiffness, 

mass and damping by corresponding matrices.  
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Formulation of the 2-DOF Equations for Lumped Systems 

The simplest extension of the SDOF system is a two-degrees-of-freedom (2-DOF) system, i.e., a system 

with two unknown displacements for two masses. The two masses may be connected to each other by 

several spring-dashpot systems, which will lead to two differential equations of motion, the solution of 

which gives the displacements and internal forces in the system. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8.2: Dynamic 2-DOF system and free body diagrams of m1 and m2 

  

Fig. 8.2 shows a 2-DOF dynamic system and the free body diagrams of the two masses m1 and m2. In the 

figure, ‘u’ stands for displacement (i.e., u1 and u2) while ‘v’ stands for velocity (v1 and v2). Denoting 

accelerations by a1 and a2, the differential equations of motion can be applied by applying Newton’s 2
nd

 

law of motion to m1 and m2; i.e., 

m1a1 = f1(t) + k2(u2–u1) + c2(v2–v1) – k1u1 – c1v1  

 m1a1 + (c1+c2) v1 + (k1+k2)u1 – c2v2 – k2u2 = f1(t)        ……..…(8.1) 

and m2a2 = f2(t) – k2 (u2–u1) – c2(v2–v1)  m2a2 – c2v1 + c2v2 – k2u1 + k2u2 = f2(t)      ……..…(8.2) 

 

Putting v = du/dt (i.e., v1 = du1/dt, v2 = du2/dt) and a = d
2
u/dt

2
 (i.e., a1 = d

2
u1/dt

2
, a2 = d

2
u2/dt

2
) in Eqs. 

(8.1) and (8.2), the following equations are obtained 

m1 d
2
u1/dt

2 
+ (c1+c2) du1/dt – c2 du2/dt + (k1+k2) u1 – k2 u2 = f1(t)     ………....(8.3) 

m2 d
2
u2/dt

2 
– c2 du1/dt + c2 du2/dt  – k2 u1 + k2 u2 = f2 (t)      …………(8.4) 

 

Eqs. (8.3) and (8.4) can be arranged in matrix form as 

 m1      0        d
2
u1/dt

2
           c1 + c2        –c2   du1/dt            k1+k2       –k2 u1   f1(t) 

                                                  

 

0     m2       d
2
u2/dt

2                 
–c2              c2   du2/dt            –k2             k2 u2    f2(t) 

            ………....(8.5) 

 

Eqs. (8.5) represent in matrix form the set of equations [i.e. (8.3) and (8.4)] to evaluate the displacements 

u1(t) and u2(t). In this set, the matrix consisting of the masses (m1 and m2) is called the mass matrix, the 

one consisting of the dampings (c1 and c2) is called the damping matrix and the one consisting of the 

stiffnesses (k1 and k2) is called the stiffness matrix of this particular system. These matrices are different 

for various 2-DOF systems, so that Eq. (8.5) cannot be taken as a general form of governing equations of 

motion for any 2-DOF system.  

 

For a MDOF system, the mass, damping and stiffness matrices can be generalized by their coefficients, so 

that Eq. (8.5) can be written in the general form of the dynamic equations of motion, 

M d
2
u/dt

2 
+ C du/dt + K u = f(t)                               ……….….(8.6) 

 

where the bold capital letters (M, C and K) represent matrices, while the bold small letters (d
2
u/dt

2
, du/dt 

and u) represent vectors.  

 

For an undamped system, C = 0  M d
2
u/dt

2 
+ K u = f(t)                           ………….(8.7) 

c1 k1 

m1 

c1v1 

c2 (v2 v1) k2 (u2 u1) 

c2 (v2 v1) k2 (u2 u1) 

c2 k2 

m2 f2(t), u2(t) 

c1 k1 

m1 
f1(t), u1(t) 

k1u1 

f2(t), u2(t) 

c2 k2 

m2 

+ + = 
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Eigenvalue Problem and Calculation of Natural Frequencies of a MDOF System 

In the previous section, the general equations of motion of a general MDOF system was mentioned to be 

M d
2
u/dt

2 
+ C du/dt + K u = f(t)           …………………….….(8.6) 

The free vibration condition for the dynamic motion of MDOF system is obtained by setting f(t) = 0; i.e., 

M d
2
u/dt

2 
+ C du/dt + K u = 0           …………………….….(9.1) 

In order to obtain the natural frequency of the undamped system, if C is also set equal to zero, the 

equations of motion reduce to 

M d
2
u/dt

2 
+ K u = 0            …………………….….(9.2) 

 

If the displacement vector can be chosen as the summation of a number (equal to the DOF) of variable 

separable vectors u(t) = qr(t) r               ………………………..(9.3) 

where qr(t) is a time-dependent scalar and r is a space-dependent vector. 

 

With q(t) = Ar e
 i nrt

, or qr(t) = C1r cos ( nrt) + C2r sin ( nrt)         .……………...………..(9.4) 

Eq. (9.2) can be written as  [ nr
2
 M + K] qr(t) r

 
= 0  

 [K nr
2
 M] r = 0            …………………….….(9.5) 

Since the  vector u is not zero, Eq. (9.5) turns into the following eigenvalue problem 

K nr
2
 M  = 0            …………………….….(9.6) 

i.e., the determinant of the matrix (K nr
2
 M) is zero. 

 

Eq. (9.6) is satisfied for different values of the ‘natural frequency’ nr, which implies that there can be 

several natural frequencies of a MDOF system. In fact, the number of natural frequencies of the system is 

equal to the degrees of freedom of the system, i.e., size of the displacement vector. However, 

consideration of only the first few can adequately model the structural behavior of a dynamic system. 

 

There are several ways to solve the eigenvalue problem of Eq. (9.6), the suitability of which depends on 

the size of the matrices and the number of eigenvalues required to represent the system accurately. 

 

For each value of nr, the vector r
 
is called a modal vector for the r

th
 mode of vibration. Once a natural 

frequency is known, Eq. (9.5) can be solved for the corresponding vector r to within a multiplicative 

constant. The eigenvalue problem does not fix the absolute amplitude of the vectors r, only the shape of 

the vector is given by the relative values of the displacements. 

 

Thus the vector r (i.e., the eigenvectors, also called the natural mode of vibration, normal mode, 

characteristic vector, etc.) physically represents the modal shape of the system corresponding to the 

natural frequency. The relative values of the displacements in the vector r indicate the shape that the 

structure would assume while undergoing free vibration at the relevant natural frequency. 

 

The undamped natural frequencies and modal shapes calculated from the above procedure usually prove 

to be adequate in the subsequent dynamic analyses, since the damped natural frequencies are often quite 

similar to the damped natural frequencies for typical (undamped) systems, as mentioned in the discussion 

on SDOF systems. 

 

However, the damped natural frequencies and modal shapes can also be calculated by the methods 

mentioned before. For that, qr(t) = Ar e
 i nrt

 will lead to the following equation 

[K + i nr C  nr
2
 M] r = 0 K + i nr C  nr

2
 M  = 0     …………………..….….(9.7) 

 

The solution of Eq. (9.7) provides the natural frequencies of the system, from which the natural modes 

can also be obtained.  
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Example 9.1 

Calculate the natural frequencies and determine the natural modes of vibration of the 2-storied building 

system shown in Figs. 8.1 and 8.2, whose governing equations of motion are given by Eq. (8.5). Assume, 

k1 = k2 = 25 k/ft, m1 = m2 = 1 k-sec
2
/ft, c1 = c2 = 0 (i.e., the same stiffnesses and masses as used for the 

SDOF system before are used here for an undamped 2-DOF system). 

 

Solution 

The mass and stiffness matrices of the system are given by M and K as follows 

 

 m1      0        1             0                  k1 + k2     –k2     50          –25       

 

  M =    =        ,     K =            = 

 

0     m2       0               1              –k2             k2    –25          25 

  

while the damping matrix C = 0 

 

Thus the eigenvalue problem is given by  

 50– nr
2
(1)     –25– nr

2
(0)           1,r        0                   

                

           

 

–25– nr
2
(0)  25– nr

2
(1)         2,r       0                       

  

So that the natural frequencies can be obtained from the equation 

(50– nr
 2
) (25– nr

2
) – (–25) (–25) = 0  1250 – 75 nr

2 
+ nr

4
–625 = 0  nr

2 
= 9.55, 65.45 

 nr = 3.09, 8.09 rad/sec  f nr = nr/2  = 0.492, 1.288 cycle/sec; Tnr = 1/f nr = 2.033, 0.777 sec 

 

The two values of the natural frequency indicate the first and second natural frequency of the system.  

n1 = 3.09 and n2 = 8.09 rad/sec for this system. 

[Recall that the natural frequency n was equal to 5 rad/sec (i.e., fn = 0.796 cycle/sec) for the SDOF 

system in Example 2.1, which is greater than n1 but less than n2] 

 

Once the natural frequencies are known, modal shapes can be determined from the eigenvalue equation. 

For the first natural frequency, the eigenvalue equations are 

 

 40.45            –25        1,1         0                   

                

           = 

 

–25            15.45        2,1         0              

  

from both these equation, 1.618 1,1 – 2,1 = 0  1,1 : 2,1 = 1: 1.618 

 

For the second natural frequency, the equations are 

 

 –15.45           –25        1,2         0                   

               

           = 

 

–25          –40.45      2,2         0              

  

from both these equations, – 1,2 – 1.618 2,2 = 0  1,2 : 2,2 = 1: –0.618 

Thus, the first two modal shapes are as shown in Fig. 9.1.  

    

    

    

    

    

    

    

    

    

    

     
   First Mode           Second Mode 

 

Fig. 9.1: Modal Shapes of the system 
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Modal Analysis of MDOF Systems 

Calculation of the natural frequencies and the corresponding natural modes of vibration are important in 

developing a general method of dynamic analysis called the Modal Analysis. This method decomposes 

the dynamic system into different SDOF systems after solving the eigenvalue problem for natural 

frequencies and natural modes and considers the individual modes separately to obtain the total solution.  

 

The Modal Analysis uses a very important characteristic of the modal vectors, i.e., the orthogonality 

conditions. The derivation of the orthogonality conditions is avoided here, but they are available in any 

standard text on Structural Dynamics. If ni and nj are the i
th
 and j

th
 natural frequencies of an undamped 

system and i and j are the i
th
 and j

th
 modes of vibration, then if j  i, the mass and stiffness matrices 

satisfy the following orthogonality conditions 

 

 j
T
 K i = 0           ………………..(10.1)  

j
T
 M i = 0              ………………..(10.2) 

 

where the superscripts T indicate the transpose of the matrices. If j = i, the ratio of the products i
T
 K i 

and i
T
 M i give the square of the i

th
 natural frequency of the system; i.e., 

 ni
2
 = ( i

T
 K i)/( i

T
 M i)           ………………..(10.3) 

 

Choosing the displacement vector as the summation of a number (equal to the DOF) of variable separable 

vectors [using Eq. (9.3)]  

u(t) = qi(t) i                 ………………………..(9.3) 

so that the governing equations of motion M d
2
u/dt

2 
+ K u = f(t)        …………………….….(8.7) 

can be written as, (M d
2
qi/dt

2 
i + K qi i) = f(t)          …..……………….….(10.4)  

 

Pre-multiplying (10.4) by j
T
  j

T
 (M d

2
qi/dt

2 
i + K qi i) = j

T
 f(t)         ….……………….….(10.5)  

 

Using the orthogonality equations  ( i
T
 M i) d

2
qi/dt

2 
+ ( i

T
 K i) qi = i

T
 f(t) ……...………….….(10.6)  

 

where i
T 

M i is called the ‘modal mass’ Mi, i
T 

K i the ‘modal stiffness’ Ki and i
T
 f(t) the ‘modal load’ 

fi for the i
th
 mode of the system. Eq. (10.6) is an uncoupled differential equation that can be solved to get 

qi(t) as a function of time.  

 

Since i is already known by solving the eigenvalue problem, qi(t) can be inserted in Eq. (9.3) and 

summing up similar components gives u(t). Therefore, the main advantage of the orthogonality conditions 

is to uncouple the equations of motion so that they can be solved as separate SDOF systems.  

 

For a damped system, the damping matrix C can also be formed to satisfy orthogonality condition; i.e.,  

j
T
 C i  = 0              ………………..(10.7) 

 

This can be possible if the matrix C is proportional to the mass matrix M or the stiffness matrix K, or 

more rationally a combination of the two; i.e., 

C = a0 M + a1 K          ………………..(10.8) 

 

Thus formulated, the equation of motion for the i
th
 mode can be written as 

( i
T
 M i) d

2
qi/dt

2 
+ ( i

T
 C i) dqi/dt

 
+ ( i

T
 K i) qi = i

T
 f(t)          ……………...(10.9) 

 

The ratio ( i
T
 C i)/( i

T
 M i) = 2 i ni 

 The modal damping ratio, i = ( i
T
 C i)/( i

T
 M i)/(2 ni)          ..……………(10.10)  

 

Modal Analysis is helpful in illustrating the basic features of MDOF system, and is preferred in analytical 

works. However for practical purposes, it has many drawbacks. The solution of the eigenvalue problem 

can be cumbersome for large dynamic systems, and the method cannot be applied for nonlinear systems. 
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Example 10.1 

For the 2-storied building system described in Example 9.1, calculate the dynamic displacement vector if 

step loads of 25 kips are applied at both stories when the system is at rest; i.e., f1(t) = f2(t) = 25 kips.  

 

Solution 

The mass and stiffness matrices of the system are given by  

 

 m1      0        1           0                  k1 + k2     –k2     50          –25       

 

  M =    =        ,     K =           = 

 

0     m2       0            1             –k2              k2    –25          25 

  

while the damping matrix C = 0 

 

From Example 9.1, the natural frequencies of the system are found to be  

n1 = 3.09 rad/sec, and n2 = 8.09 rad/sec, while the modal vectors are given by 

    

    1     1 

       

              1 =      and  2 = 

 

1.618              –0.618 

 

The modal masses are, M1 = 1
T
 M 1 = 3.618 k-sec

2
/ft, M2 = 2

T
 M 2 = 1.382 k-sec

2
/ft 

 

The modal stiffnesses are, K1 = 1
T
 K 1 = 34.55 k/ft, K2 = 2

T
 K 2 = 90.45 k/ft 

 

The modal loads are, f1(t) = 1
T
 f = 65.45 k, f2(t) = 2

T
 f = 9.55 k 

 

The uncoupled modal equations of motion are 

3.618 d
2
q1/dt

2 
+ 34.55 q1 = 65.45 

1.382 d
2
q2/dt

2 
+ 90.45 q2 = 9.55 

 

The solution of these equations starting ‘at rest’ is  

q1(t) =  (65.45/34.55) [1– cos (3.09t)] = 1.894 [1– cos (3.09t)]   

      and q2(t) =  (9.55/90.45) [1– cos (8.09t)] = 0.1056 [1– cos (8.09t)] 

u(t) =  qi(t) i = q1(t) 1 + q2(t) 2    

 

         1             1              

 

u(t) =  1.894 [1– cos (3.09t)]               + 0.1056 [1– cos (8.09t)]                

 

 1.618         –0.618 

 

 u1(t) = 1.894 [1– cos (3.09t)] + 0.1056 [1– cos (8.09t)] 

     u2(t) = 3.065 [1– cos (3.09t)] – 0.065 [1– cos (8.09t)] 

 

The displacements are plotted with time in Fig. 10.1 and 10.2. Fig. 10.1 shows the contribution of the two 

modes to the total displacements, which are shown in Fig. 10.2. The figures indicate that u2 is larger in 

this case, and by far the bigger contributions to the displacements come from the 1
st
 mode of vibration. 
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Example 10.2 

Calculate the modal damping ratios for the 2-storied system described in Example 10.1 if dampers 

equivalent to ones for a 5% damped SDOF system are included in each story; i.e., c1 = c2 = 0.5 k-sec/ft. 

 

Solution 

 

      c1 + c2      –c2         1.0           –0.5      

        

   C =    = 

 

–c2            c2       –0.5           0.5 

   

The modal dampings are, C1 = 1
T
 C 1 = 0.691 k-sec/ft, C2 = 2

T
 C 2 = 1.809 k-sec/ft 

In Example 10.1, the modal masses were calculated to be M1 = 3.618 k-sec
2
/ft, M2 = 1.382 k-sec

2
/ft, 

and in Example 9.1, the natural frequencies of the system were found to be  

n1 = 3.09 rad/sec, and n2 = 8.09 rad/sec 

 

Using Eq. (10.10), the modal damping ratios are  

1 = C1/(2M1 n1) = 0.691/(2 3.618 3.09) = 0.0309 

2 = C2/(2M2 n2) = 1.809/(2 1.382 8.09) = 0.0809 

1 is lower while 2 is greater than 0.05. Particularly the damping ratio of the second mode is much higher, 

which helps to suppress it even further. 

Fig. 12.1: Contribution of various Modes
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Numerical Solution of MDOF Equations 

The equations of motion for a MDOF system have been solved analytically using the Modal Analysis. 

Although Modal Analysis is helpful in formulating and understanding some basic concepts of dynamic 

analysis, it has several limitations of convenience and applicability. In fact, it has even more limitations 

than the analytical methods used to solve SDOF systems.  

 

In addition to the considerable mathematical effort needed to solve eigenvalue problems and uncouple the 

simultaneous equations (i.e., make the system matrices diagonal), its formulation requires several 

assumptions. For example, the method is valid for linear systems only. The orthogonality condition that 

makes the Modal Analysis convenient, is not guaranteed to be valid for the damping matrix. The practical 

loading situations can be more complicated and not convenient to solve analytically. Numerical methods 

must be used in such situations. 

 

As mentioned for SDOF systems, the most widely used numerical approach for solving dynamic 

problems is the Newmark-  method. The method solves the dynamic equation of motion in the (i+1)
th
 

time step based on the results of the i
th
 step.  

 

The dynamic equations of motion for the (i+1)
th
 time step is 

M ai+1 + C vi+1 + K ui+1 = f i+1                           ..………………(11.1) 

 

where the bold small letter ‘a’ stands for the acceleration vector, ‘v’ for velocity vector and ‘u’ for 

displacement vector. In the Constant Average Acceleration (CAA) method (a special case of Newmark-  

method where  = 0.50 and  = 0.25), the velocity and displacement vectors are given by 

vi+1 = vi + (ai + ai+1) t/2                         …………………(11.2) 

ui+1 = ui + vi t + (ai + ai+1) t
2
/4            …………………(11.3) 

 

Inserting these values in Eq. (13.1) and rearranging the coefficients, the following equation is obtained, 

(M + C t /2 + K t
2
/4)ai+1 = fi+1– Kui – (C + K t)vi – (C t/2 + K t

2
/4)ai  …………......…..(11.4) 

 

Therefore, if the forcing function fi+1 is known, the only unknown in Eq. (11.4) is the acceleration vector 

ai+1, which can be obtained by matrix inversion (by Gauss Elimination or some other method). Once ai+1 is 

obtained, Eqs. (11.2) and (11.3) can be used to calculate the velocity vector vi+1 and the displacement 

vector ui+1 at time ti+1. These values are used to obtain the results at time ti+2 and subsequent time-steps.  

 

The simulation needs two initial conditions, e.g., the displacement vector u0 and velocity vector v0 at time 

t0 = 0. Then the initial acceleration vector can be obtained as 

a0 = M
-1

(f0 – Cv0 – Ku0)        …………………(11.5) 

 

Again, any standard method of matrix inversion can be used to solve Eq. (11.5). 

 

Among other methods of numerical solution of the MDOF equations of motion, the Linear Acceleration 

method and Central Difference method are quite popular. The Linear Acceleration Method is a special 

case of the Newmark-  method with  = 0.50 and  = 1/6. Instead of assuming constant average 

acceleration between two time intervals, it assumes the acceleration to vary linearly in between two 

intervals. Unlike the CAA method, the Linear Acceleration method is not unconditionally stable. 

However, the time increment needed for its stability is much greater than the interval needed for accurate 

results, therefore stability is usually not a problem for this method. 

 

Incremental solutions of the equations of motion are also popular, particularly for nonlinear systems. 

Instead of solving for the total displacement or acceleration at any time, this method solves for the 

increment (change) in displacement or acceleration. There again, the CAA is widely used. 
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Computer Implementation of Numerical Solution of MDOF Equations 

The numerical time-step integration method of solving the MDOF dynamic equation of motion has been 

described in the previous section. Just as the computer implementation in SDOF system, the Constant 

Average Acceleration (CAA) method can be used for any dynamic system with satisfactory agreement 

with analytical solutions.  

 

A computer program written in FORTRAN77 for the CAA method is listed below for a general linear 

system and dynamic loading. The forcing function is defined here as the Step Function, but the algorithm 

can be used in any version of FORTRAN to solve dynamic MDOF problems with slight modification for 

the forcing function, which can be used as input also. Besides, the stiffness, damping and mass matrices 

are input for the discrete systems, but in practice they can be assembled from structural properties. The 

resulting displacements are printed only once in every ten steps solved numerically. This can also be 

modified easily depending on the required output. The program listing is shown below. 

       
PROGRAM MDOF 

       DIMENSION DIS(100),VEL(100),ACC(100),DISV(100),VELV(100) 

 DIMENSION DIS0(100),VEL0(100),ACC0(100),FORCE(100) 

DIMENSION SK(100,100),SC(100,100),SM(100,100) 

       COMMON/SOLVER/SMEFF(100,100),PEFF(100),NDF 

 

OPEN(1,FILE='MDOF.IN',STATUS='OLD') 

       OPEN(2,FILE='MDOF.OUT',STATUS='NEW') 

 

       PI=4.*ATAN(1.) 

 READ(1,*)NDF 

 READ(1,*)((SK(I,J),J=1,NDF),I=1,NDF)  

 READ(1,*)((SC(I,J),J=1,NDF),I=1,NDF) 

 READ(1,*)((SM(I,J),J=1,NDF),I=1,NDF) 

 

C*******TIME-STEP INTEGRATION USING CAA METHOD**************** 

       READ(1,*)DSTEP,NSTEP    

       A1=DSTEP/2. 

       A2=DSTEP**2/4. 

 

READ(1,*)(DIS0(I),VEL0(I),FORCE(I),I=1,NDF) 

    

C*******INITIAL ACCELERATION********************************** 

       DO 16 I=1,NDF 

  DO 16 J=1,NDF 

   SMEFF(I,J)=SM(I,J)  

   16  CONTINUE 

 

       DO 18 I=1,NDF 

         PEFF(I)=FORCE(I) 

         DO 18 J=1,NDF 

           PEFF(I)=PEFF(I)–SC(I,J)*VEL0(J)–SK(I,J)*DIS0(J) 

   18  CONTINUE 

 

       CALL GAUSS 

 

       DO 19 I=1,NDF 

   19     ACC0(I)=PEFF(I) 

    

WRITE(2,6)TIME,(DIS0(I),I=1,NDF) 

   6     FORMAT(10(1X,F8.4))  

       DO 26 IT=1,NSTEP 

         TIME=IT*DSTEP 

 

         DO 27 I=1,NDF 

   FORCE(I)=25.    
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   VELV(I)=VEL0(I)+ACC0(I)*A1 

   27       DISV(I)=DIS0(I)+VEL0(I)*DSTEP+ACC0(I)*A2 

    

        DO 28 I=1,NDF 

          PEFF(I)=FORCE(I) 

          DO 28 J=1,NDF 

            PEFF(I)=PEFF(I)–SC(I,J)*VELV(J)–SK(I,J)*DISV(J) 

   28    CONTINUE 

          

         DO 15 I=1,NDF 

           DO 15 J=1,NDF 

            SMEFF(I,J)=SM(I,J)+SC(I,J)*A1+SK(I,J)*A2 

   15    CONTINUE         

 

         CALL GAUSS 

 

         DO 29 I=1,NDF 

           ACC(I)=PEFF(I) 

           VEL(I)=VEL0(I)+(ACC0(I)+ACC(I))*A1 

           DIS(I)=DIS0(I)+VEL0(I)*DSTEP+(ACC0(I)+ACC(I))*A2 

 

           DIS0(I)=DIS(I) 

           VEL0(I)=VEL(I) 

   29        ACC0(I)=ACC(I) 

    

C********DISPLACEMENTS**************************************** 

         IF(IT/10.EQ.IT/10.)WRITE(2,6)TIME,(DIS(I),I=1,NDF) 

   26   CONTINUE 

 

   20  END 

 

C**************************************************************** 

C*******GAUSS ELIMINATION************************************* 

 SUBROUTINE GAUSS 

 COMMON/SOLVER/AG(100,100),BG(100),N 

  

 N1=N–1 

 DO 10 I=1,N1 

  I1=I+1 

  CG=1./AG(I,I) 

  DO 11 KS=I1,N 

   DG=AG(KS,I)*CG 

   DO 12 J=I1,N 

   12     AG(KS,J)=AG(KS,J)–DG*AG(I,J) 

   11   BG(KS)=BG(KS)–DG*BG(I) 

   10  CONTINUE 

 

 BG(N)=BG(N)/AG(N,N) 

 

 DO 13 II=1,N1 

  I=N–II 

  I1=I+1 

  SUM=0. 

  DO 14 J=I1,N 

   14   SUM=SUM+AG(I,J)*BG(J) 

   13  BG(I)=(BG(I)–SUM)/AG(I,I) 

 

 END  
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Example 11.1 

For the 2-DOF system described before (m1 = m2 = 1 k-sec
2
/ft, k1 = k2 = 25 k/ft) with damping ratio = 0.0 

or similar damping as the SDOF system with 5% damping (c1 = c2 = 0.5 k-sec/ft), calculate the dynamic 

displacements for a Step Loading with f1 = f2 = 25 k. 

 

The results from the FORTRAN77 program listed in the previous section are plotted in Fig. 11.1 and Fig. 

11.2. The numerical integrations are carried out for time intervals of t = 0.01 sec and results are printed 

in every 0.10 second up to 5.0 seconds. 

 

Fig. 11.1 shows that the results from the numerical method can hardly be distinguished from the 

theoretical results obtained from Modal Analysis. The maximum values of the displacements (u1 and u2) 

are 3.92 ft and 6.00 ft respectively. Since the static displacements in this case are u1 = 2 ft, u2 = 3 ft, the 

dynamic magnifications are nearly 2. 

 

Fig. 11.2 shows the response of a damped 2-DOF system where the damping of a SDOF system with 5% 

damping is included in both stories of the 2-storied structure. Everything else remaining the same, the 

displacements still oscillate about the static displacements after 5 seconds, but the convergence to the 

static solutions can be noticed. 

 

Fig. 14.1: Response of Undamped 2-DOF System
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Fig. 14.2: Response of Damped 2-DOF System
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Example 11.2 

For a 4-DOF system with structural properties similar to the 2-DOF system described before (m1 = m2 = 

m3 = m4 = 1 k-sec
2
/ft, k1 = k2 = k3 = k4 = 25 k/ft) with similar damping as the SDOF system with 5% 

damping (c1 = c2 = c3 = c4 = 0.5 k-sec/ft), calculate the dynamic displacements for a Step Loading with f1 

= f2 = f3 = f4 = 25 k. 

 

This problem is difficult to solve analytically because it involves solution of a 4 4 matrix. However, the 

numerical method is used here easily using the computer program listed before. The resulting dynamic 

displacements are shown in Fig. 11.3. The maximum values of u1, u2, u3 and u4 are 7.56, 13.55, 17.58 and 

19.5 ft respectively, reached at the first peak at nearly 1.8 seconds. This shows that the fundamental time 

period of this system is about 3.6 seconds and since the static solutions of u1, u2, u3 and u4 are 4, 7, 9 and 

10 ft respectively, the dynamic magnifications are nearly 2 again for all the displacements. 

 

Fig. 14.3: Response of Damped 4-DOF System

0

5

10

15

20

0 1 2 3 4 5
Time (sec)

D
is

p
la

c
e
m

e
n

t 
(f

t)

u1 u2 u3 u4

Fig.11.3 

u1 u2 u3 u4 



 34 

Problems on the Dynamic Analysis of MDOF Systems 

1. A small structure of stiffness 1 k/ft, natural frequency 1 rad/sec and damping  1 k-sec/ft is mounted on 

a larger undamped structure of stiffness 10 k/ft but the same natural frequency. Determine the 

 (i) natural frequencies, (ii) natural modes of vibration, (iii) modal damping ratios of the system. 

 

2.  For a (20   20 ) floor system weighing 200 psf (including all dead and live loads) supported by four 

(10   10 ) square columns (each 12  high) and a rigid massless footing, calculate the undamped 

natural period for horizontal vibration.  

Consider k for each column = 12EI/L
3
 and kf for footing equal to (i) 2  10

6
 lb/in, (ii) 2  10

4
 lb/in.  

Assume the total weight of the system to be concentrated at the floor  

 [Given: Modulus of elasticity of concrete = 3  10
6
 psi].  

 

3.  A 2-DOF system is composed of two underdamped systems (A and B), whose free vibration responses 

are shown below. If each system weighs 100 lb, calculate the 

(i) undamped natural frequency and damping ratio of system A and B,  

(ii) first natural frequency and damping ratio of the 2-DOF system formed. 

              

           

 

 

 

 

 

 

 

 

 

 

 

 

4. A lumped-mass 3-DOF dynamic system has the following properties  

 k1 = k2 = k3 = 50 k/ft, c1 = c2 = c3 = 1 k-sec/ft, m1 = m2 = m3 = 2 k-sec
2
/ft.  

 (i) Form the stiffness, damping and mass matrices of the system.  

(ii)  Calculate the 1
st
 natural frequency and damping ratio of the system, if the 1

st
 modal vector for the 

system is given by 1 = {0.445, 0.802, 1.000}
T
. 

 

5.  The undamped 2-DOF system described in the class is subjected to harmonic load vectors of 

(i) f(t)= {0, 50 cos(3t)}
T
, (ii) f(t)= {0, 50 cos(8t)}

T
.  

In both cases, calculate the displacement vector u(t) of the system at time t = 0.1 seconds, if the system 

is initially at rest. 

 

6.  Calculate the maximum floor displacement of the system described in Question 2 when subjected to a 

horizontal step load of 10 kips at the floor level. 

 

7.  For the system defined in Question 5, calculate u(0.1) in each case using the CAA method. 
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Solution of Problems on the Dynamic Analysis of MDOF Systems 

 

1. For this 2-DOF system 

k1 = 10 k/ft, k2 = 1 k/ft, m1 = 10 k-sec
2
/ft, m2 = 1 k-sec

2
/ft, c1 = 0 k-sec/ft, c2 = 1 k-sec/ft 

   11      1           10        0            1       1 

K =   M =   C = 

         1         1            0          1           1        1   

 

The eigenvalue problem  (11 10 n
2
) (1 n

2
) ( 1)

 2 
= 0  10 n

4 
21 n

2
 + 10 = 0  

 n
 
= 0.854 rad/sec, 1.171 rad/sec 

1
 
= {1, (11 10 n1

2
)}

T  
= {1, 3.702}

T
, 2

 
= {1, (11 10 n2

2
)}

T  
= {1, 2.702}

T
 

K1
 
= 1

T 
K 

 
1
 
= 17.30 k/ft, K2

 
= 2

T 
K 

 
2
  
= 23.70 k/ft 

M1
 
= 1

T 
M 

 
1
 
= 23.70 k-sec

2
/ft, M2

 
= 2

T 
M 

 
2

  
= 17.30 k-sec

2
/ft 

C1
 
= 1

T 
C 

 
1
 
= 7.30 k-sec/ft, C2

 
= 2

T 
C 

 
2

  
= 13.70 k-sec/ft 

 1
 
= C1/2 (K1M1) = 18.02%, 2

 
= C2/2 (K2M2) = 33.83% 

 

2. For this 2-DOF system 

   kf + k1     k1                       0         0            

K =    M =    

         k1             k1                        0        m1             

 

The eigenvalue problem  (kf + k1) (k1 m1 n
2
) ( k1)

2 
= 0  n

2
 = {kf/(k1 + kf)}(k1/m1)  

 n1 = {1/(1 + k1/kf)} (k1/m1)    

Here k1 = 4  12 EI/L
3 
= 48  (3 10

6
)  {(10 10

3
)/12}/144

3
 = 4.02  10

4 
lb/in,  

m1 = (20  20) 200/386 = 207.25 lb-sec
2
/in 

(i) kf = 2 10
6 
lb/in  n1 = {1/(1 + 4.02  10

4
/2 10

6
)} (4.02  10

4
/207.25) = 13.79 rad/sec 

    Tn1 = 2 / n1 = 0.456 sec 

(ii) kf = 2 10
4 
lb/in  n1= 8.03 rad/sec  Tn1 = 2 / n1 = 0.783 sec 

 

3. For this 2-DOF system, m1 = m2 = 100/32.2 = 3.11 lb-sec
2
/ft, 1 = 0.0552, 2 = 0.0276 

n1 = 6.285 rad/sec, n2 = 12.571 rad/sec (as found before) 

k1 = m1 n1
2

 = 122.60 lb/ft, k2 = m2 n2
2

 = 490.42 lb/ft  

c1 = 2 1 m1 n1 = 2.15 lb-sec/ft, c2 = 2 1 m1 n1 = 2.15 lb-sec/ft 

 

   613.02   490.42           3.11      0           4.31   2.15 

K =    M =               C =    

         490.42    490.42           0        3.11         2.15    2.15 

 

The eigenvalue problem  (613.02 3.11 n
2
) (490.42 3.11 n

2
) ( 490.42)

2 
= 0  

 n = 4.30, 18.35 rad/sec  n1= 4.30 rad/sec    

First mode of vibration is 1
 
= {490.42: 613.02 3.11 n1

2
}

T
 = {1: 1.133}

T
 

K1
 
= 1

T 
K 

 
1
 
= 131.25 k/ft, M1

 
= 1

T 
M 

 
1

 
= 7.09 k-sec

2
/ft, C1

 
= 1

T 
C 

 
1
 
= 2.192 k-sec/ft 

1
 
= C1/2(M1 n1) = 0.0359 = 3.59% 

 

4. For the 3-DOF system, 

 

   100    50       0            2      0       0    2   1        0 

K =  50     100    50 M =    0      2       0    C = 1     2      1  

           0       50      50                     0       0      2                0    1       1 

             

1
 
= {0.445, 0.802, 1.000}

T
 

 K1
 
= 1

T 
K 

 
1
 
= 18.23 k/ft, M1

 
= 1

T 
M 

 
1

 
= 3.682 k-sec

2
/ft, C1

 
= 1

T 
C 

 
1

 
= 0.365 k-sec/ft 

  n1
 
= (K1/M1) = 2.225 rad/sec, 1

 
= C1/2 (K1M1) = 2.23% 

5. As shown in the class, 
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 The natural frequencies are n1 = 3.09 rad/sec, n2 = 8.09 rad/sec 

 The mode shapes are 1
 
= {1.000, 1.618}

T
, 2

 
= {1.000, 0.618}

T
 

 The modal masses are, M1 = 3.618 k-sec
2
/ft, M2 = 1.382 k-sec

2
/ft 

The modal stiffnesses are, K1 = 34.55 k/ft, K2 = 90.45 k/ft 

(i) The modal loads are, f1(t) = 1
T
 f = 80.9 cos(3t), f2(t) = 2

T
 f = 30.9 cos(3t) 

The uncoupled modal equations of motion are 

3.618 d
2
q1/dt

2 
+ 34.55 q1 = 80.9 cos(3t) 

1.382 d
2
q2/dt

2 
+ 90.45 q2 = 30.9 cos(3t) 

For an undamped system, q1(t) = [p01/(K1
2
 M1)] [cos( t)  cos( n1 t)]  

 q1(0.1) = [80.9/(34.55 3
2
  3.618)] [cos(0.3)  cos(0.309)] = 0.110 ft  

Also, q2(t) = [p02/(K2
2
M2)] [cos( t)  cos( n2 t)] 

 q2(0.1) = [30.9/(90.45 3
2
  1.382)] [cos(0.3)  cos(0.809)] = 0.105 ft 

 u1(0.1) = q1(0.1) 1,1
 
+ q2(0.1) 1,2 = 0.110  1.00 0.105  1.00 = 0.005 ft 

    u2(0.1) = q1(0.1) 2,1
 
+ q2(0.1) 2,2 = 0.110  1.618 0.105  ( 0.618) = 0.243 ft 

(ii) q1(0.1) = [80.9/(34.55 8
2
  3.618)] [cos(0.8)  cos(0.309)] = 0.105 ft  

Also, q2(0.1) = [30.9/(90.45 8
2
  1.382)] [cos(0.8)  cos(0.809)] = 0.100 ft 

 u1(0.1) = q1(0.1) 1,1
 
+ q2(0.1) 1,2 = 0.105  1.00 0.100  1.00 = 0.005 ft 

      u2(0.1) = q1(0.1) 2,1
 
+ q2(0.1) 2,2 = 0.105  1.618 0.100  ( 0.618) = 0.232 ft 

 

6. As found in Question 2, the natural frequency is n1 = 13.79 rad/sec  

 The mode shape is 1
 
= {k1, kf + k1}

T
 ={4.02, 204.02}

T 
={1.00, 50.75}

T
 

 The modal mass M1 = 1
T 

M 1 = 53.38  10
4
 lb-sec

2
/in  

 The modal stiffness K1 = M1 n1
2
 = 101.5  10

6
 lb/in 

The modal load is, f1(t) = 1
T
 f = 507.5 kips =  50.75  10

4 
lb 

The uncoupled modal equation of motion is, 53.38 d
2
q1/dt

2 
+ 101.5  10

2
 q1 = 50.75 

 q1,max = 2  50.75  10
-2

 /101.5 = 0.010 in 

 u2,max = q1,max 2,1
 
= 0.010  50.75 = 0.5075 in 

 

7. The governing equations between time t0 = 0 and t1 = 0.1 sec [i.e., t = 0.1 sec] are  

(M + C t /2 + K t
2
/4) a1 = f1  K u0  (C + K t) v0  (C t/2 + K t

2
/4) a0 

u1 = u0 + v0 t + (a0 + a1) t
2
/4 

Since the structure was initially at rest, u0 = 0, v0 = 0 

Initially, M a0 = f0  K u0  C v0 = f0             …………...……(1) 

Also, (M + 0.0025 K) a1 = f1  0.0025 K a0, and u1 = (a0 + a1) 0.0025         ……...….…(2), (3) 

 

      50   25                                1        0               0        0                0 

  K =                   M =          C =                    f 0 =    

           25       25                         0         1                 0        0               50 

 

 a0  = {0         50}
 T

                    

 

Eq. (2)  (M + 0.0025 K) a1 = f1  0.0025 K a0  

 

Question (i), using f(t)= {0, 50 cos(3t)}
T
  

 

      1.125       0.0625               0      0.125      0.0625    0              3.125 

                   a1 =                     = 

      0.0625     1.0625             47.77     0.0625     0.0625   50             44.642 

 

 a1 = {5.13       42.32}
T
 

 

Eq. (3)  u1  = {5.13    92.32}
 T

  0.0025
 
= {0.013        0.231}

T
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Dynamic Equations of Motion for Continuous Systems 

The basic concepts of Structural Dynamics discussed so far dealt with discrete dynamic systems; i.e., with 

Single-Degree-of-Freedom (SDOF) systems and Multi-Degree-of-Freedom (MDOF) systems. The 

fundamental equations of motion were derived using Newton’s 2
nd

 law of motion. While this is useful for 

dealing with most problems involving point masses and forces, there are certain problems where such 

formulations are not convenient.  

 

Method of Virtual Work  

Another way of representing Newton’s equations of static and dynamic equilibrium is by energy methods, 

which is based on the law of conservation of energy. According to the principle of virtual work, if a 

system in equilibrium is subjected to virtual displacements u, the virtual work done by the external 

forces ( WE) is equal to the virtual work done by the internal forces ( WI) 

WI = WE             …...…………………(12.1) 

where the symbol  is used to indicate ‘virtual’. This term is used to indicate hypothetical increments of 

displacements and works that are assumed to happen in order to formulate the problem. 

 

Energy Formulation for Discrete SDOF System: 

If a virtual displacement u is applied on a SDOF system with a single mass m, a damping c and stiffness 

k undergoing displacement u(t) due to external load f(t),  

the virtual internal work, WE  = f(t)
 

u              ………………(12.2) 

and virtual external work, WI = m d
2
u/dt

2 
u + c du/dt

 
u + k u

 
u      ………………(12.3) 

Combining  m d
2
u/dt

2 
u + c du/dt

 
u + k u

 
u = f(t)

 
u  m d

2
u/dt

2 
+ c du/dt

 
+ k u

 
= f(t) …...…(12.4) 

which is the same as Eq. (2.5), derived earlier from Newton’s 2
nd

 law of motion.  

 

So, the method of virtual work leads to the same conclusion as the equilibrium formulation. This method 

is not very convenient here, but its advantage is more apparent in the formulation for continuous systems. 

 

Energy Formulation for Continuous SDOF Systems: 

Most of the practical dynamic problems involve continuous structural systems. Unlike discrete MDOF 

systems, these continuous systems can only be defined properly by an infinite number of displacements; 

i.e., infinite degrees of freedom.  

 

However several continuous systems are modeled as SDOF systems by assuming all the displacements as 

proportional to a single displacement (related by an appropriate deflected shape as a function of space). 

The governing equations from such assumed deflected shapes are similar to SDOF equations with the 

‘equivalent’ mass m*, damping c*, stiffness k* and load f*(t) being the essential parameters instead of the 

respective discrete values m, c, k and f(t).  

 

Therefore, once the appropriate defected shapes are assumed and the ‘equivalent’ parameters calculated, 

the solution of this continuous system is similar to any discrete SDOF system. One-dimensional 

continuous structural members undergoing axial deformations (e.g., columns or truss members) and 

flexural deformations (e.g., beams or frame members) are illustrated here as two such examples.  
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(1) Axially Loaded Bar 

For an undamped member loaded axially by a load p(x,t) per unit length, the external virtual work due to 

virtual deformation u is 

WE =  p(x,t) dx u         ..………………………(12.5) 

while the internal virtual work due to inertia and virtual axial strain d( u)/dx = u  is 

 WI =  m dx d
2
u/dt

2 
u +  u  EA u  dx       ..………………………(12.6) 

where u  stands for differentiation of u with respect to x (in general the symbol  stands for 

differentiation with respect to x), E = modulus of elasticity and A = cross-sectional area of the axial 

member, m = mass of the member per unit length. E, A and m can vary with x. 

WI  = WE   m dx d
2
u/dt

2 
u +  u  EA u  dx =  p(x,t) dx u  ………....(12.7) 

 

If the displacements are assumed to be function of a single displacement u1, so that  

  u(x) = u1 (x)  u  = u1 (x), d
2
u/dt

2 
= d

2
u1/dt

2 
(x)  …...…………(12.8), (12.9), (12.10)  

u = u1 (x)  u  = u1 (x)         ……..………………(12.11), (12.12) 

Eq. (12.7)   m dx d
2
u1/dt

2 
(x)

 
u1 (x) +  u1 (x) EA u1 (x) dx =  p(x,t) dx u1 (x) 

 {  m [ (x)]
2
 dx} d

2
u1/dt

2 
+{  EA [ (x)]

2
 dx} u1 =  p(x,t) (x) dx  ……………..(12.13) 

If the integrations are carried out after knowing (x), Eq. (12.13) can be rewritten as, 

m* d
2
u1/dt

2 
+k* u1 = f*(t)              ……………….…...(12.14) 

where m*, k*, f*(t) are the ‘effective’ mass, stiffness and force of the SDOF system. The ‘effective’ 

damping of the system can be obtained by assuming a reasonable damping ratio.  

 

(2) Transversely Loaded Beam 

For an undamped member loaded transversely by a load q(x,t) per unit length, the external virtual work 

due to virtual deformation u is 

WE =  q(x,t) dx u           ..……………………(12.15) 

while the internal virtual work due to inertia and virtual curvature d( u )/dx = u  is 

 WI =  m dx d
2
u/dt

2 
u +  u  E I u  dx         ..……………………(12.16) 

where u  stands for double differentiation of u with respect to x, E = modulus of elasticity and I = 

moment of inertia of the cross-sectional area of the flexural member, m = mass of the member per unit 

length. E, I and m can vary with x. 

WI = WE   m dx d
2
u/dt

2 
u +  u E I u  dx =  q(x,t) dx u  ……..…(12.17) 

 

If the displacements are assumed to be function of a single displacement u2, so that  

  u(x) = u2 (x)  u  = u2 (x), d
2
u/dt

2 
= d

2
u2/dt

2 
(x) …….…….(12.18), (12.19), (12.20) 

u = u2 (x)  u = u2 (x)           .………………...…(12.21), (12.22) 

 

Inserting these values in Eq. (12.17)   

 m dx d
2
u2/dt

2 
(x)

 
u2 (x) +  u2 (x) EI u2 (x) dx =  q(x,t) dx u2 (x) 

 {  m [ (x)]
2
 dx} d

2
u2/dt

2 
+ {  EI [ (x)]

2
 dx} u2 =  q(x,t) (x) dx      …...…….(12.23) 

If the integrations are carried out after knowing (or assuming) (x), Eq. (12.23) can be rewritten as, 

m* d
2
u2/dt

2 
+k* u2 = f*(t)      …………………….…...(12.24) 

where m*, k*, f*(t) are the ‘effective’ mass, stiffness and force of the SDOF system.  

 

Once m*, c*, k* and f*(t) are calculated, Eq. (12.14) or (12.24) can be solved to obtain the deflection u1 

or u2, from which the deflection u(x) at any point can be calculated using Eq. (12.8) or (12.18). 

 

The accuracy of Eq. (12.14) or (12.24) depends on the accuracy of the shape functions (x) or (x). If the 

shape functions are not defined exactly (usually they are not), the solutions can only be approximate. 

These functions must be defined satisfying the natural boundary conditions; i.e., those involving 

displacements for axial deformation and displacements as well as rotations for flexural deformations. This 

method of solving dynamic problems is called the Rayleigh-Ritz method.  
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Example 12.1 

For a cantilever rod, modulus of elasticity E = 450000 ksf, cross-sectional area A = 1 ft
2
, moment of 

inertia I = 0.08 ft
4
, length L = 10 ft, mass per unit length m = 0.0045 k-sec

2
/ft

2
. 

(i) Calculate the approximate natural frequency of the system in axial and flexural vibrations. 

(ii) Calculate the approximate axial and flexural vibrations of the system for axial and transverse step 

loads of 1 k/ft. 

 

Solution 

(i) Assuming shape functions (satisfying natural boundary conditions) 

(x) = x/L, (x) = (x/L)
2
  

[Note that: (0) = 0, (0) = 0, (0) = 0]   

For axial deformations, 

 m* =  m [ (x)]
2
 dx = mL/3 = 0.015 k-sec

2
/ft 

k* =  EA [ (x)]
2
 dx = EA/L = 45000 k/ft 

n = (k*/m*) = (1.732/L) (EA/m) = (1.732/10) (450000 1/0.0045) = 1732 rad/sec 

[The exact result is n= ( /2L) (EA/m) = 1571 rad/sec] 

 

For flexural deformations,  

 m* =  m [ (x)]
2
 dx = mL/5 = 0.009 k-sec

2
/ft 

k* =  EI [ (x)]
2
 dx = 4EI/L

3 
= 144 k/ft 

n = (k*/m*) = (4.472/L
2
) (EI/m) = (4.472/100) (450000 0.08/0.0045) = 126.49 rad/sec 

[The exact result is n= (3.516/L
2
) (EI/m) = 99.45 rad/sec] 

 

(ii) For axial deformations, effective force f* =  p(x,t) (x) dx = pL/2 = 5 kips 

Equation for axial deformation is, 0.015 d
2
u1/dt

2 
+ 45000 u1 = 5  

 u1(t) = 1.11  10
-4

 [1 cos (1732 t)]  u(x, t) = 1.11  10
-4

 [1 cos (1732 t)] (x/L) 

For flexural deformations, effective force f* =  q(x,t) (x) dx = qL/3 = 3.33 kips 

Equation for flexural deformation is, 0.009 d
2
u2/dt

2 
+ 144 u2 = 3.33  

 u2(t) = 0.02315 [1 cos (126.49 t)]  u(x, t) = 0.02315 [1 cos (126.49 t)] (x/L)
2
 

 

Example 12.2 

For the member properties mentioned in Example 12.1, calculate the approximate first natural frequencies 

for the flexural vibration of 

(i) a cantilever beam, assuming (x) = 1 cos( x/2L),  

(ii) a simply supported beam, assuming (x) = sin( x/L). 

 

Solution 

Both these shape functions satisfy the natural boundary conditions for the problems mentioned. 

(i) For the cantilever beam,  

 m* =  m [ (x)]
2
 dx = 0.2268 mL = 0.0102 k-sec

2
/ft 

k* =  EI [ (x)]
2
 dx = 3.044 EI/L

3 
= 109.59 k/ft 

n = (k*/m*) = (3.664/L
2
) (EI/m)  = (3.664/100) (450000 0.08/0.0045) = 103.63 rad/sec 

This is a much better estimate of the first natural frequency of a uniform cantilever beam. 

 

(ii) For the simply supported beam,  

 m* =  m [ (x)]
2
 dx = mL/2 = 0.0225 k-sec

2
/ft 

k* =  EI [ (x)]
2
 dx = ( /L)

4
 EI L/2

 
= 1753.36 k/ft 

n = (k*/m*) = ( /L)
2

(EI/m) = (9.870/100) (450000 0.08/0.0045) = 279.15 rad/sec 

This is the exact first natural frequency of a uniform simply supported beam. 

 

These results show that the accuracy of the Rayleigh-Ritz method depends on the accuracy of the 

assumed shape function. Based on the shape function, this method can model the structure to be too stiff 

(i.e., over-estimate the ‘effective’ stiffness and natural frequency) or can reproduce the exact solution.  
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Stiffness and Mass Matrices of Continuous Systems 

The Rayleigh-Ritz method presented for SDOF systems can estimate the first natural frequency of a 

continuous system, its accuracy depending on the type of shape function chosen for the analysis. The 

chosen shape function actually indicates the assumed first mode of vibration. In extending to MDOF 

systems, however, the Rayleigh-Ritz method has serious shortcomings. Once a shape function is chosen 

for the first mode, there is no automatic way of choosing the subsequent shape functions. Moreover, the 

choice of the function depends on the boundary conditions, thus needing a different formulation even if 

the structure remains the same otherwise. 

 

The Finite Element Method (FEM), on the other hand, is an extension of the Stiffness Method of structural 

analysis and has the advantage of a methodical formulation (very well suited to computers) and versatility 

in applying the boundary conditions for a large variety of linear and nonlinear problems. Like the 

Rayleigh-Ritz method, the formulation of FEM is based on energy principles. But rather than defining the 

displacement of the entire structure/structural member by a single function, the FEM divides the member 

into a number of small segments (called elements) and defines the displacements at any point in the 

member by interpolating between the displacements/rotations of the nodes at the ends of the member.  

 

Based on the nature of the problem, the elements chosen in FEM can be one, two or three-dimensional 

and their interpolation functions can differ accordingly. For example, members of trusses or frames are 

formed by one-dimensional elements, plates, and shells by two-dimensional elements, and solid bodies by 

three-dimensional elements (Fig. 13.1). 

 

 

  

            

             

 

 

            

           

 

            

             

 

   Fig. 13.1: Different type of elements used in FEM   
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Axial Members 

Applying the method of virtual work to undamped members subjected to axial load of p(x,t) per unit 

length,  WI = WE   m dx d
2
u/dt

2 
u +  u  E A u  dx =  p(x,t) dx u      …………….….(12.7) 

 
        u1A          p(x,t)             u1B 

       A          B   

                

            L  

             

 

   Fig. 13.2: Axially Loaded Member      

 

If the displacements of a member AB (Fig. 13.2) are assumed to be interpolating functions [ 1(x) and 

2(x)] of two nodal displacements u1A and u1B,      

  u = u1A 1 + u1B 2  u  = u1A 1  + u1B 2    …………..………(13.1), (13.2) 

d
2
u/dt

2 
= d

2
u1A/dt

2 
1 + d

2
u1B/dt

2 
2   ……………………..……(13.3) 

u = u1A 1 + u1B 2  u  = u1A 1  + u1B 2   …………..……….(13.4), (13.5) 

Eq. (12.7) can be written in matrix form as, 

 

       m 1 1dx           m 1
 

2dx      d
2
u1A/dt

2     
EA 1 1 dx        EA 1 2 dx      u1A             p(x,t) 1dx 

                            

 

       m 2 1dx           m 2
 

2dx      d
2
u1B/dt

2     
EA 2 1 dx        EA 2 2 dx      u1B        p(x,t) 2 dx 

              

...…...…..(13.6) 

 

For concentrated loads p(x,t) is a delta function of x, as mentioned before. If loads XA and XB are applied 

at joints A and B, they can be added to the right side of Eq. (13.6). 

 

Eq. (13.6) can be rewritten as, Mm d
2
um/dt

2 
+ Km um

 
= fm         ………………(13.7) 

 

where Mm and Km are the mass and stiffness matrices of the member respectively, while d
2
um/dt

2
,
 
um and 

fm are the member acceleration, displacement and load vectors. They can be formed once the shape 

functions 1 and 2 are known or assumed. All of them are referred to the local (member) axes of the 

member. For the complete structure, these matrices and vectors should be transformed to the global 

(structural) axes and assembled for different members. The global damping matrix can be formed from 

modal damping ratios. The boundary conditions must be satisfied in the final form of these matrices and 

vector, after which the dynamic equations of motion for global displacement vector u(t) can be solved by 

time-step integration.  

 

One-dimensional two-noded elements with linear interpolation functions are typically chosen in such 

cases, so that the shape functions 1 and 2 for axially loaded members are  

 1(x) = 1  x/L, and 2(x) = x/L           ………………………(13.8) 

 

Therefore, elements of the member mass and stiffness matrices are 

 Mmij = m i
 

j dx, and Kmij = EA i
 

j  dx         ………………………(13.9) 

 

 

  1(x)                  2(x) 

 

           x                       x 

 

              Fig. 13.3: Shape functions 1(x) and 2(x) 

+ = 
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Flexural Members 

Applying the method of virtual work to undamped members subjected to flexural load of q(x,t) per unit 

length   m dx d
2
u/dt

2 
u +  u E I u  dx =  q(x,t) dx u          …….………………(12.17) 

 

Following the same type of formulation as for axial members, the member equations for undamped 

flexural members subjected to transverse load of q(x,t) per unit length (Fig. 13.4) can be written in matrix 

form like Eq. (13.10), but the member matrices are different here. 

 
 

      u2A           u2B 

    3A                q(x,t)                    3B        

       A          B   

               L 

 
            Fig. 13.4: Transversely Loaded Member      

 

Two-noded elements with cubic interpolation functions for u2A, 3A, u2B and 3B are typically chosen in 

such cases, so that  

u(x) = u2A 1
 
+ 3A 2 + u2B 3 + 3B 4                         ……….………………(13.10) 

where 1(x) = 1 3(x/L)
2 
+2(x/L)

3
, 2(x) = x{1 (x/L)}

2 

           3(x) = 3(x/L)
2 

2(x/L)
3
, 4(x) = (x L)(x/L)

2
       ………………………(13.11) 

 

 

   1(x) = 1 3(x/L)
2
 +2(x/L)

3
                    2(x) = L{x/L 2(x/L)

2
 +(x/L)

3
}        

     u2A=1                 3A =1 

                    
    

 

 

        3(x) = 3(x/L)
2
 2(x/L)

3
                   4(x) = L{ (x/L)

2
 +(x/L)

3
} 

                u2B =1 

                   3B =1   
    

  
Fig. 13.5: Shape functions 1(x), 2(x), 3(x) and 4(x) 

 

The size of the matrices is (4 4) here, due to transverse joint displacements (u2A, u2B) joint rotations ( 3A, 

3B) and their elements are given by 

Mmij = m i
 

j dx, and Kmij = EI i
 

j  dx       ………………………(13.12) 

 

The equations of the mass matrix and stiffness matrix for axial members [Eq. (13.9)] as well as flexural 

members guarantee that for linear problems 

(i) The mass and stiffness matrices are symmetric [i.e., element (i,j) = element (j,i)],  

(ii) The diagonal elements of the matrices are positive [as element (i,i) involves square]. 
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Example 13.1 

For the member properties mentioned in Example 12.1, (modulus of elasticity E = 450000 ksf, cross-

sectional area A = 1 ft
2
, length L = 10 ft, mass per unit length m = 0.0045 k-sec

2
/ft

2
) calculate the 

approximate natural frequencies of the cantilever beam in axial direction, analyzing with  

(i) one linear element, (ii) two linear elements. 

 

Solution 

(i) For 1(x) = 1–x/L, 2(x) = x/L, the following mass and stiffness matrices are obtained from Eq. (13.6) 

 

     mL/3             mL/6        EA/L    –EA/L   

                  Mm =                   Km =         

    mL/6             mL/3              –EA/L      EA/L  

 

Assuming one linear element with properties of Example 12.1, mL/3 = 0.015 k-sec
2
/ft, EA/L = 45000 k/ft 

 

     0.015          0.0075                  45000    –45000   

               Mm =                   Km =         

    0.0075         0.015             –45000      45000  

     

Applying the boundary conditions that the only non-zero DOF is the axial deformation at B (u1B), the 

mass and stiffness matrices are reduced to (1 1) matrices  

          M = 0.015, K = 45000  

  K– n
2
 M  = 0  45000 –  n

2
 0.015 = 0  n

2
 = 3000000  n = 1732 rad/sec 

 

(ii) Assuming two linear elements (AB and BC) of length 5  each,  

mL/3 = 0.0075 k-sec
2
/ft, EA/L = 90000 k/ft 

The following mass and stiffness matrices are obtained for each element 

 

     0.0075    0.00375                 90000   –90000   

               Mm =                                           Km =         

    0.00375    0.0075             –90000     90000  

     

Applying the boundary conditions that axial deformation at A (u1A) is zero, only the axial deformations at 

B (u1B) and C (u1C) are non-zero, the mass and stiffness matrices are reduced to (2 2) matrices.    

  
           

        u1A= 0               u1B                  u1C 

                 A                           B        C              

                                 

 

 

        0.0075        0.00375      90000       –90000  

         M =                         K =   

         0.00375         0.015    –90000    180000 

           

  K- n
2
 M  = 0  (90000 – n

2
 0.0075) (180000 – n

2
 0.015) – (–90000– n

2 
0.00375)

2
 = 0  

 n = 1612 rad/sec, 5629 rad/sec 

 

Therefore the first and second natural frequencies of the structure are calculated now. It should be 

mentioned here that the analytical solutions for the first two natural frequencies are 1571 rad/sec, 4712 

rad/sec respectively. Therefore, the natural frequencies are again over-estimated but one can now get a 

better estimation of the first natural frequency, which is within 3% of the analytical value. The estimate of 

the second natural frequency is not as accurate, but it is still less than 20% greater than the exact value. 

5  5  
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Example 13.2 

For the member properties mentioned in Example 12.1 (E = 450000 ksf, I = 0.08 ft
4
, L = 10 ft, m = 

0.0045 k-sec
2
/ft

2
), calculate the approximate first natural frequency of the cantilever beam in transverse 

direction, analyzing with one element. 

 

Solution 

For 1(x) to 4(x) as shown in Eq. (13.11) and uniform m and EI, the following mass and stiffness 

matrices are obtained from Eq. (13.12) 

 

     156   22L 54     -13L                 12  6L -12      6L   

Mm = (mL/420)     22L   4L
2
 13L   -3L

2
 Km = (EI/L

3
)     6L 4L

2
 -6L      2L

2
 

54    13L 156   -22L             -12 -6L  12      -6L    

   -13L  -3L
2        

-22L    4L
2   

6L 2L
2
 -6L      4L

2
 

 

In this case, mL/420 = 1.071  10
-4

 k-sec
2
/ft, EI/L

3 
= 36 k/ft 

 

        156   220  54    -130                 12  60 -12  60   

Mm = 1.071 10
-4

     220    400 130   -300        Km = 36     60 400 -60       200 

  54     130 156   -220            -12 -60 12 -60    

      -130  -300
     

-220   400
   

           60 200 -60       400 

 

Applying the boundary conditions that the only non-zero degrees of freedom are the vertical deflection 

and rotation at B (u2B and 3B), the mass and stiffness matrices are reduced to (2 2) matrices 

       

      156               -220                           432    -2160   

  M = 1.071 10
-4

                              K =         

     -220               400            -2160    14400  

 
        u2A= 0                  u2B 

       

                      A                                     B          

                           

                               

           10  

 

 K  n
2
 M  = 0  (432  n

2
 0.01671) (14400  n

2
 0.04286) – ( 2160 + n

2 
0.02357)

2
 = 0  

 n = 99.92 rad/sec, 984.49 rad/sec 

 

The exact results for the first two natural frequencies are n1 = (3.516/L
2
) (EI/m) = 99.45 rad/sec and 

n2= (22.03/L
2
) (EI/m) = 623.10 rad/sec. Therefore, the natural frequencies are over-estimated as was the 

case for the axial vibrations. The first natural frequency is only 0.5% higher than the analytical value, 

while the second natural frequency is more than 50% over-estimated. 

3A= 0 3B 
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Dynamic Analysis of Trusses 

Two-dimensional Trusses 

The mass and stiffness matrices derived for axially loaded members can be used for the dynamic analysis 

of two-dimensional trusses. The elements of the i
th
 row and j

th
 column of the mass and stiffness matrices 

are given by Eq. (13.9) in integral form and can be evaluated once the shape functions i and j are known 

or assumed, as shown in Eq. (13.8). One difference is that here the transverse displacements (u2A, u2B) are 

also considered in forming the matrices, so that the size of the matrices is (4 4) instead of (2 2). 

 

If shape functions of Eq. (13.8) are assumed for truss members of uniform cross-section, the member 

(denoted by subscript m) mass and stiffness matrices take the following forms in the local (denoted by 

superscript L) axes system 

 

 mL/3 0    mL/6    0   EA/L 0 -EA/L 0  

         Mm
L
  =    0 0   0 0            Km

L
 =   0 0    0 0     ..…...(14.1) 

mL/6 0 mL/3 0   -EA/L 0 EA/L 0 

    0 0   0 0     0 0    0 0 

 

The member matrices formed in the local axes system by Eq. (19.1) can be transformed into the global 

axes system by considering the angles they make with the horizontal. A transformation matrix, Tm 

[shown in Eq. (14.2)] is used for to represent the relation between the local vectors (e.g., displacement, 

velocity, acceleration, force) and global vectors (Fig. 19.1). 

 

The local vectors and global vectors are related by the following equations. 
u2B

G
  

       u2B
L
          u1B

L
      

              B            u1B
G
 

      

      

                u2A
G
                     

     u2A
L
          

                      A             u1A
G
       

                  u1A
L
             

Fig. 19.1: Local and global joint displacements of a truss member   
 

   cos   sin    0  0          C   S 0  0 

 -sin   cos     0  0         -S   C 0  0 

Tm  =   0   0 cos  sin    =      0  0 C  S ………....(14.2)        

     0   0 -sin  cos           0  0          -S          C   

 

where C = cos , and S = sin  

 

This matrix can be used with further mathematical manipulations to obtain the global mass matrix and 

global stiffness matrix. 

Mm
G
 = Tm

T
 Mm

L
 Tm         ………………..(14.3) 

Km
G
 = Tm

T
 Km

L
 Tm         ………………..(14.4) 

fm
G
 = Tm

T
 fm

L
          ………………..(14.5) 

where Tm
T
 is the transpose of the transformation matrix Tm. 

 

If the structural member is uniform (i.e., same area A and unit mass m) throughout its length, the 

calculations of Eqs. (14.3) and (14.4) can be carried out explicitly. This gives the following Mm
G
 and Km

G
 

matrices 
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       /2      -   

         Mm
G
  = (mL/3)                         Km

G
 = (EA/L)             .…...(14.6) 

/2       -      

  

where  is a (2 2) matrix of coefficients given by 

  

 C
2
 CS 

  =            ………………..(14.7) 

  CS S
2
 

 

The mass and stiffness matrices and load vector of the whole structure can be assembled from the 

member matrices and vector (Mm
G
, Km

G
 and fm

G
). However, they are obtained in their final forms only 

after applying appropriate boundary conditions.  

 

Denoting the global structural matrices by M and K respectively and assuming appropriate damping 

ratios, the damping matrix C can be obtained as,  

 C = a0 M + a1 K         ………………..(10.8) 

The dynamic analysis can be carried out once these matrices and vector are formed. 

 

Three-dimensional Trusses 

The formulation of mass and stiffness matrices for the dynamic analysis of three-dimensional trusses is 

very similar to the formulations for two-dimensional trusses discussed before. Since the joint 

displacements in the x, y and z axes (u1A, u2A, u3A, u1B, u2B, u3B) are considered in forming the matrices, 

the size of the matrices is (6 6). 

 

For truss members of uniform cross-section, the member mass and stiffness matrices take the following 

forms in the local axes system 

 

 mL/3  0    0  mL/6    0  0   EA/L 0    0   EA/L 0    0  

             0      0     0 0     0  0                0 0    0    0 0    0   

        Mm
L
 =     0      0     0 0     0  0        Km

L
 =    0 0    0    0 0    0       ...…...(14.8) 

                          mL/6  0     0   mL/3  0  0            EA/L 0    0 EA/L 0    0 

    0      0     0 0     0  0     0        0    0    0       0    0 

  0      0     0 0     0  0     0        0    0    0       0    0 

 

After making the transformation from local to global axes system with an appropriate transformation 

matrix Tm and using Eqs. (14.3)-(14.5), the following global mass matrix and global stiffness matrix are 

obtained for a uniform structural member. 

 

       /2                   

         Mm
G
  = (mL/3)                         Km

G
 = (EA/L)             …....(14.9) 

/2                       

  

They are identical to the forms given by Eq. (14.6), but here  is a (3 3) matrix of coefficients given by 

 

   Cx
2
 CxCy CxCz 

     =  CyCx  Cy
2

 CyCz        ……..………..(14.10) 

CzCx CzCy  Cz
2
        

 

Cx, Cy and Cz are the direction cosines of the member in the x, y and z axes respectively. The subsequent 

matrix assembly, setting boundary conditions, forming C matrix and carrying out the numerical 

integration follow the usual procedures mentioned for 2D trusses. 



 47 

Example 14.1 

For the truss shown below, modulus of elasticity E = 30000 ksi, cross-sectional area A = 2 in
2
, mass per 

unit length m = 1.5 10
-6

 k-sec
2
/in

2
 for each member. Calculate its approximate natural frequencies. 

 

Solution 

                 

                  

                                    

 

          

             7.5  

    

                            

                            45                  45           

                        

     

       

       15              7.5  

 

The truss has 4 joints, therefore 8 DOF. The displacements u1~u4 and u7, u8 are restrained, so that only 

two DOF (u5, u6) can possibly be non-zero. There are five members in the truss, all with the same cross-

sectional properties, but different lengths. The member mass and stiffness matrices can be obtained from 

 

          C
2
     CS    C

2
/2    CS/2             C

2
     CS     -C

2
     -CS   

     Mm
G
  = (mL/3)     CS     S

2
     CS/2    S

2
/2               Km

G
 = (EA/L)     CS     S

2
     -CS      -S

2
          

          C
2
/2  CS/2    C

2
      CS            -C

2
   -CS      C

2
       CS     

        CS/2  S
2
/2    CS      S

2   
         -CS   -S

2
      CS       S

2
 

 

For member AB, C = 1, S = 0, L = 15  = 180 , mL/3 = 9.0 10
-5

 k-sec
2
/in,

 
EA/L = 333.33 k/in 

 

            1.0    0       0.5       0           1.0     0      -1.0        0   

     MAB
G
 = 9.0 10

-5
     0       0        0         0         KAB

G
 = 333.33    0        0        0          0          

             0.5    0       1.0       0          -1.0     0        1.0       0     

           0       0        0         0
   

         0       0         0          0 

 DOF [1       2        3        4] 

The matrices for AB and CD are the same, but the latter connects displacements 5, 6, 7 and 8 

 

For member AC, C = 0.707, S = 0.707, L = 10.607  = 127.28   

mL/3 = 6.37 10
-5

 k-sec
2
/in,

 
EA/L = 471.41 k/in 

 

            0.5     0.5     0.25  0.25              0.5     0.5     -0.5  -0.5   

   MAC
G
 = 6.37 10

-5
     0.5     0.5     0.25  0.25                KAC

G
 = 471.41   0.5     0.5     -0.5  -0.5          

             0.25    0.25    0.5    0.5             -0.5    -0.5      0.5   0.5     

           0.25    0.25    0.5    0.5
   

          -0.5   -0.5      0.5   0.5 

[1        2        5       6] 

The matrices for AC and BD are the same, but the latter connects displacements 3, 4, 7 and 8 

 

For member BC, C = -0.707, S = 0.707, L = 10.607  = 127.28   

mL/3 = 6.37 10
-5

 k-sec
2
/in,

 
EA/L = 471.41 k/in 

 

            0.5     -0.5     0.25  -0.25               0.5    -0.5     -0.5   0.5   

   MBC
G
 = 6.37 10

-5
     -0.5     0.5     -0.25  0.25             KBC

G
 = 471.41    -0.5     0.5       0.5  -0.5          

             0.25   -0.25    0.5   -0.5              -0.5     0.5       0.5  -0.5     

           0.25   -0.25   -0.5    0.5
   

            0.5     -0.5     -0.5   0.5 

[3        4        5         6] 

 

C D 

A 

u4 

u2 

u1 

u4 

u3 

u3 

u6 

u5 

B 
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The mass and stiffness matrices for the whole truss can be assembled from the member matrices. In 

assembling, the elements denoted by corresponding row and column number will be added. After 

applying boundary conditions, only the elements corresponding to the 5
th
 and 6

th
 DOF will remain, and 

the matrices will be reduced to (2 2) of the form 

 

         15.37           0                          804.74       0   

                 M = 10
-5

                             K =         

           0            6.37               0       471.41  

     

 K n
2
 M  = 0  (804.74 n

2
 0.0001537) (471.41 n

2
 0.0000637) = 0  

 n = 2288 rad/sec, 2720 rad/sec 
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Dynamic Analysis of Frames 

Two-dimensional Frames 

The matrices formed for flexural members and already used for a cantilever beam can be used for the 

dynamic analysis of two-dimensional frames. The elements of the i
th
 row and j

th
 column of the mass and 

stiffness matrices are given by Eq. (13.12) in integral form and can be evaluated once the shape functions 

i and j are known or assumed [as shown in Eq. (13.11)]. However, the axial displacements of joints 

(u1A, u1B) are also considered for frames in addition to the transverse displacements (u2A, u2B) and 

rotations ( 3A, 3B) about the out-of-plane axis considered in forming the matrices for beams, so that the 

size of the matrices is (6 6) instead of the (4 4) matrices shown for beams. 

 

If shape functions of Eq. (13.11) are assumed for frame members of uniform cross-section, the member 

mass and stiffness matrices take the following forms in the local axes system 

 

      140    0     0    70   0    0                Sx    0     0    -Sx    0    0  

                 0   156   22L  0   54 -13L                           0      S1   S2    0   -S1   S2   

            0   22L  4L
2   

0  13L -3L
2
                        0      S2   S3    0   -S2   S4      ……..(15.1) 

                   70     0     0   140  0     0               -Sx    0     0     Sx    0    0 

        0    54   13L  0  156  -22L                0     -S1   -S2    0   S1   -S2 

      0 -13L  -3L
2
  0  -22L 4L

2
                0      S2    S4    0  -S2   S3 

where Sx = EA/L, S1 = 12EI/L
3
, S2 = 6EI/L

2
, S3 = 4EI/L, S4 = 2EI/L 

 

The member matrices formed in the local axes system by Eq. (15.1) can be transformed into the global 

axes system by considering the angles they make with the horizontal. A transformation matrix, Tm 

[shown in Eq. (15.2)] is used for to represent the relation between the local vectors (e.g., displacement, 

velocity, acceleration, force) and global vectors (Fig. 15.1). The transformation matrix is also (6 6) 

instead of the (4 4) matrix for truss members. 
            u2B

G
  

       u2B
L
          u1B

L
      

                B            u1B
G
 

        

      

                u2A
G
                     

     u2A
L
          

                      A             u1A
G
       

                  u1A
L
             

Fig. 15.1: Local and global joint displacements of a frame member 

 

   C   S  0 0  0 0      

 -S   C   0 0  0 0      

   0   0  1 0  0 0                  ..……....(15.2) 

   0   0  0 C S  0        

     0   0  0        -S C 0   

   0   0  0 0 0 1 

This matrix can be used with further mathematical manipulations to obtain the global mass matrix and 

global stiffness matrix as was the case with truss members [Given by Eqs. (14.3)~(14.5)]. If the structural 

member is uniform (i.e., same area A and unit mass m) throughout its length, the calculations of Eqs. 

(14.3) and (14.4) can again be carried out explicitly. However, the explicit expressions are not shown here 

because they are not as convenient to write as were the matrices for truss members. 

 

The mass and stiffness matrices and load vector of the whole structure can be assembled from the 

member matrices and vector (Mm
G
, Km

G
 and fm

G
) and obtained in their final forms (along with matrix C) 

after applying appropriate boundary conditions.  

[where C = cos , S = sin ] 

Km
L

  = 

3B
L 

= 3B
G
 

3A
L 

= 3A
G
 

Tm = 

Mm
L 

 = (mL/420)  
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Three-dimensional Frames 

The formulation of mass and stiffness matrices for the dynamic analysis of three-dimensional frames 

follows the same procedure as the formulation for two-dimensional frames discussed before. Since the 

joint displacements and rotations in the x, y and z-axis (u1A, u2A, u3A, 1A, 2A, 3A, u1B, u2B, u3B, 1B, 2B, 

3B) are considered in forming the matrices, the size of the matrices is (12 12).  

 

A new feature of the displacements of three-dimensional frame element is the presence of torsional 

rotations 1A and 1B. In addition to the biaxial transverse displacements (u2A, u3A, u2B and u3B) and 

rotations ( 2A, 3A, 2B and 3B), they add to the complications in solving the three-dimensional frame 

problem. The member mass and stiffness matrices in the local axes system are shown in Table 15.1 and 

Table 15.2 respectively. The elements in Table 15.1 have a multiplying factor (mL/420) with them. 

 

Table 15.1: Elements of member Mass Matrix in the local axis system 

           u1A     u2A      u3A        1A        2A     3A       u1B      u2B       u3B       1B        2B     3B 

140      70      

 156    22L  54    -13L 

  156  22L    54  -13L  

   140r
2
      70r

2
   

  22L  4L
2
    13L  -3L

2
  

 22L    4L
2
  13L    -3L

2
 

70      140      

 54    13L  156    -22L 

  54  13L    156  -22L  

   70r
2
      140r

2
   

  -13L  -3L
2
    -22L  4L

2
  

 -13L    -3L
2
  -22L    4L

2
 

[where r is the polar radius of gyration of the cross-section] 

 

Table 15.2: Elements of member Stiffness Matrix in the local axis system 

                   u1A    u2A     u3A     1A    2A      3A     u1B    u2B     u3B     1B     2B     3B 

Sx      -Sx      

 S1z    S2z  -S1z    S2z 

  S1y  -S2y    -S1y  -S2y  

   Tx      -Tx   

  -S2y  S3y    S2y  S4y  

 S2z    S3z  -S2z    S4z 

-Sx      Sx      

 -S1z    -S2z  S1z    -S2z 

  -S1y  S2y    S1y  S2y  

   -Tx      Tx   

  -S2y  S4y    S2y  S3y  

 S2z    S4z  -S2z    S3z 

[where Sx = EA/L, S1z = 12EIz /L
3
, S2z = 6EIz/L

2
, S3z = 4EIz/L, S4z = 2EIz/L,  

Tx = GJ/L, S1y = 12EIy/L
3
, S2y = 6EIy/L

2
, S3y = 4EIy/L, S4z = 2EIy/L] 

 

The transformation matrix for 3D frames is quite complicated and is not shown here. It can be derived by 

three-dimensional vector algebra or by applying the axes rotations of the global axis system one by one. 

 

After making the transformation from local to global axes system with an appropriate transformation 

matrix Tm and using Eqs. (14.3)~(14.5), the global mass matrix and global stiffness matrix are obtained 

for a three-dimensional frame member. 

 

The subsequent matrix assembly, setting boundary conditions, forming C matrix and carrying out the 

numerical integration follow the usual procedures. 

(mL/420) 
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Example 15.1 

For the 2-dimensional concrete frame structure shown below, modulus of elasticity E = 450000 ksf, cross- 

sectional area A = 1 ft
2
, moment of inertia I = 0.08 ft

2
, mass per unit length m = 0.045 k-sec

2
/ft

2 
for all the 

members. Formulate the mass matrix and stiffness matrix of the frame. 

 

Solution 

 

 
  

 

 

 

 

 

 

         140   0        0    70      0     0                 45000    0       0     -45000   0        0  

                     0   156   220    0     54  -130                             0      432    2160      0    -432   2160   

MAB
G  

= 1.071 10
-4

     0   220   400    0   130  -300            KAB
G

 =      0     2160  14400     0   -2160  7200     

                                   70    0       0    140    0      0                -45000    0       0     45000    0        0 

            0    54    130    0   156  -220                              0     -432  -2160      0     432   -2160 

          0  -130  -300   0  -220   400                              0     2160   7200      0  -2160  14400 

    DOF  [1     2     3      4      5      6]         DOF [1        2         3          4      5        6] 

 

The same matrices for BC, with DOF u4~u9 

 

         156     0    220  54    0   -130                  432    0       2160    -432     0      2160 

                     0    140     0     0    70       0                               0    45000     0         0    -45000   0 

MAD
G  

= 1.071 10
-4

     0    220   400   0  -130  -300           KAD
G

 =      0     2160  14400      0   -2160   7200      

                                54     0   -130  156   0    -220       -432     0      -2160     432     0    -2160 

            0     70      0      0   140    0                         0    -45000    0          0    45000    0 

          0   -130  -300   0  -220   400                   0     2160    7200       0   -2160  14400 

               DOF  [1      2      3     10   11    12]           DOF [1        2         3         10      11      12] 

 

The same matrices for BE, with DOF u4~u15. 

The structural mass and stiffness matrices (15 15) can be assembled from the member matrices by 

locating the elements at appropriate rows and columns. If only six DOF (u1~u6) are active, the final mass 

and stiffness matrices become 

 

       296    0     220    70   0     0          45432      0        2160   -45000     0        0  

                   0    296   220     0   54  -130                        0      45432    2160        0      -432    2160   

    M
 
= 1.071 10

-4
   220  220   800     0  130 -300            K =   2160    2160    28800       0     -2160   7200     

                                 70     0      0      436  0    220                     -45000     0          0       90432      0      2160 

          0    54    130      0   452   0                          0        -432     -2160      0       45864    0 

        0  -130  -300   220   0  1200            0        2160     7200    2160       0    43200 

              DOF [1     2       3       4     5     6]   DOF [1         2            3          4           5       6] 

 

If axial deformations are neglected, the matrices reduce to (2 2) corresponding to 2 DOF only (u3 and u6). 

In that case, the matrices are 

  

            0.08          -0.03                28800      7200   

                 M = 1.071                                K =         

          -0.03          0.12                          7200    43200  

     

 K- n
2
 M  = 0  (28800 – n

2
 0.0857) (43200 – n

2
 0.1286) – (7200 + n

2
 0.0321)

2
 = 0  

 n = 453 rad/sec, 763 rad/sec 

E D 

C B A 

10  

u7~u9 

u13~u15 

u4~u6 

u10~u12 

u1~u3 The frame has 5 joints, therefore 15 DOF.  

The displacements u7~u15 are restrained, so that 

only six DOF (u1~u6) can possibly be non-zero. 

There are four members in the frame, all with 

the same cross-sectional properties and lengths.  

 

The member mass and stiffness matrices are 
10  10  
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Effect of Material and Geometric Nonlinearity 

In many practical situations, the structural properties cannot be assumed to remain constant; e.g., yielding 

of the structural materials, a likely situation in a severe earthquake, may alter the stiffness properties. 

Other possibilities include changes in the geometric stiffness of members due to significant axial forces, 

the mass or damping may undergo changes during dynamic response.  

 

Structural Analysis of Linearly Elastic and Nonlinear Dynamic Systems 

For a linearly elastic system the relationship between the applied force fs and the resulting deformation u 

is linear, that is, fs = k u                                      …………...(16.1) 

where k is the uniform stiffness of the system. This is however not valid when the load-deformation 

relationship is nonlinear, i.e., when the stiffness itself is not constant but a function of u. Moreover, if a 

structural component undergoes cyclic deformation (due to dynamic excitation) and the initial loading 

curve is nonlinear at the large amplitudes of deformation, the unloading and reloading curves differ from 

the initial loading branch. This implies that the force fs corresponding to deformation u is not single 

valued and depends on the history of the deformations and whether the deformation is increasing (positive 

velocity) or decreasing (negative velocity). Thus the resisting force can be expressed as 

fs = fs(u,v)                      ..……………………....(16.2) 

Following are some significant differences between the analyses of linear and nonlinear systems. 

(1)  For a linearly elastic system, the total forces can be determined by combining the results of two 

separate analyses. However, such direct superposition is not valid for nonlinear systems.  

(2)  One cannot correctly predict the type of failure by linear analysis; e.g., whether the failure is caused 

by shear, which is only possible by nonlinear analysis.  

(3)  As the sectional and structural properties depend on the deformations, nonlinear analysis is only done 

by iteration method. Such iteration schemes are computationally demanding and not guaranteed to 

converge unless a suitable numerical scheme is chosen. 

 

Solution of the governing Equations of Motion by Incremental time-step Integration  

For an inelastic SDOF system the equation of motion to be solved numerically is 

m a + c v + fs(u,v) = f(t)             ………………..(16.3)  

subject to specified initial conditions. Since the structural properties depend on the value of displacement 

and velocity, it is more convenient to assume the equation in incremental form, i.e.,  

m ai + c vi + ( fs)i = fi         ……….……….(16.4) 

The incremental resisting force, ( fs)i = (ki)sec ui                    ……....……….(16.5) 

where the secant stiffness (ki)sec, as shown in Fig. 16.1, cannot be determined because ui+1 is not known. 

Making the assumption that over a small time step t,  the secant stiffness (ki)sec could be replaced by the 

tangent stiffness (ki)T shown in Fig. 16.1, Eq. 16.5 is approximated by 

( fs)i = (ki)T ui                       ……….……….(16.6) 

Dropping the subscript T gives, m ai + c vi + (ki) ui = fi      ……….……….(16.7)  

            

                     

                                        

             

                              

             

             

             

               

                                            

        

                         

Fig. 16.1: Force-displacement relationship 
 

ui ui+1 
u 

fs 

(fs)i+1 

(fs)i 

(ki)sec 

(ki)T 
The similarity between this equation and 

the corresponding equation for linear 

systems suggests that the non-iterative 

formulation used for linear systems may 

also be used in the analysis of nonlinear 

response, replacing k by the tangent 

stiffness ki to be evaluated at the beginning 

of each time step.  

 

 

ui 

( fs)i 
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Effect of Material Nonlinearity 

Fig. 16.2(a) shows the properties on an undamped SDOF system with m = 1 k-sec
2
/ft, c = 0, if the system 

is nonlinear elastic with stiffness kT = 25 k/ft, when u  uy, and = 0 if u  uy. Fig. 16.2(b) shows its 

dynamic displacements for a step loading with p0 = 25 k. Four cases are considered here for study 

according to increasing nonlinearity; the first results are for the linear system, while the other three are for 

nonlinear systems with ‘yield displacement’ uy = 1.8, 1.5 and 1.2 ft respectively.  

 
 

       

                         

               

                     

                                                

         

          

 

 

 

 

 

 

 
   Fig. 16.2(a): Nonlinear Elastic Spring property        
              

The main observations from these results are 

(1)  The displacements increase for the more nonlinear systems because of the reduced ‘equivalent 

stiffness’. The maximum displacements for the four systems are 2.0, 2.02, 2.25 and 3.60 ft. The 

nonlinearity is not prominent in the second and third cases since it only started beyond 1.8 and 1.5 ft 

respectively, out maximum displacements of around 2.0 . But it is pronounced for the fourth case. 

(2) However the respective maximum forces in the spring in the four cases are 50, 45, 37.5 and 30 kips. It 

shows that despite the magnified displacements, the forces are reduced due to material nonlinearity.   

(3)  Natural period has little meaning for a nonlinear system. However the dynamic responses still 

indicate periodicity, which can be interpreted in terms of natural frequency or period. The natural 

period of the linear system was 1.257 sec, which increases to 1.30, 1.52 and 2.67 sec for the three 

nonlinear systems due to the decreased stiffness of the system. 

(4)  Since the material is nonliearly elastic (and not inelastic) and does not fail, the complete implication 

of nonliearity (i.e., residual displacement, structural failure) cannot be shown.   

 

More realistic conclusions can be drawn from Figs. 16.3(a) and 16.3(b), which show the shear forces 

(obtained from linear and nonlinear dynamic analysis respectively) in a first floor beam of a two-

dimensional 5-storied RC building subjected to the Kobe earthquake ground motion. In addition to the 

fact that the nonlinear forces are smaller overall, material nonlinearity leaves the beam with a residual 

shear force (due to permanent deformation) at the end of the earthquake motion.  
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Fig. 29.3: Response of Nonlinear SDOF System
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Figure 11. 2D nonlinear Kobe response 
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Figure 7. 2D linear Kobe response
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Geometric Nonlinearity 

Geometric nonlinearity is the change in the elastic load-deformation characteristics of the structure caused 

by the change in the structural shape due to large deformations. Among the various types of geometric 

nonlinearity in typical engineering structures, structural instability or moment magnification due to large 

compressive forces, stiffening of structures due to large tensile forces, change in structural parameters due 

to applied loads (e.g., leading to changed damping or parametric resonance) are significant. 

 

Buckling of Beams-columns and Two-dimensional Frames 

Buckling of columns and magnification of the internal forces obtained by linear analysis are among the 

most important types of geometric nonlinearities in typical building structures. The Euler formulation for 

buckling of perfectly straight, axially loaded linearly elastic column is well known, as well as its 

extensions considering different support conditions, column imperfection, load eccentricity, material 

nonlinearity as well as residual stresses in steel. Other than buckling, another significant effect of 

compressive load is the magnification of internal stresses calculated from linear (1
st
 order) analysis due to 

the added deformations from geometric nonliearity, an effect called moment magnification. 

 

For structural analysis the effect of axial load on flexural behavior can be approximated by simplified 

formulations of the geometric nonlinearity problem. For this purpose, a new matrix called the geometric 

stiffness matrix (G) has been added to the original stiffness matrix K obtained from linear analysis of the 

undeformed deflected shape of the structure. Therefore, the total stiffness matrix of a flexural member is  

Ktotal = K + G           ………………………..(16.8) 

For beams and columns, the geometric stiffness matrix can be obtained from 

Gmij = P i
 

j  dx          ………………………..(16.9) 

where P is the tensile force on the member. For compressive force, P will be negative. Using the same 

shape functions i (i = 1~4) as done for the linear analyses of beams and frames, the following geometric 

stiffness matrix is formed in the local axes system of a member of length L.   

 

     0     0      0       0    0      0                  

               0    36    3L     0   -36   3L                              

Gm
L 

= (P/30L)     0    3L   4L
2      

0   -3L  -L
2
                  …….…………..(16.10) 

                              0     0      0      0    0      0   

      0   -36   -3L    0   36   -3L   

    0    3L   -L
2       

0   -3L 4L
2
   

 

However it should be noted that the presence of axial force P in the geometric stiffness matrix makes the 

problem nonlinear because P is obtained from member deformations, which cannot be found (other than 

in special cases) before performing the structural analysis.  

 

Buckling occurs when the structure loses its stiffness, i.e., when the total stiffness matrix Ktotal becomes 

singular. Therefore, the buckling load can be obtained by solving the eigenvalue problem 

 Ktotal = 0  K+G = 0         ………………………(16.11) 

If a beam is modeled as a SDOF system with an assumed deflected shape given by (x), its geometric 

stiffness using the Rayleigh-Ritz method is 

g*= P[ (x)]
2
 dx        ………………….….…(16.12) 

so that the governing equation of motion can be rewritten as, 

m* d
2
u2/dt

2 
+ c* du2/dt

 
+ (k*+g*) u2 = f*(t)       ………………….….…(16.13) 

Eq. (16.11) shows that the stiffness (k*+g*) of the SDOF system vanishes when P reaches the buckling 

load of the column. Therefore, the natural frequency of the structure is also zero; i.e., the natural periods 

are infinity. In other words, the structure loses its ability to oscillate and therefore its deformations tend to 

diverge in a direction. This eventually leads to structural failure if material nonlinearity is also considered.  

 



 55 

Example 16.1 

For the member properties mentioned in Example 12.1 (E = 450000 ksf, I = 0.08 ft
4
, L = 10 ft, m = 

0.0045 k-sec
2
/ft

2
, damping ratio  = 0), calculate  

(i)  The approximate first buckling load for a cantilever beam,  

(ii)  The natural frequency and dynamic response of the beam when subjected to a uniformly distributed 

transverse load of 1 k/ft with a compressive load of 400 kips. 

 

Solution 

(i)  For the cantilever beam, results from Example 12.2 show that assuming (x) = 1 cos( x/2L), 

m* = 0.2268 mL = 0.0102 k-sec
2
/ft, k* = 3.044 EI/L

3 
= 109.59 k/ft 

Also, g* =  P [ (x)]
2
 dx = P 

2
/8L

 
= P (1.2337/L) k/ft 

k*+g* = 0  3.044 EI/L
3
 + Pcr (1.2337/L) = 0  

 Pcr = 2.467 EI/L
2
 = 888.25 kips; i.e., a compressive load of 888.25 kips. 

This is in fact the exact buckling load of the beam, because the assumed deflected shape is the first 

buckling mode for cantilever beams. 

 

(ii)  Natural frequency without considering g*, n = 103.63 rad/sec, as found in Example 12.2 

For P = 400 kips (i.e., compressive load of 400 kips), g* = P (1.2337/L) = 49.35 k/ft 

kTotal = k*+g* = 109.59 49.35 = 60.24 k/ft 

Changed natural frequency of the system, n = {(k*+g*)/m*} = (60.24/0.0102)  

= 76.85 rad/sec, which is about 26% smaller than the original natural frequency. 

 

The effective force f* = q(x,t) (x) dx = qL(0.363) = 3.63 kips 

Equation for flexural deformation is, 0.0102 d
2
u2/dt

2 
+ 60.24 u2 = 3.63 

 u2(t) = 0.0603 [1 cos(76.85 t)], which reaches a peak value of 0.1206 ft, instead of the maximum 

for the original (linear) case of 2 3.63/109.59 = 0.0663 ft (Fig. 16.4). 

 

 

Fig. 16.4: Dynamic Response of Cantilever Beam
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Problems on the Dynamic Analysis of Continuous Systems 

 

1. For the undamped beams shown below 

(a)  choose an appropriate shape function (satisfying the essential boundary conditions) among 

(i) (x) = cos( x/2L), (ii) (x) = [1 + cos( x/L)]/2 and (iii) (x) = sin( x/L) 

(b)  use the chosen shape function to calculate their natural frequencies  

[Given: EI = 40  10
6
 lb-ft

2
, mass per unit length m = 5 lb-sec

2
/ft

2
]. 

(c)  use the chosen shape function to calculate the deflections at A if P0 = 10 cos (100t) 

 

 

 

 

 

 

 

 

2.  For the member properties mentioned in Example 12.1, (modulus of elasticity E = 450000 ksf, cross-

sectional area A = 1 ft
2
, mass per unit length m = 0.0045 k-sec

2
/ft

2
) calculate the approximate natural 

frequencies of the beams shown below for (i) axial vibration, (ii) transverse vibration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.  For the truss shown below, modulus of elasticity E = 30000 ksi, cross-sectional area A = 2 in
2
, mass 

per unit length m = 1.5 10
-6

 k-sec
2
/in

2
 for each member.  

Calculate its approximate natural frequencies. 

 

 

 

 

 

 

 

 

 

 

 

 
    

4.  For the beams shown in Question 1, calculate  

(i)  the approximate first buckling load,  

(ii)  the natural frequency and dynamic vibration of point A when subjected to a uniformly distributed 

transverse load of 1 k/ft with a compressive load of 400 kips (neglect P0).    

A A 

L = 20  L = 10  L = 10  

L = 20  L = 20  

L = 20  L = 10  

60  

C 

D 
E F 

A 

30  

10 k 

25  25  

43.3  

25  

30  

B 

P0 P0 
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Nature of Earthquake Vibration 

Earthquakes are one of the most powerful natural forces that can disrupt our daily lives. Few natural 

phenomena can wreak as much havoc as earthquakes. Over the centuries they have been responsible for 

millions of deaths and an incalculable amount of damage to property. While earthquakes have inspired 

dread and superstitious awe since ancient times, little was understood about them until the emergence of 

seismology at the beginning of the 20th century. Seismology, that involves scientific study of all aspects 

of earthquakes, has yielded answers to long-standing questions on why and how earthquakes occur. 

 

Cause of Earthquake 

According to the Elastic Rebound Theory (Reid 1906), earthquakes are caused by pieces of the crust of 

the earth that suddenly shift relative to each other. The most common cause of earthquakes is faulting. A 

fault is a break in the earth’s crust along which movement occurs.  

 

Most earthquakes occur in narrow belts along the boundaries of crustal plates, particularly where the 

plates push together or slide past each other. At times, the plates are locked together, unable to release the 

accumulating energy. When this energy grows strong enough, the plates break free. When two pieces that 

are next to each other get pushed in different directions, they will stick together for a long time (many 

years), but eventually the forces pushing on them will force them to break apart and move. This sudden 

shift in the rock shakes all of the ground around it. 

 

Earthquake Terminology 

The point beneath the earth’s surface where the rocks break and move is called the focus of the 

earthquake. The focus is the underground point of origin of an earthquake. Directly above the focus, on 

earth’s surface, is the epicenter. Earthquake waves reach the epicenter first. During an earthquake, the 

most violent shaking is found at the epicenter. 

 

During earthquakes, the strain energy stored within the crustal plates is released through ‘seismic waves’. 

There are three main types of seismic waves. Primary or P-waves vibrate particles along the direction of 

wave, Secondary or S-waves that vibrate particles perpendicular to the direction of wave and Love wave 

or L-waves move along the surface and cause maximum damage. 

 

Earthquake Magnitude 

Earthquakes range broadly in size. Modern seismographic systems precisely amplify and record ground 

motion (typically at periods of between 0.1 and 100 seconds) as a function of time. This amplification and 

recording as a function of time is the source of instrumental amplitude and arrival-time data on near and 

distant earthquakes. Based on these data, Charles F. Richter (1935) introduced the concept of earthquake 

magnitude. His original definition was  

ML = log (A/A0)       ……………….....(17.1)  

where A is the maximum trace amplitude in micrometers recorded on a standard short-period 

seismometer and A0 is a standard value as a function of distance <= 600 kilometers. However it held only 

for California earthquakes occurring within 600 km of a particular type of seismograph. His basic idea 

was quite simple: by knowing the distance from a seismograph to an earthquake and observing the 

maximum signal amplitude recorded on the seismograph, an empirical quantitative ranking of the 

earthquake's inherent size or strength could be made. Most California earthquakes occur within the top 16 

km of the crust; to a first approximation, corrections for variations in earthquake focal depth were, 

therefore, unnecessary.  

 

Richter’s original magnitude scale was then extended to observations of earthquakes of any distance and 

of focal depths ranging between 0 and 700 km. Because earthquakes excite both body waves, which travel 

into and through the Earth, and surface waves, which are constrained to follow the natural wave guide of 

the Earth's uppermost layers, two magnitude scales evolved; i.e., the mb and MS scales.  

 

The standard body-wave magnitude formula is  

mb = log10(A/T) + Q(D,h)      ……………...…..(17.2)  
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where A is the amplitude of ground motion (in microns); T is the corresponding period (in seconds); and 

Q(D,h) is a correction factor that is a function of distance, D (degrees), between epicenter and station and 

focal depth, h (in kilometers), of the earthquake.  

 

The standard surface-wave formula is  

MS = log10 (A/T) + 1.66 log10 (D) + 3.30        ………………..(17.3) 

There are many variations of these formulae (e.g., the Moment Magnitude MW, the Energy Magnitude 

Me) that take into account effects of specific geographic regions, so that the final computed magnitude is 

reasonably consistent with Richter’s original definition of ML.  

 

The Modified Mercalli Intensity Scale  

The Richter Scale is not used to express damage. An earthquake in a densely populated area which results 

in many deaths and considerable damage may have the same magnitude as a shock in a remote area that 

does nothing more than frighten the wildlife. Large-magnitude earthquakes that occur beneath the oceans 

may not even be felt by humans.  

 

The intensity scale, on the other hand, is based mainly on the effects of earthquake rather than its 

magnitude. It consists of a series of certain key responses such as people awakening, movement of 

furniture, damage to chimneys and finally total destruction. Although numerous intensity scales have 

been developed to evaluate the effects of earthquakes, the one currently used most is the Modified 

Mercalli (MM) Intensity Scale (Wood and Neumann, 1931). This scale, composed of 12 increasing levels 

of intensity that range from imperceptible shaking (I: Not felt except by a very few under especially 

favorable conditions) to catastrophic destruction (XII: Damage total. Lines of sight and level are distorted. 

Objects thrown into the air), is designated by Roman numerals. It has no mathematical basis; instead it is 

an arbitrary ranking based on observed effects. 

 

Frequency of Earthquakes Worldwide 

A rough idea of frequency of occurrence of large earthquakes is given by the following tables (Table 17.1 

and Table 17.2). These are collected from Internet sources as data reported by the National Earthquake 

Information Center (NEIC) of the United States Geological Survey (USGS). 

 

Table 17.1: Frequency of Occurrence of Earthquakes (Based on Observations since 1900) 

Descriptor  Magnitude  Average Annually  

Great 8 and higher 1 

Major  7 - 7.9  18  

Strong  6 - 6.9  120  

Moderate  5 - 5.9  800  

Light  4 - 4.9  6,200 (estimated)  

Minor  3 - 3.9  49,000 (estimated)  

Very Minor  < 3.0  
Magnitude 2 - 3: about 1,000 per day  

Magnitude 1 - 2: about 8,000 per day  

 

Table 17.2: The Number of Earthquakes Worldwide for 1992 - 2001 (Located by the USGS-NEIC)  

Magnitude  1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 

8.0 to 9.9 0 1 2 3 1 0 2 0 4 1 

7.0 to 7.9 23 15 13 22 21 20 14 23 14 6 

6.0 to 6.9 104 141 161 185 160 125 113 123 157 45 

5.0 to 5.9 1541 1449 1542 1327 1223 1118 979 1106 1318 382 

4.0 to 4.9 5196 5034 4544 8140 8794 7938 7303 7042 8114 2127 

3.0 to 3.9 4643 4263 5000 5002 4869 4467 5945 5521 4741 1624 

2.0 to 2.9 3068 5390 5369 3838 2388 2397 4091 4201 3728 1319 

1.0 to 1.9 887 1177 779 645 295 388 805 715 1028 225 

0.1 to 0.9 2 9 17 19 1 4 10 5 6 0 

No Magnitude 4084 3997 1944 1826 2186 3415 2426 2096 3199 749 

Total 19548 21476 19371 21007 19938 19872 21688 20832 22309 6478 

Estimated Deaths 3814 10036 1038 7949 419 2907 8928 22711 231 14923 
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History of Earthquakes in Bangladesh 

During the last 150 years, seven major earthquakes (with M>7.0) have affected the zone that is now 

within the geographical borders of Bangladesh. Out of these, three had epicenters within Bangladesh. The 

earthquakes and their effects are described in Table 17.3. 

 

However, the recent awareness in Bangladesh of possible earthquake risks and necessary preparations has 

been due mainly to the devastating earthquakes that hit India in 2001, South-East Asia (particularly 

Indonesia, Sri Lanka and India) in 2004 and Pakistan in 2005. Reports by Bilham and co-workers have 

indicated that Bangladesh is under major seismic risk, with earthquakes of magnitude 8.0 or more already 

overdue in the Eurasian and Indian plates. 

 

Table 17.3: List of major Earthquakes affecting Bangladesh 

 

Date 
Name of 

Earthquake 

Magnitude 

(Richter) 

Epicentral distance from 

Dhaka (km) 
Affected zone 

10
th

 Jan, 

1869 

Cachar 

Earthquake 
7.5 250 Tremor mainly in Sylhet 

14
th 

July, 

1885 
Bengal Earthquake 7.0 170 

Damage in Jamalpur Sherpuur, 

Bogra 

12
th

 June, 

1897 

Great Indian 

Earthquake 
8.7 230 

Damage in Sylhet, 

Mymensingh 

8
th

 July, 

1918 

Srimongal 

Earthquake 
7.6 150 Tremor in Sylhet 

2
nd

 July, 

1930 

Dhubri 

Earthquake 
7.1 250 

Damage in Eastern part of 

Rangpur 

15
th

 Jan, 

1934 

Bihar-Nepal 

Earthquake 
8.3 510 None 

15
th 

Aug, 

1950 

Assam 

Earthquake 
8.5 780 Tremor throughout the country 

  

Earthquake Ground Motion 

Earthquake involves vibration of the ground typically for durations of 10-40 seconds, which increases 

gradually to the peak amplitude and then decays. It is primarily a horizontal vibration, although some vertical 

movement is also present. Since the vibrations are time-dependent, earthquake is essentially a dynamic 

problem and the proper way to deal with it is through dynamic analysis of the structure, including its 

foundation and the surrounding soil. The dynamic analysis is done for time dependent ground motion. 

 

Figs. 17.1-17.4 show the temporal variation of ground accelerations recorded during some of the best 

known and widely studied earthquakes of the 20
th
 century. Among them, only the El Centro earthquake 

(1940) dates more than ten years back. The El Centro earthquake data has over the last fifty years been 

the most used seismic data. However, Fig. 17.1 and 17.2 show that the ground accelerations recorded 

during this earthquake were different at different stations. It is about 6.61 ft/sec
2 

for the first station and 

9.92 ft/sec
2
 for the second, which shows that the location of the recording station should be mentioned 

while citing the peak acceleration in an earthquake. The earthquake magnitudes calculated from these 

data are also different.  

 

Figs. 17.3 and 17.4 show the ground acceleration from the Kobe (1995) and Northridge (1994) 

earthquake, both of which had caused major destructions in two of the ‘best prepared countries’ over the 

last decade. The maximum ground accelerations they represent can only provide a rough estimate of their 

nature. The Fourier amplitude spectra can provide a better insight into their nature.  

 

The Fourier amplitude spectra for the El Centro2 (henceforth called only El Centro) and Kobe earthquake 

ground acceleration are shown in Figs. 17.5 and 17.6 respectively. The spectra show the higher values of 

the spectral ordinates for the Kobe earthquake, which is understandable because of the larger 

accelerations recorded. But they also show that the spectral peaks for the El Centro data occur at larger 

frequencies (1.0~1.5 cycle/sec) than the peaks of Kobe (0.5~1.0 cycle/sec), which makes the latter 

dangerous for the more flexible structures. 
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Fig. 22.1: El Centro1 Ground Acceleration
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Fig. 17.1 Fig. 22.2: El Centro2 Ground Acceleration
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Fig. 17.2 

Fig. 22.3: Kobe Ground Acceleration
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Fig. 17.3 Fig. 22.4: Northridge Ground Acceleration
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Fig. 17.4 

Fig. 22.8: Kobe Ground Acceleration 
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Fig. 17.6 Fig. 22.7: El Centro Ground Acceleration 
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Governing Equation of Motion for Systems under Seismic Vibration 

The loads induced by earthquake are not body-forces; rather it is a ground vibration that induces certain 

forces in the structure. To illustrate that, the dynamic equations of motion for a SDOF system and a 2-

DOF system are derived due to ground motion. 

 

   
        m               u(t)          u(t)  

        

                      

           k          c 

        

 

 

Fig. 17.7: Dynamic SDOF system subjected to ground displacement ug(t) 

For the SDOF system subjected to ground displacement ug(t),  

fS = Spring force = Stiffness times the relative displacement = k (u ug)       …...……………(17.4) 

 fV = Viscous force = Viscous damping times the relative velocity = c (du/dt dug/dt) ….……(17.5)  

fI = Inertia force = Mass times the acceleration = m d
2
u/dt

2
              ………………..…(17.6)  

 

Combining the equations, the equation of motion for a SDOF system is derived as follows,  

m d
2
u/dt

2
 + c (du/dt dug/dt) + k (u ug) = 0 

 m d
2
u/dt

2
 + c du/dt + k u =  c dug/dt + k ug            …..…..…..……………(17.7) 

 m d
2
ur/dt

2 
+ c dur/dt + k ur = m d

2
ug/dt

2
            …..…..…..……………(17.8) 

where ur = u ug is the relative displacement of the SDOF system with respect to the ground displacement. 

Eqs. (17.7) and (17.8) show that the ground motion appears on the right side of the equation of motion 

just like a time-dependent load. Therefore, although there is no body-force on the system, it is still 

subjected to dynamic excitation by the ground displacement. 

 

For a lumped 2-DOF system subjected to ground displacement ug(t), velocity vg(t) and acceleration ag(t), 

the following equations are obtained in matrix form 

 

 m1      0       d
2
u1/dt

2
            c1 + c2       c2   du1/dt            k1 + k2      k2      u1           

         +       +         = 

0      m2      d
2
u2/dt

2   
 c2            c2   du2/dt            k2            k2       u2      0 

 

          …………(17.9) 

Eq. (17.9) can also be written as  

 

 m1      0       d
2
u1r/dt

2
            c1 + c2      c2  du1r/dt            k1 + k2      k2      u1r    m1 ag 

          +        +          =  

0      m2      d
2
u2r/dt

2   
 c2            c2  du2r/dt            k2             k2      u2r     m2 ag 

 

          ……..…(17.10) 

 

Eqs. (17.9) and (17.10) can be easily extended to MDOF systems. 

k1ug + c1vg 

fS fV 

m a 

ug(t) ug(t) 
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Response Spectrum Analysis and Equivalent Static Method 

Response Spectrum Analysis 

The time domain Response History Analysis (RHA) procedure presented so far in this course (analytically 

or numerically for SDOF and MDOF systems) provides a structural response with time, but the design of 

structural members is usually based on the peak response; i.e., the maximum values of the design forces. 

Therefore the main objective of seismic design methods is to conveniently calculate the peak 

displacements and forces resulting from a particular design ground motion. The Response Spectrum 

Analysis (RSA) is an approximate method of dynamic analysis that can be readily used for a reasonably 

accurate prediction of dynamic response due to seismic ground motion. 

 

As shown in the previous lecture, the governing equation of motion for a SDOF system subjected to 

ground motion ug(t) is given by 

m d
2
u/dt

2
 + c du/dt + k u = c dug/dt + k ug           …..…..…..……………(17.7) 

 m d
2
ur/dt

2
 + c dur/dt + k ur =   m d

2
ug/dt

2
            …..…..…..……………(17.8) 

 

Since the loads themselves (on the right side of the equations) are proportional to the structural properties, 

each of these equations can be normalized in terms of the system properties (natural frequency n and 

damping ratio ) and the ground motion (acceleration or displacement and velocity). For example, Eq. 

(17.8) becomes 

d
2
ur/dt

2 
+ 2 n  dur/dt + n

2
 ur =   d

2
ug/dt

2
            …..…..…..……………(18.1) 

 

For a specified ground motion data (e.g., the El Centro2 data shown in Fig. 17.2, or the Kobe data of Fig. 

17.3) the temporal variation of structural displacement, velocity and acceleration depends only on its 

natural frequency n and the damping ratio . From the time series thus obtained, the maximum 

parameters can be identified easily as the maximum design criteria for that particular structure (and that 

particular ground motion). Such maximum values can be similarly obtained for structures with different 

natural frequency (or period) and damping ratio. Since natural period (Tn) is a more familiar concept than 

n, the peak responses can be represented as functions of Tn and  for the ground motion under 

consideration. 

 

If a ‘standard’ ground motion data is chosen for the design of all SDOF structures, the maximum 

responses thus obtained will depend on the two structural properties only. A plot of the peak value of the 

response quantity as a function of natural Tn and  is called the response spectrum of that particular 

quantity. If such curves can be obtained for a family of damping ratios ( ), they can provide convenient 

curves for seismic analysis of SDOF systems. 

 

The following peak responses for the displacement (u), velocity (v) and acceleration (a) are called the 

response spectra for the relative deformation, velocity and acceleration.     

ur0(Tn, ) = Max u(t, Tn, )         ……………..…(18.2) 

vr0(Tn, ) = Max v(t, Tn, )         ……………..…(18.3) 

ar0(Tn, ) = Max a(t, Tn, )         ……………..…(18.4) 

 

Such response spectra have long been used as useful tools for the seismic analysis of structures. The same 

spectra can be used for MDOF systems, which can be decomposed into several SDOF systems by Modal 

Analysis. Once the peak responses for all the modes are calculated from the response spectra, they can be 

combined statistically to obtain the approximate maximum response for the whole structure.  

 

In order to account for the amplification of waves while propagating through soft soils, some simplified 

wave propagation analyses can be performed. Such works, performed statistically for a variety of soil 

conditions, provide the response spectra as shown in Fig. 18.1, which leads to the code-specified response 

spectrum in Fig. 18.2. 

 

However, the RSA method suffers from some serious shortcomings when compared to the numerical time 

domain analysis. Although one can obtain the response spectra for any given ground motion data, the 

spectra used in all the building codes were all derived from the El Centro data and thus they may not 
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represent the more severe earthquakes that have since occurred. Besides the method needs Modal 

Analysis to obtain the structure’s natural frequencies, which can be a laborious task. Moreover the 

method cannot be applied for nonlinear structures or it cannot predict structural failures. It is essentially a 

linear analysis but is approximately used for nonlinear structures applying a ‘ductility factor’ to reduce 

the amplitudes. 

 
 

           A/g                   A/g 

                           Soft Soil              Soft Soil 

        Medium                     Medium 

  Hard                     Hard  

 

       Tn              Tn 

         Fig. 18.1: Acceleration Spectra for different sites           Fig. 18.2: Code Specified Acceleration Spectra 

 

Equivalent Static Force Method 

This ‘Equivalent Static Analysis’ of seismic vibration is based on the concept of replacing the inertia 

forces at various ‘lumped masses’ (i.e., story levels) by equivalent horizontal forces that are proportional 

the weight of the body (therefore its mass) and its displacement (therefore its acceleration). The 

summation of these concentrated forces is balanced by a ‘base shear’ at the base of the structure. 

 

This method may be used for calculation of seismic lateral forces for all structures specified in the 

building codes. The following provisions are taken from the Uniform Building Code of USA (UBC, 

1994), and is also valid for Bangladesh National Building Code (BNBC, 1993) for most part. 

 

(1) Design Base Shear 

The total design base shear in a given direction is determined from the following relation: 

  V = (ZIC/R) W          ………………..(18.5) 

 where,  Z = Seismic zone coefficient given in Table 24.1 (for Bangladesh Code) 

  I = Structure importance coefficient given in Table 24.2 

  R = Response modification coefficient for structural systems given in Table 24.3  

  W = The total seismic dead load 

The ‘Seismic Dead Load’ is not only the dead load of the structure but also has to include some live loads 

as and when they superimpose on the dead loads. Seismic dead load W, is the total dead load of a building 

or structure, including permanent partitions, and applicable portions of other loads.  

  C = Numerical coefficient given by the relation: C = 1.25 S/T
2/3

        ..……………(18.6) 

  S = Site coefficient for soil characteristics as provided in Table 24.4 

T = Fundamental period of vibration of the structure for the direction under consideration  

                                (in seconds) 

The value of C need not exceed 2.75. Except for those requirements where Code prescribed forces are 

scaled up by 0.375R, the minimum value of the ratio C/R is 0.075. 

 

(2) Structural Period 

The value of the fundamental period T of the structure can be reasonably calculated using one of the 

following simplified methods: 

 

a)  Method A: The value of T may be approximated by the following formula 

  T = Ct (hn)
3/4

               …………………….….(18.7) 

      where, Ct  = 0.083 for steel moment resisting frames  

                    = 0.073 for RCC moment resisting frames, and eccentric braced steel frames                    

           = 0.049 for all other structural systems 

             hn = Height (in meters) above the base to level n. 

There are alternative ways of calculating T and Ct. 
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b) Method B: The fundamental period T may be calculated using the structural properties and 

deformational characteristics of the resisting elements in a properly substantiated analysis. This 

requirement may be satisfied by using the following formula:    

  T = 2 [ wi ui
2
/g wi ui]              ………………..………(18.8) 

Here, wi represents the weight and ui the displacement of the i
th
 floor 

 

(3) Vertical Distribution of Lateral Forces 

In the absence of a more rigorous procedure, the total lateral force which is the base shear V, is 

distributed along the height of the structure in accordance with Eq (18.9)-(18.11). 

  V = Ft + Fi          ………………..………(18.9) 

where, Fi  =  Lateral force applied at storey level i and  

Ft = Concentrated lateral force considered at the top of the building in addition to Fn. 

 

The concentrated force, Ft acting at the top of the building is determined as follows:  

  Ft = 0.07 TV  0.25V, when T > 0.7 second 

  Ft = 0.0    when T  0.7 second       ………………(18.10) 

 

The remaining portion of the base shear (V–Ft), is distributed over the height of the building, including 

level n, according to the relation 

  Fj = (V–Ft) [ wj hj/ wi hi]        ...………..……(18.11) 

 

The design story shear Vx in any story x is the sum of the forces Fx and Ft above that story. Vx is 

distributed to the various elements of the vertical lateral force resisting system in proportion to their 

rigidities, considering the rigidity of the floor or roof diaphragm.      

 

Other Building Codes 

The National Building Code of Canada (NBCC, 1995) predicts the base shear with an equation similar to 

Eq. (18.5), with slightly different coefficients. An additional feature of the NBCC is that it introduces an 

‘over-strength factor U’ to account for the fact that the actual strength of the building is expected to be 

larger than the calculated strength. 

 

The Mexico Federal District Code (MFDC 1987) introduces a building resistance factor Q  instead of the 

factor R in the UBC. One feature of the factor Q  is that it changes with the natural period of the structure, 

which is consistent with real elastoplastic systems.   

 

Structural Dynamics in Building Codes 

The Equivalent Static Force Method (ESFM) tries to model the dynamic aspects of seismic loads in an 

approximate manner. Therefore it is natural that the ESFM includes several equations that are derived 

from Structural Dynamics. The following are worth noting 

 

(1)  The zone factor Z can be interpreted as the ratio of the maximum ground acceleration and g, while the 

factor C is the amplitude of the Response Spectra. Ignoring I (the over-design factor for essential 

facilities), the Ve = (ZIC) W gives the maximum elastic base shear for the building. Therefore the 

factor R is the building resistance factor that accounts for the ductility of the building, i.e., its ability 

to withstand inelastic deformations. 

 

(2)  The distribution of story shear [Eq. (18.11)] in proportion to the mass and height of the story is an 

approximation of the 1
st
 modal shape, which is almost linear for shorter buildings but tends to be 

parabolic to include higher modes of vibration. Therefore, a concentrated load is added at the top to 

approximately add the 2
nd

 mode of vibration for taller buildings. 

 

(3)  The equation of the natural frequency [Eq. (18.8)] is very similar to the equation of natural frequency 

of continuous dynamic systems. 

 

(4)  The factor S is introduced in the factor C to account for amplification of seismic waves in soft soils.  
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Elastic Dynamic Analysis and Equivalent Static Force Method 

Having pointed out the analogy between the Response Spectrum Analysis (RSA) and Equivalent Static 

Force Method (ESFM), this section compares some numerical results between the two methods. Of 

central importance is the term ‘base shear’ used in ESFM, which is the static force at the base of the 

ground floor column developed due to ground motion. For a SDOF system, this force is given by  

fs = k ur = k (u ug)        ……….…………(19.1) 

Using k = m n
2
  fs = k ur = m( n

2
ur) = m a0     ……….…………(19.2) 

where the term a0 = n
2
ur is called the ‘pseudo’ acceleration. Therefore, the base shear is the mass times 

the ‘pseudo’ acceleration. Using the ESFM for a linearly elastic system, the base shear is also given by  

fs = ZCW         ……….…………(19.3) 

Equating the two  a0 = Zg C = a g(max) C  C = a0/ag(max)    ……….…………(19.4) 

       

 

             

             

             

             

             

        

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 19.1 shows the variation of C for the El Centro earthquake data (for damping ratios 2% and 5%), 

while and Fig. 19.2 shows the variation of C for the El Centro, Kobe and Northridge earthquake data  (for 

damping ratio 5%) as well as the design values suggested by BNBC (for very hard soil). 

 

Example 19.1 

For the SDOF system described in Example 3.1, calculate the base shear using  

(i) El Centro data, (ii) Kobe data, (iii) BNBC (using Z for El Centro, Kobe and Dhaka). 

 

Solution 

For the SDOF system, m = 1 k-sec
2
/ft, k = 25 k/ft, c = 0.5 k-sec/ft 

Natural frequency n = 5 rad/sec  Time period Tn = 2 / n = 1.257 sec, Damping ratio,  = 0.05 

(i)  For El Centro data, Z = 0.313, C = 0.933 

 Maximum Relative Displacement umax = ZgC/ n1
2

 = 0.313  32.17  0.933/5
2
 = 0.376 ft 

 Base shear Vb = ZCW = 0.313  0.933  (1  32.17) = 9.40 kips 

(ii)  For Kobe data, Z = 0.553, C = 1.560 

 Maximum Relative Displacement umax = ZgC/ n1
2

 = 0.553  32.17  1.560/5
2
 = 1.110 ft 

 Base shear Vb = ZCW = 0.553  1.560  (1  32.17) = 27.74 kips 

(iii) Using BNBC for hard soils, C = 1.25/Tn
2/3

  2.75  C = 1.073 

For El Centro data, Base shear Vb = 0.313  1.073  (1  32.17) = 10.81 kips 

   For Kobe data, Base shear Vb = 0.553  1.073  (1  32.17) = 19.10 kips 

   For Dhaka, Z = 0.15  Base shear Vb = 0.15  1.073  (1  32.17) = 5.18 kips 

 The corresponding maximum displacements are 0.432, 0.764 and 0.207 ft respectively. 

 

Fig. 19.2: Response Spectra for 5% Damping
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Example 19.2 

For the 2-DOF system described in Examples 10.1 and 10.2, calculate the base shear using  

(i) El Centro data, (ii) Kobe data, (iii) BNBC (Dhaka), (iv) Equivalent Static Force Method for all three. 

 

Solution 

For the MDOF system, the modal masses, stiffnesses and damping ratios are,  

M1 = 3.618 k-sec
2
/ft, M2 = 1.382 k-sec

2
/ft, K1 = 34.55 k/ft, K2 = 90.45 k/ft, 1 = 0.0309, 2 = 0.0809 

 Natural frequencies n1 = 3.09 rad/sec, n2 = 8.09 rad/sec  

Time periods Tn1 = 2 / n1 = 2.033 sec, Tn2 = 2 / n2 = 0.777 sec  

The modal loads are, f1(t) = 1
T
 f = 2.618 ag, f2(t) = 2

T
 f = 0.382 ag 

 

(i)  For El Centro, Z1 = 0.313  2.618/3.618 = 0.227, and RSA for El Centro  C1 = 0.665 

 Maximum Displacement qmax1 = Z1g C1/ n1
2

 = 0.227  32.17  0.665/3.09
2
 = 0.507 ft 

Z2 = 0.313  0.382/1.382 = 0.087, and RSA for El Centro  C2 = 1.356 

 Maximum Displacement qmax2 = Z2g C2/ n2
2

 = 0.087  32.17  1.356/8.09
2
 = 0.058 ft 

Using the square-root-of-sum-of-squares (SRSS) rule,  

Maximum Displacement umax1  {(0.507  1)
2
 + (0.058  1)

2
} = 0.510 ft 

and umax2  {(0.507  1.618)
2
 + ( 0.058  0.618)

2
} = 0.821 ft 

Maximum story forces are F2 = 25  (0.821 0.510) = 7.77 k, F1 = 25  0.510 7.77 = 4.99 k 

Maximum Base shear Vb = 4.99 + 7.77 = 12.76 k 

 

(ii)  For Kobe data, Z1 = 0.553  2.618/3.618 = 0.400, C1 = 1.526 

  Maximum Displacement qmax1 = Z1g C1/ n1
2

 = 0.400  32.17  1.526/3.09
2
 = 2.057 ft 

Z2 = 0.553  0.382/1.382 = 0.153, C2 = 1.407 

 Maximum Displacement qmax2 = Z2g C2/ n2
2

 = 0.153  32.17  1.407/8.09
2
 = 0.106 ft 

Maximum Displacement umax1  {(2.057  1)
2
 + (0.106  1)

2
} = 2.060 ft 

and umax2  {(2.057  1.618)
2
 + ( 0.106  0.618)

2
} = 3.329 ft 

Maximum story forces are F2 = 25  (3.329 2.060) = 31.73 k, F1 = 25  2.060 31.73 = 19.76 k 

Maximum Base shear Vb = 19.76 + 31.73 = 51.49 k 

 

(iii)  For Dhaka, Z1 = 0.15  2.618/3.618 = 0.109, and BNBC  C1 = 0.779 

Maximum Displacement qmax1 = Z1g C1/ n1
2

 = 0.109  32.17  0.779/3.09
2
 = 0.285 ft 

Z2 = 0.15  0.382/1.382 = 0.042, C2 = 1.479 

 Maximum Displacement qmax2 = Z2g C2/ n2
2

 = 0.042  32.17  1.479/8.09
2
 = 0.031 ft 

Maximum Displacement umax1  {(0.285  1)
2
 + (0.031  1)

2
} = 0.287 ft 

and umax2 = {(0.285  1.618)
2
 + ( 0.031  0.618)

2
} = 0.462 ft 

Maximum story forces are F2 = 25  (0.462 0.287) = 4.37 k, F1 = 25  0.287  4.37 = 2.80 k 

Maximum Base shear Vb = 2.80 + 4.37 = 7.17 k 

 

(iv)  Using BNBC for hard soils, C = 1.25/Tn1
2/3

  2.75; Tn1 = 2.033 sec  C = 0.779 

For El Centro data, Base shear Vb = 0.313  0.779  (2  32.17) = 15.69 kips 

Ft = 0.07TnVb = 0.07  2.033  15.69 = 2.23 k  Story Forces are 4.49 and 11.20 kips. 

 

   For Kobe data, Base shear Vb = 0.553  0.779  (2  32.17) = 27.72 kips 

Ft = 0.07  2.033  27.72 = 3.94 k  Story Forces are 7.93 and 19.79 kips. 

 

   For Dhaka, Z = 0.15  Base shear Vb = 0.15  0.779  (2  32.17) = 7.52 kips 

Ft = 0.07  2.033  7.52 = 1.07 k  Story Forces are 2.15 and 5.37 kips. 

 

The results from both the examples suggest an overestimation of the El Centro base shear and an 

underestimation of the Kobe base shear by using the equation suggested in BNBC. This is quite natural 

because the code equation is derived by averaging the results from numerous earthquakes. The examples 

further show that the base shear for Dhaka is much smaller than the forces suggested by the two major 

earthquakes, and can at best represent a moderate earthquake.  
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Results from RHA and RSA 

Although the RSA provides a very convenient method for dynamic seismic analysis, it is only an 

approximation of the RHA, provided by time series analysis. Whereas the two methods provide identical 

results for SDOF systems, their results can be different for MDOF systems.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figs. 19.3 and 19.4 show the temporal variations of the top floor displacements (for the El Cento and 

Kobe data respectively) of the MDOF system analyzed in Example 19.2, where the maximum values of 

the displacements come out to be 0.802 and 3.355 ft, which compares quite favorably with the RSA 

results (0.822 and 3.330 ft) shown in Example 19.2. Although not shown in the figures, the maximum 

first floor displacements (0.535 and 2.009 ft) are also quite similar to the values obtained in Example 19.2 

(i.e., 0.515 and 2.064 ft).  

 

Therefore, the results from RHA and RSA match quite well in this particular case. However, their 

differences can be quite significant for more complex structures where the natural frequencies are quite 

close, the displacements can be a combination of deflections and rotations, especially for three-

dimensional structures. The limitations of the RSA to deal with structural nonlinearity make it less 

acceptable for nonlinear systems.  

Fig. 19.3: Top Floor displacement (El Centro)
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Fig. 19.4: Top Floor displacement (Kobe)
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Inelastic Seismic Response, Ductility and Seismic Detailing 

Building structures are rarely expected to remain within the elastic limit during major earthquakes, and 

the inelastic material behavior can result in the reduction of forces acting on them as well as a 

corresponding increase in deformations [Fig. 16.2(b)]. Thus the design base shear forces calculated from 

elastic analysis can be reduced significantly, but at the same time the structure should be designed to 

withstand the corresponding increase in deformations. The concept of ductility is introduced to allow for 

the consideration of inelastic deformations.   

 

 

 
         
 

 

 

 

 

 

 

 

      

 

 

 

 

The ratio between the forces f0 and fy is called the yield reduction factor (denoted here by Ry), while the 

ratio between the deformations um and uy is the ductility factor (denoted here by ) 

  Ry = f0/fy           ………………………………………………….(20.1) 

   = um/uy           ………………………………………………….(20.2) 

Using Ry = f0/fy = u0/uy   = um/uy = (um/u0) Ry   um =  u0/Ry    ………….....…………….(20.3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 20.1 

Calculate the inelastic base shear force Vb and the corresponding relative displacement umax for El Centro 

data for the SDOF system of (i) Example 19.1 with uy = 0.1 ft, (ii) # 1 of Problem set 1 with uy = 0.02 in. 

Solution 

(i)  For this system, Time period Tn = 1.257 sec, Damping ratio  = 0.05 

For El Centro data, maximum elastic displacement u0 = 0.376 ft, base shear Vb(e) = 9.40 kips 

 Ry = u0/uy = 3.76 and Tn  Tc   = Ry = 3.76  

Inelastic Vb = Vb(e)/Ry = 9.40/3.76 = 2.50 kips, Inelastic um =  uy = 0.376 ft 

(ii)  Mass, m = 0.0259 lb-in/sec
2
, k = 100 lb/in, n = 62.16 rad/sec Tn = 0.101 sec,  = 0.05 

For El Centro data, C = 2.323, u0 = ZCg/ n
2 
= 0.0726 in, Vb(e) = k u0 = 7.26 lb 

Ry = u0/uy = 3.63, Tn = 0.101 sec   = 10.17; Inelastic Vb = 7.26/3.63 = 2 lb, um =  uy = 0.203 in 

Fig. 20.1 shows the elastoplastic force-deformation 

response of a nonlinear system. Here the force fs 

remains proportional to the deformations up to the 

yield point (uy, fy), beyond which the force remains 

constant upto the failure deformation um. 

 

On the other hand, if the system remained linearly 

elastic, the corresponding force and deformation 

would be f0 and u0, where f0 fy, but u0 um. This again 

emphasizes that although a nonlinear system has to 

withstand a smaller force (i.e., upto its yield strength 

only), the deformation um it must withstand before 

failure is greater. Both these aspects need to be 

incorporated in the structural analysis and design of 

members subjected to seismic vibrations. 

(u0, f0) 

Force fs 

Deformation u 

um 

fy 

Fig. 20.1: Elastoplastic system and the corresponding 

linear system 

The following simple relationship (also Fig. 20.2) is one 

of the early attempts to relate Ry and , which can be 

used to construct the Inelastic Response Spectrum. 

Ry = 1, for Tn  Ta        

     = (2 1), for Tb  Tn  Tc1  

     = , for Tn  Tc        …..………….(20.4) 

The intermediate values (i.e., between Ta and Tb, or 

between Tc1 and Tc) can be obtained by interpolation. 

Here Ta = 0.03 sec, Tb = 0.125 sec, while Tc1 and Tc 

depend on the damping ratio of the system. For a 

damping ratio of 5%, it is reasonable to assume Tc1  

0.35 sec, and Tc = 0.55 sec. 

uy 

Fig. 20.2: Variation of Ry with Tn
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In Example 20.1, Ry is used as a reduction factor for the elastic base shear, because it is used in Eq. (20.1) 

to reduce the ‘elastic’ force f0 (for an ‘equivalent’ linear system) to the ‘inelastic’ force fy (for a nonlinear 

system). Table 20.1 shows the code-recommended values of Response Modification Coefficient R 

(equivalent to Ry) for various types of structures, which is used to reduce the design base shear.  

 

Table 20.1: Response Modification Coefficient, R for Structural Systems 

Basic Structural System Description Of Lateral Force Resisting System R 

(a) Bearing Wall 

System 

Light framed walls with shear panels 

Shear walls (Concrete/Masonry) 

Light steel framed bearing walls with tension only bracing 

Braced frames where bracing carries gravity loads 

6~8 

6 

4 

4~6 

(b) Building Frame 

System 

Steel eccentric braced frame (EBF) 

Light framed walls with shear panels 

Shear walls (Concrete/Masonry) 

Concentric braced frames (CBF) 

10 

7~9 

8 

8 

(c) Moment Resisting 

Frame System 

Special moment resisting frames (SMRF) (Steel/Concrete) 

Intermediate moment resisting frames (IMRF) (Concrete) 

Ordinary moment resisting frames (OMRF) 

(i) Steel 

(ii) Concrete
 

12 

8 

 

6 

5 

(d) Dual System 

Shear walls 

Steel EBF (with Steel SMRF or OMRF) 

Concentric braced frame (CBF) 

7~12 

6~12 

6~10 

(e) Special Structural 

Systems 
According to Sec 1.3.2, 1.3.3, 1.3.5 of BNBC  

[Note: Some of these systems are prohibited in Seismic Zone2 and/or Zone 3] 

 

Ductility and Seismic Detailing 

Ductility may be broadly defined as the ability of a structure to undergo inelastic deformations beyond the 

initial yield deformation with no decrease in the load resistance. While ductility helps in reducing induced 

forces and in dissipating some of the input energy, it also demands larger deformations to be 

accommodated by the structure. Modern building codes provide for reduction of seismic forces through 

provision of special ductility requirements. Many such provisions have been incorporated in the BNBC 

also [i.e., in Chapters 8 and 10 of Part 6 (Structural Design) of the 1993 edition].  

 

In order to maintain overall ductile behavior of the structure with minimal damage, it becomes necessary 

to achieve, in relative terms, combinations of  

*  Continuity in construction (i.e., avoid sudden changes in plan or elevation); 

*  Strong foundations and weak structure (i.e., the foundations should not fail before the structure);  

*  Strong columns and weak beams (i.e., the columns should not fail before the beams); 

*  Members stronger in shear than in flexure (i.e., they should not fail in shear before failing in 

flexure, because shear failure in much more brittle and sudden).  

 

Since ductility is a major concern for RC structures that are widely used in building construction, seismic 

detailing of RC structures is a topic of particular interest. The main design considerations in providing 

ductility of RC structures include 

*  Using materials of ‘medium strength’; i.e., materials strong enough to avoid brittle tensile failure 

but not too strong to result in brittle tensile/compressive failure;  

*  Using a low tensile steel ratio and/or using compressive steel in order to avoid concrete crushing 

before yielding of steel;  

* Providing adequate stirrups to ensure that shear failure does not precede flexural failure; 

* Confining concrete and compressive steel by closely spaced hoops/spirals; 

* Proper detailing with regard to anchorage, splicing, minimum reinforcement, etc, so that the 

structural members can develop the forces they are designed for. 
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Seismic Design and Detailing of RC Structures 

Discontinuity in Construction Unfavorable for Seismic Design 

 

 

 

 

 

Complicated Plans            Asymmetrical Plan              Discontinuous Elevations 

Fig. 21.1: Unfavorable Discontinuity in Building Configurations 

Code Prescribed Seismic Detailing of RC Structural Elements 

1. Materials 

 Specification Possible Explanation 

C
o

n
cr

et
e 

fc   20 Mpa (  3 ksi) for 3-storied 

or taller buildings  

Weak concretes have low shear and bong strengths and cannot take full 

advantage of subsequent design provisions  

S
te

el
 

fy  415 Mpa (  60 ksi), preferably  

 250 Mpa (  36 ksi) 

Lower strength steels have  

(a) a long yield region, (b) greater ductility, (c) greater fult/fy ratio 

 

2. Flexural Members (members whose factored axial stress  fc /10) 

 Specification Possible Explanation 

S
iz

e 

b/d  0.3 
To ensure lateral stability and improve torsional 

resistance 

b  8  
To (a) decrease geometric error,  

(b) facilitate rod placement  

d  Lc/4 
Behavior and design of deeper members are 

significantly different 

L
o

n
g

it
u

d
in

al
 R

ei
n

fo
rc

em
en

t 

Ns(top) and Ns(bottom)  2 Construction requirement 

  0.1 fc /fy (fc , fy in ksi) at both top and bottom To avoid brittle failure upon cracking 

  0.025 at top or bottom 
To (a) cause steel yielding before concrete crushing 

and (b) avoid steel congestion 

As(bottom)  0.5As(top) at joint and  

As(bottom)/(top)  0.25As(top) (max) at any section  

To ensure (a) adequate ductility and  

(b) minimum reinforcement for moment reversal 

Both top and bottom bars at an external joint must be 

anchored  Ld +10db from inner face of column with 

90  bends 

To ensure (a) adequate bar anchorage,  

(b) joint ductility 

Lap splices are allowed for  50% of bars, only where 

stirrups are provided @  d/4 or 4  c/c 

Closely spaced stirrups are necessary within lap 

lengths because of the possibility of loss of concrete 

cover 

Lap splice lengths  Ld and are not allowed within 

distance of 2d from joints or near possible plastic 

hinges 

Lap splices are not reliable under cyclic loading into 

the inelastic range 

W
eb

 

R
ei

n
fo

rc
em

en
t 

Web reinforcements must consist of closed vertical 

stirrups with 135  hooks and 10dt (  3 ) extensions 

To provide lateral support and ensure strength 

development of longitudinal bars 

Design shear force is the maximum of (a) shear force 

from analysis, (b) shear force due to vertical loads plus 

as required for flexural yielding of joints  

It is desirable that the beams should yield in flexure 

before failure in shear 
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Spacing of hoops within 2d (beginning at  2 ) at either 

end of a beam must be  d/4, 8db; elsewhere St  d/2 

To (a) provide resistance to shear, (b) confine 

concrete to improve ductility, (c) prevent 

buckling of longitudinal compression bars 
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3. Axial Members (members whose factored axial stress  fc /10) 

 Specification Possible Explanation 

S
iz

e bc/hc  0.4 
To ensure lateral stability and improve torsional 

resistance 

bc  12  
To avoid (a) slender columns,  

(b) column failure before beams  

L
o

n
g

it
u

d
in

al
 

R
ei

n
fo

rc
em

en
t 

Lap splices are allowed only for  50% of bars, 

only where stirrups are provided @ bc/4 or 4  

Closely spaced stirrups are necessary within lap lengths 

because of the possibility of loss of concrete cover 

Lap splice lengths  Ld and only allowed in the 

center half of columns 

Lap splices are not reliable under cyclic loading into the 

inelastic range 

0.01  g  0.06 
To (a) ensure effectiveness and  

(b) avoid congestion of longitudinal bars 

Mc,ult  1.2 Mb,ult  

at joint 

To obtain ‘strong column weak beam condition’ to 

avoid column failure before beams 

T
ra

n
sv

er
se

 R
ei

n
fo

rc
em

en
t 

Transverse reinforcement must consist of closed 

spirals or rectangular/ circular hoops with 135  

hooks with 10dt (  3 ) extensions 

To provide lateral support and ensure strength 

development of longitudinal bars 

Parallel legs of rectangular hoops must be spaced  

@  12  c/c 

To provide lateral support and ensure strength 

development of longitudinal bars 

Spacing of hoops within L0 (  dc, hc/6, 18 ) at each 

end of column must be  bc/4, 4 ; else St  bc/2 

To (a) provide resistance to shear, (b) confine concrete 

to improve ductility, (c) prevent buckling of 

longitudinal compression bars 

Design shear force is the maximum of (a) shear 

force from analysis, (b) shear force required for 

flexural yielding of joints  

It is desirable that the columns should yield in flexure 

before failure in shear 

Special confining reinforcement (i.e., St  bc/4, 4 ) 

should extend at least 12  into any footing 

To provide resistance to the very high axial loads and 

flexural demands at the base 

Special confining reinforcement (i.e., St  bc/4, 4 ) 

should be provided over the entire height of 

columns supporting discontinued stiff members and 

extend Ld into the member 

Discontinued stiff members (e.g., shear walls, masonry 

walls, bracings, mezzanine floors) may develop 

significant forces and considerable inelastic response 

For special confinement, area of  

circular spirals  0.11 Std (fc /fy)(Ag/Ac 1), 

rectangular hoops  0.3 Std (fc /fy)(Ag/Ac 1) 

To ensure load carrying capacity upto concrete spalling, 

taking into consideration the greater effectiveness of 

circular spirals compared to rectangular hoops. It also 

ensures toughness and ductility of columns 

 

4. Joints of Frames 

 Specification Possible Explanation 

T
ra

n
sv

er
se

 

R
ei

n
fo

rc
em

en
t 

Special confining reinforcement  

(i.e., St  bc/4, 4 ) should extend 

through the joint 

To provide resistance to the shear force transmitted by framing members 

and improve the bond between steel and concrete within the joint 

St  bc/2, 6  through joint with 

beams of width b  0.75bc  

Some confinement is provided by the beams framing into the vertical 

faces of the joint 
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Fig. 21.2: Typical Building Frame satisfying Provisions of Seismic Detailing 

d 

d 

c 

c 

a 

a 

Sp  2-legged #3 stirrups @ 3  (length 27 ) 

C-Sp  4-legged #3 stirrups @ 3  (through) 

Sp Sp Sp 

#3 stirrups  

@ 6.75  c/c 

C
-S

p
 

2 #6 through 

2 #6 through 

#3 stirrups  

@ 6.75  c/c 

1 #7 extra 

12  

18  

Anchorage at end joints Lanch = Ld + 10 db 

Ld for #7 bars = 0.04 As fy/ fc  = 0.04  0.60  40/ (3/1000)  1.4 = 24.53  

Lanch = 24.53 + 10  7/8 = 33.29 ; i.e., 34  

2.25  

2.25  

Lap-splices not allowed here 

Elsewhere, it is only allowed for 50% bars with special confinement 

Beam Sections (with reinforcements) 

 

b 

b 

e 

e 

Section a-a Section b-b Section c-c Section d-d Section e-e 

12  

4  

All #6 bars 

 
Extra #7 bar 

 
135  hooks with 4  extensions 
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Earthquake Repair and Retrofit 

Earthquake repairing is to make the existing damaged structure safer for future earthquake so that it can 

perform better during any future earthquake. It includes renewal of any part of a damaged or deteriorated 

structure to provide the same level of strength and ductility, which it had prior to the damage. 

Seismic retrofitting is to upgrade the earthquake resistance of the structure up to the level of present-day 

building codes by appropriate techniques. The concepts of retrofitting include repairing and remolding, 

thereby upgrading of the structural system to improve the performance, function or appearance. 

Retrofitting Strategies for RC Structures 

1. Global Strategies 

 (i) Adding shear wall 

 (ii) Adding infill wall 

 (iii) Adding bracing 

 (iv) Adding wing walls or external buttressing 

 (v) Wall thickening 

 (vi) Mass reduction 

 (vii) Supplemental damping 

 (viii) Base isolation  

2. Local Strategies 

 (i) Jacketing of Beams 

 (ii) Jacketing of Columns 

 (iii) Jacketing of Beam-Column joints 

 (iv) Strengthening of individual footings 

Repairing and Retrofitting Strategies for Masonry Structures 

(i) Injecting grout or epoxy 

(ii) Injecting cement mortar and flat chips 

(iii) Wire mesh and cement plaster   

(iv) Shotcrete 

(v) Adding reinforcements 

(vi) Confining with RC or steel 
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Problems on Earthquake Engineering 

1. (i)  Use the standard surface-wave formula to calculate the magnitude of an earthquake if it originates 

at a focal depth of 500 km, the maximum amplitude of ground vibration recorded at an epicentral 

distance of 5 km is 10 cm and the frequency of surface-wave is 0.05 Hz.  

(ii)  For this earthquake, calculate the ground vibration amplitude at an epicentral distance of 50 km. 

Solution 

(i)  Using the standard surface-wave formula, with  

A = 10 cm = 10
5
 m, T = 1/f = 1/0.05 = 20 sec, D = d/h = 5/500 = 0.01 rad = 0.573  

MS = log10 (A/T) + 1.66 log10 (D) + 3.30 = log10 (10
5
/20) + 1.66 log10 (0.573) + 3.30 = 6.60 

(ii)  Using MS = log10 (A/T) + 1.66 log10 (D) + 3.30  

 6.60 = log10 (A/20) + 1.66 log10 (50/500) + 3.30  A = 0.219 cm 

2.  Use the BNBC response spectrum for Dhaka to calculate the elastic peak deformation and base shear 

for the (20   20 ) floor system described in # 2 of Problem set 2, for kf equal to  

 (i) 2 10
6 
lb/in, and (ii) 2 10

4 
lb/in [assume  = 5%].  

Solution 

For this floor system, k1 = 4.02 10
4 
lb/in, m1 = 207.25 lb-sec

2
/in 

(i)  As calculated earlier, kf = 2 10
6 
lb/in  keff = k1kf/(k1 + kf) = 3.94 10

4 
lb/in 

 n = 13.79 rad/sec, Tn = 2 / n = 0.456 sec 

 Using BNBC response spectrum, C = 1.25/T
2/3

 = 1.25/(0.456)
2/3

 = 2.110 

 Elastic base shear Vb(e) = ZCW = 0.15  2.110  (20  20)  200/1000 = 25.32 kips 

 Elastic maximum deformation u0 = Vb/keff = 25.32  1000/(3.94 10
4
)

 
= 0.643   

(ii)  kf = 2 10
4 
lb/in  keff = k1kf/(k1 + kf) = 1.34 10

4 
lb/in 

 n = 8.03 rad/sec, Tn = 2 / n = 0.783 sec 

 Using BNBC response spectrum, C = 1.25/T
2/3

 = 1.25/(0.783)
2/3

 = 1.471 

 Elastic base shear Vb(e) = ZCW = 0.15  1.471  (20  20)  200/1000 = 17.65 kips 

 Elastic maximum deformation u0 = Vb/keff = 17.65  1000/(1.34 10
4
)

 
= 1.317   

3.  Answer Question 2 using the response spectrum for El Centro earthquake.  

Solution 

For this floor system, k1 = 4.02 10
4 
lb/in, m1 = 207.25 lb-sec

2
/in 

(i)  For Tn = 0.456 sec, C = 2.695  

 Elastic base shear Vb(e) = ZCW = 0.313  2.695  (20  20)  200/1000 = 67.48 kips 

 Elastic maximum deformation u0 = Vb/keff = 67.48  1000/(3.94 10
4
)

 
= 1.713   

(ii)  For Tn = 0.783 sec, C = 1.563 

 Elastic base shear Vb(e) = ZCW = 0.313  1.563  (20  20)  200/1000 = 39.14 kips 

 Elastic maximum deformation u0 = Vb/keff = 39.14  1000/(1.34 10
4
)

 
= 2.921    

4.  A 12  long vertical cantilever pipe (made of steel, with E = 29  10
6
 psi) supports a 5200 lb weight 

attached at the tip. Determine the peak deformation and bending stress in the cantilever due to the El 

Centro data, assuming  = 2%, with the properties of the pipe being 

 (i) d0 = 4.5 , di = 4.026 , t = 0.237 , (ii) d0 = 6.75 , di = 6.039 , t = 0.356 .  

Solution 

(i)  For this system, I =  [(4.5)
4

(4.026)
4
]/64 = 7.23 in

4
  

Lateral stiffness, k = 3EI/L
3
 = 3 (29  10

6
)  7.23/(12  12)

3
 = 211 lb/in 

Mass, m = W/g = 5200/386 = 13.47 lb-sec
2
/in 

 n = (211/13.47) = 3.958 rad/sec, Tn = 2 / n = 1.59 sec 

From El Centro response spectrum with  = 2%, C = 0.655  

  Elastic base shear Vb(e) = ZCW = 0.313  0.655  5200/1000 = 1.066 kips 

  Maximum bending moment M = 1.066  (12  12) = 153.52 k-in  

 Maximum bending stress max = Mc/I = 153.52  (4.5/2)/7.23 = 47.80 ksi 

(ii)  For the new system, I =  [(6.75)
4

(6.039)
4
]/64 = 36.62 in

4
  

Lateral stiffness, k = 3EI/L
3
 = 3 (29  10

6
)  36.62/(12  12)

3
 = 1066.82 lb/in 
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Mass, m = W/g = 5200/386 = 13.47 lb-sec
2
/in 

 n = (1066.82/13.47) = 8.900 rad/sec, Tn = 2 / n = 0.706 sec 

From El Centro response spectrum with  = 2%, C = 2.538  

  Elastic base shear Vb(e) = ZCW = 0.313  2.538  5200/1000 = 4.131 kips 

  Maximum bending moment M = 4.131  (12  12) = 594.84 k-in  

 Maximum bending stress max = Mc/I = 594.84  (6.75/2)/36.62 = 54.83 ksi 

5.  Answer Question 3 assuming yield deformation uy = 0.50 .  

Solution 

(i)  Using u0 = 1.713  and uy = 0.50 , Ry = 1.713/0.50 = 3.426   

 Inelastic base shear Vb = Vb(e)/Ry = 67.48/3.426 = 19.70 kips (also = keff uy) 

 For Tn = 0.456 sec, Ductility ratio  = 4.13, Maximum deformation um =  uy = 2.065  

(ii)  Using u0 = 2.921  and uy = 0.50 , Ry = 2.921/0.50 = 5.842   

 Inelastic base shear Vb = Vb(e)/Ry = 39.14/5.842 = 6.70 kips (also = keff uy) 

 For Tn = 0.783 sec, Ductility ratio  = 5.842, Maximum deformation um =  uy = 2.921  

6.  Answer Question 4 assuming yield strength fy = 36 ksi.  

Solution 

(i)  Using f0 = 47.80 ksi and fy = 36 ksi, Ry = 47.80/36 = 1.33   

 Inelastic base shear Vb = Vb(e)/Ry = 1.066/1.33 = 0.803 kips 

 Maximum bending moment M = 0.803  (12  12) = 115.61 k-in  

 Maximum bending stress max = Mc/I = 115.61  (4.5/2)/7.23 = 36 ksi 

For Tn = 1.59 sec, Ductility ratio  = Ry = 1.33 

    Also, uy = Vb/k = 803/211 = 3.805 , Maximum deformation um =  uy = 5.053  

(ii)  Using f0 = 54.83 ksi and fy = 36 ksi, Ry = 54.83/36 = 1.52   

 Inelastic base shear Vb = Vb(e)/Ry = 4.131/1.52 = 2.712 kips 

 Maximum bending moment M = 2.712  (12  12) = 390.57 k-in  

 Maximum bending stress max = Mc/I = 390.57  (6.75/2)/36.62 = 36 ksi  

For Tn = 0.706 sec, Ductility ratio  = Ry = 1.52 

    Also, uy = Vb/k = 2712/1066.82 = 2.542 , Maximum deformation um =  uy = 3.872  

 

 

 

 

 

 


