# University of Asia Pacific Department of Civil Engineering Mid Examination Fall - 2017 Program: B.Sc in Civil Engineering

Course Title: Principles of Economics

Time: 1 hour

Course Code: ECN 201

Full Marks: 20

#### (Answer all the following questions)

1. Market demand and supply schedule for apples are given below:

| Price (Tk. Per Kg) | Quantity Demanded (Millions of Kg) | Quantity Supplied (Millions of Kg) |  |
|--------------------|------------------------------------|------------------------------------|--|
| 700                | 11                                 | 19                                 |  |
| 600                | 13                                 | 17                                 |  |
| 500                | 15                                 | 15                                 |  |
| 400                | 17                                 | 13                                 |  |
| 300                | 19                                 | 11                                 |  |

- a) Draw the demand and supply curve for apples.
- b) Is there any equilibrium point in the curve you drawn? If yes then identify the equilibrium level with explanation.

  4 (2+2)
- 2. Supply schedule of T-Shirt of X & Y:

| Price (Tk.) | Quantity Supplied (X) | Quantity Supplied (Y) |
|-------------|-----------------------|-----------------------|
| 2000        | 8                     | 12                    |
| 1500        | 6 10                  |                       |
| 1000        | 4                     | 8                     |
| 1000<br>500 | 2                     | 6                     |

- a) Draw the supply curve of X & Y.
- b) What is the market supply of T Shirt? Draw the market supply curve.

4(2+2)

3. Production possibilities schedule of laptops and smart phones:

| Laptops (Units) | Smart phones (Units) |
|-----------------|----------------------|
| 20              | 0                    |
| 18              | 1                    |
| 12              | 2                    |
| 0               | 3                    |

Draw the production possibilities curve putting smart phones on the horizontal axis and laptops on the vertical.axis. (4)

- 4. A photocopy shop can produce its daily output of 35,000 copies with either of two processes. Process A uses 4 workers and 3 photocopy machines. Process B uses 3 workers and 4 photocopy machines.
  - a. If each worker's daily wage is TK. 130 and the daily rental of a photocopy machine is TK. 30, will

the shop owner choose Process A or B?

- b. Besides the costs of labor and capital, the owner daily pays TK. 450 in building rent. What is the shop's daily explicit cost?
- c. If the shop's price per photocopy is TK. 2.50, what is the daily accounting profit?
  d. The owner estimates that he could earn TK. 300 a day if he managed another shop instead of his own shop. What are the shop's daily implicit costs? What are the shop's daily economic costs?
- e. What is the shop's daily economic profit?

(8)

# University of Asia Pacific Department of Basic Sciences & Humanities

## Mid Examination, Fall-2017

#### Program: B.Sc. in Civil Engineering

Course Title: Mathematics IV

Course Code: MTH 203

Credit: 3.00

Time: 1.00 Hour

Full Marks: 60

There are **Four** Questions. Answer any **Three**. All questions are of equal value. Figures in the right margin indicate marks.

- 1. (a) Find the differential equation of  $y = ae^x + be^{-x} + ccosx + dsinx$  and also write down the order and degree of this differential equation.
  - (b) Solve: **6+6** 
    - (i)  $e^x y \frac{dy}{dx} = e^{-y} + e^{-2x-y}$
    - (ii)  $xy^2 dy = (x^3 + y^3) dx$
- 2. (a) Solve:  $(1+x)\frac{dy}{dx} xy = x + x^2$ 
  - (b) Solve: 5+5
    - $(i) \qquad \frac{d^4y}{dx^4} 81y = 0$
    - (ii)  $(D^2 + 4)y = \sin 2x$
- 3. (a) Define Bernoulli's equation and solve  $\frac{dy}{dx} = y(xy^3 1)$ 
  - (b) Define Cauchy-Euler equation and solve 10

$$x^2 \frac{d^2 y}{dx^2} - 3x \frac{dy}{dx} + 4y = 0$$

- 4. (a) A culture initially has  $P_0$  number of bacteria. At t=2 hour the number of bacteria is measured to be  $\frac{5}{2}P_0$ . If the rate of growth is proportional to the number of bacteria P(t) present at time t, determine time necessary for the number of bacteria to triple.
  - (b) Solve:  $(D^2 9)y = e^{3x} cos x$

7

4

3

6

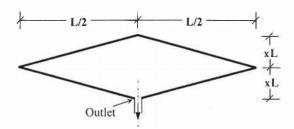
# The University of Asia Pacific Department of Civil Engineering Midterm Examination Fall 2017

Course # : CE-203 Course Title: Engineering Geology & Geomorphology

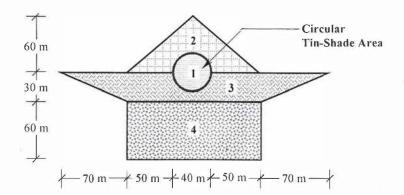
Full Marks:  $45 (15 \times 3 = 45)$  Time: 1 hour

#### Answer any three (3) questions of your choice out of the following four (4)

- 1a) Mention the principal zones of the earth from geologic point of view. Describe any one.
- 1b) Draw a schematic diagram of the rock cycle and provide one example of each type of rock.
- 1c) Classify (mention names only) geomorphic processes based on origin. Also classify (mention names only) physical and chemical weathering processes.
- 2a) Define precipitation, infiltration and percolation. Draw a schematic diagram of hydrologic cycle and show their relative locations of occurrences in conjunction with runoff.
- 2b) In the following basin, for what value of x, the flow rate (Q) or runoff will be the maximum? 8 Also calculate the CC of this basin.



- 3a) Mention (no detail description required) the factors affecting runoff.
- **3b)** Write down the assumptions used in rational formula.
- For the drainage area as shown below, calculate peak runoff in  $ft^3/s$ . Use  $C_2 = 0.8$ ,  $C_3 = 0.5$  and  $C_4 = 0.7$  and I = 0.2 cm/min.



- 4a) Classify (mention names only) folds based on their origin. Draw a neat sketch of typical fold geometry.
- 4b) Define fault. Classify fault (mention names only) and sketch faults according to net slip. Draw a neat sketch of a horst.

### University of Asia Pacific

### **Department of Civil Engineering**

#### Mid Semester Examination Fall 2017

Program: B.Sc. Engineering (Civil)

Course Title: Numerical Analysis and Computer Programming

Course Code: CE 205

Time- 1 hour

Full marks: 20

#### Answer any 2 among the 3 questions

- 1. a. Determine the real root of the equation  $xe^x = 1$  using Secant method. Correct up to three decimal places. Let two initial approximations 0.5 and 0.6.
  - b. Using iterative method to find the real root of the equation  $5x^3 20x + 3 = 0$ . (05) Correct up to three decimal. Let two initial approximations 0.1 and 0.2.
- 2. Use inverse matrix to solve the system

(10)

$$2x_1 + x_2 - x_3 = 1$$
$$x_1 - 2x_2 + 3x_3 = 9$$

 $3x_1 - x_2 + 5x_3 = 14$ 

Check your answer by substituting into original equation.

3 a. The table below gives the temperatures T ( $in {}^{0}C$ ) and lengths l (in mm) of a heated rod. If  $l = a_0 + a_1 T$ , find the best values for  $a_0$  and  $a_1$ .

| $T(in \ ^{0}C)$ | 20    | 30    | 40    | 50    | 60    | 70    |
|-----------------|-------|-------|-------|-------|-------|-------|
| l (in mm)       | 800.3 | 800.4 | 800.6 | 800.7 | 800.9 | 801.0 |

b. Determine the constants a and b by the method of least squares such that  $y = \alpha e^{bx}$  (07) fits the following data and draw the curve using corrected data.

| X | 2     | 4      | 6      | 8      | 10     |
|---|-------|--------|--------|--------|--------|
| γ | 4.077 | 11.084 | 30.128 | 81.897 | 222.62 |

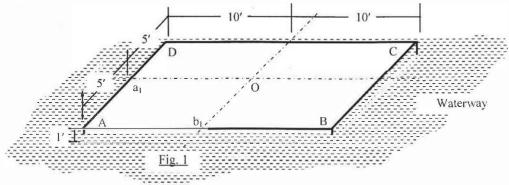
# University of Asia Pacific Department of Civil Engineering Mid Semester Examination Fall 2016 (Set 1)

Course #: CE 213 Full Marks:  $40 (= 4 \times 10)$  Course Title: Mechanics of Solids II
Time: 1 hour

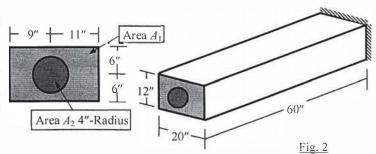
- 1. Use the yield criteria suggested by
  - (i) Rankine, (ii) St. Venant, (iii) Tresca, and (iv) Von Mises to determine center and radius of Mohr's circle of stresses at yield for a material with Y = 400 MPa, Poisson's ratio = 0.25, if its major principal stress  $\sigma_1$  is twice the minor principal stress  $\sigma_2$  [i.e.  $\sigma_1 = 2\sigma_2$ ].
- 2. In <u>Fig. 1</u>, OABCD represents a (20' × 10') 'Bhela' (1'-thick) weighing 10,000 lb and used to transport refugees (weighing *W*) across waterways. For safety purpose, the Bhela must neither overturn nor drown (i.e. the pressure underneath should be between zero and 62.5 lb/ft<sup>2</sup>).

Calculate the maximum allowable value of W

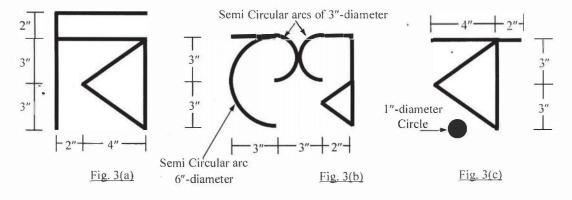
- (i) If the refugees are evenly distributed over the entire Bhela (area ABCD)
- (ii) If the refugees are crammed in one quarter of Bhela only (area Oa<sub>1</sub>Ab<sub>1</sub>).



- 3. Fig. 2 shows a 60"-long cantilever beam with rectangular cross-section consisting of areas  $A_1$  and  $A_2$ , made of materials with unit weight of 100 lb/ft<sup>3</sup> and 50 lb/ft<sup>3</sup> respectively. Determine the
  - (i) Maximum shear force and torsional moment due to its self-weight (at fixed-end of the beam)
  - (ii) Maximum combined shear stress in the section (including flexural shear stress and torsional shear stress), assuming uniform *G* over the entire cross-section and beam length.



4. Calculate the equivalent polar moments of inertia  $(J_{eq})$  for the three cross-sections shown in Fig. 3(a)~(c) by centerline dimensions [Given: Wall thickness = 0.10" throughout].



#### List of Useful Formulae for CE 213

\* Torsional Rotation  $\phi_B - \phi_A = \int (T/J_{eq}G) dx$ , and  $= (TL/J_{eq}G)$ , if T,  $J_{eq}$  and G are constants

| Section        | <b>Torsional Shear Stress</b> | Jea                     |
|----------------|-------------------------------|-------------------------|
| Solid Circular | $\tau = Tc/J$                 | $\pi d^4/32$            |
| Thin-walled    | $\tau = T/(2\Delta t)$        | $4\Delta^2/(\int ds/t)$ |
| Rectangular    | $\tau = T/(\alpha bt^2)$      | βbt <sup>3</sup>        |

| b/t | 1.0   | 1.5   | 2.0   | 3.0   | 6.0   | 10.0  | oc.   |
|-----|-------|-------|-------|-------|-------|-------|-------|
| α   | 0.208 | 0.231 | 0.246 | 0.267 | 0.299 | 0.312 | 0.333 |
| β   | 0.141 | 0.196 | 0.229 | 0.263 | 0.299 | 0.312 | 0.333 |

- \* Normal Stress (along x-axis) due to Biaxial Bending (about y- and z-axis):  $\sigma_x(y, z) = M_z y/l_z + M_y z/l_y$
- \* Normal Stress (along x-axis) due to Combined Axial Force (along x-axis) and Biaxial Bending (about y- and z-axis):  $\sigma_{x}(y, z) = P/A + M_{z} y/I_{z} + M_{y} z/I_{y}$
- \* Corner points of the kern of a Rectangular Area are (b/6, 0), (0, h/6), (-b/6, 0), (0, -h/6)
- \* Maximum shear stress on a Helical spring:  $\tau_{max} = \tau_{direct} + \tau_{torsion} = P/A + Tr/J = P/A (1 + 2R/r)$
- \* Stiffness of a Helical spring is  $k = Gd^4/(64R^3N)$
- \*  $\sigma_{xx}' = (\sigma_{xx} + \sigma_{yy})/2 + \{(\sigma_{xx} \sigma_{yy})/2\} \cos 2\theta + (\tau_{xy}) \sin 2\theta = (\sigma_{xx} + \sigma_{yy})/2 + \sqrt{[\{(\sigma_{xx} \sigma_{yy})/2\}^2 + (\tau_{xy})^2]} \cos (2\theta \alpha)$  $\tau_{xy}' = -\{(\sigma_{xx} - \sigma_{yy})/2\} \sin 2\theta + (\tau_{xy}) \cos 2\theta = \tau_{xy}' = -\sqrt{[\{(\sigma_{xx} - \sigma_{yy})/2\}^2 + (\tau_{xy})^2]} \sin (2\theta - \alpha)$ where  $\tan \alpha = 2 \tau_{xy}/(\sigma_{xx} - \sigma_{yy})$
- \*  $\sigma_{xx(max)} = (\sigma_{xx} + \sigma_{yy})/2 + \sqrt{[\{(\sigma_{xx} \sigma_{yy})/2\}^2 + (\tau_{xy})^2]};$  when  $\theta = \alpha/2, \alpha/2 + 180^\circ$  $\sigma_{xx(min)} = (\sigma_{xx} + \sigma_{yy})/2 - \sqrt{[\{(\sigma_{xx} - \sigma_{yy})/2\}^2 + (\tau_{xy})^2]}; \text{ when } \theta = \alpha/2 \pm 90^{\circ}$
- \*  $\tau_{xy(max)} = \sqrt{[\{(\sigma_{xx} \sigma_{yy})/2\}^2 + (\tau_{xy})^2]};$  when  $\theta = \alpha/2 45^\circ$ ,  $\alpha/2 + 135^\circ$  $\tau_{xy(min)} = -\sqrt{[\{(\sigma_{xx} - \sigma_{yy})/2\}^2 + (\tau_{xy})^2]}; \text{ when } \theta = \alpha/2 + 45^\circ, \alpha/2 - 135^\circ$
- \* Mohr's Circle of Stresses: Center (a,  $\bullet$ ) =  $[(\sigma_{xx} + \sigma_{yy})/2, 0]$  and radius  $R = \sqrt{[\{(\sigma_{xx} \sigma_{yy})/2\}^2 + (\tau_{xy})^2]}$
- \* For Yielding to take place

Maximum Normal Stress Theory (Rankine):

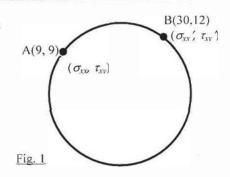
 $|\sigma_1| \geq Y$ , or

Maximum Normal Strain Theory (St. Venant):  $|\sigma_1 - v\sigma_2| \ge Y$ , or  $|\sigma_2 - v\sigma_1| \ge Y$ . Maximum Shear Stress Theory (Tresca):  $|\sigma_1 - \sigma_2| \ge Y$ ,  $|\sigma_1| \ge Y$ , or  $|\sigma_2| \ge Y$  Maximum Distortion-Energy Theory (Von Mises):  $\sigma_1^2 + \sigma_2^2 - \sigma_1 \sigma_2 \ge Y^2$ 

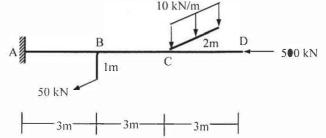
#### University of Asia Pacific Department of Civil Engineering Mid Semester Examination Fall 2017 (Set 3)

Course #: CE 213 Full Marks:  $40 (= 4 \times 10)$  Course Title: Mechanics of Solids II Time: 1 hour

- 1. Fig. 1 shows a Mohr's circle of stresses with  $\sigma_{xx} = 9$  MPa,  $\tau_{xy} = 9$  MPa on plane A and  $\sigma_{xx}' = 30$  MPa,  $\tau_{xy}' = 12$  MPa on plane B.
  - (i) Determine the angle  $\theta$  between the planes A and B and
    - Show the angle  $\theta$  on the Mohr's circle
  - (ii) Determine the stress  $\sigma_{yy}$  and angle  $\theta_i$  of Principal Plane and
    - Show the angle  $\theta_l$  on the Mohr's circle.



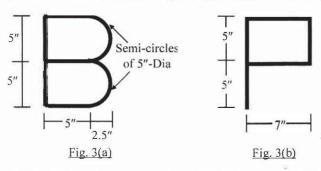
- 2. For the beam ABCD shown in Fig. 2, calculate the
  - (i) Required diameter (d), if the allowable axial stress is 5000 kPa.
  - (ii) Maximum total normal stress for the value of d calculated in (i).

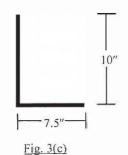




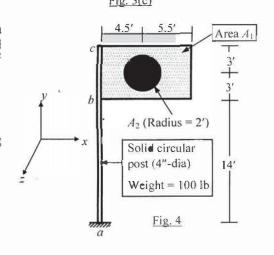
Beam Cross-Section

- Fig. 2
- 3. Calculate the equivalent polar moments of inertia  $(J_{eq})$  for the three cross-sections shown in Fig. 3(a)~(c) by centerline dimensions [Given: Wall thickness = 0.10" throughout].





- 4. A (10'× 6') flag is supported by a 20'-high post abc (4"-dia circular section, weighing 100 lb), shown in Fig. 4, and subjected to horizontal pressure (in z-direction) 100 lb/ft<sup>2</sup> over area  $A_1$  and 50 lb/ft<sup>2</sup> over  $A_2$ .
  - At the center of section a of post abc, calculate
  - (i) Combined normal stress  $(\sigma_{yy})$  and shear stress  $(\tau_{xy})$
  - (ii) Yield strength (Y) required to avoid yielding, according to Von Mises criteria.



#### List of Useful Formulae for CE 213

\* Torsional Rotation  $\phi_B - \phi_A = \int (T/J_{eq}G) dx$ , and  $= (TL/J_{eq}G)$ , if T,  $J_{eq}$  and G are constants

| Section        | <b>Torsional Shear Stress</b> | $J_{eq}$                   |
|----------------|-------------------------------|----------------------------|
| Solid Circular | $\tau = Tc/J$                 | $\pi d^4/32$               |
| Thin-walled    | $\tau = T/(2 \triangle t)$    | $4 \Omega^2 / (\int ds/t)$ |
| Rectangular    | $\tau = T/(\alpha bt^2)$      | βbt <sup>3</sup>           |

| b/t | 1.0   | 1.5   | 2.0   | 3.0   | 6.0   | 10.0  | oc    |
|-----|-------|-------|-------|-------|-------|-------|-------|
| α   | 0.208 | 0.231 | 0.246 | 0.267 | 0.299 | 0.312 | 0.333 |
| β   | 0.141 | 0.196 | 0.229 | 0.263 | 0.299 | 0.312 | 0.333 |

- \* Normal Stress (along x-axis) due to Biaxial Bending (about y- and z-axis):  $\sigma_x(y, z) = M_z y/l_z + M_y z/l_y$
- \* Normal Stress (along x-axis) due to Combined Axial Force (along x-axis) and Biaxial Bending (about y- and z-axis);  $\sigma_x(y, z) = P/A + M_z y/I_z + M_v z/I_v$
- \* Corner points of the kern of a Rectangular Area are (b/6, 0), (0, h/6), (-b/6, 0), (0, -h/6)
- \* Maximum shear stress on a Helical spring:  $\tau_{max} = \tau_{direct} + \tau_{torsion} = P/A + Tr/J = P/A (1 + 2R/r)$
- \* Stiffness of a Helical spring is  $k = Gd^4/(64R^3N)$
- \*  $\sigma_{xx}' = (\sigma_{xx} + \sigma_{yy})/2 + \{(\sigma_{xx} \sigma_{yy})/2\} \cos 2\theta + (\tau_{xy}) \sin 2\theta = (\sigma_{xx} + \sigma_{yy})/2 + \sqrt{[\{(\sigma_{xx} \sigma_{yy})/2\}^2 + (\tau_{xy})^2]} \cos (2\theta \alpha)$  $\tau_{xy}' = -\{(\sigma_{xx} - \sigma_{yy})/2\} \sin 2\theta + (\tau_{xy}) \cos 2\theta = \tau_{xy}' = -\sqrt{\{(\sigma_{xx} - \sigma_{yy})/2\}^2 + (\tau_{xy})^2\}} \sin (2\theta - \alpha)$ where tan  $\alpha = 2 \tau_{xy}/(\sigma_{xx} - \sigma_{yy})$
- \*  $\sigma_{xx(max)} = (\sigma_{xx} + \sigma_{yy})/2 + \sqrt{[\{(\sigma_{xx} \sigma_{yy})/2\}^2 + (\tau_{xy})^2]}; \text{ when } \theta = \alpha/2, \alpha/2 + 180^\circ$   $\sigma_{xx(min)} = (\sigma_{xx} + \sigma_{yy})/2 \sqrt{[\{(\sigma_{xx} \sigma_{yy})/2\}^2 + (\tau_{xy})^2]}; \text{ when } \theta = \alpha/2 \pm 90^\circ$
- \*  $\tau_{xy(max)} = \sqrt{[\{(\sigma_{xx} \sigma_{yy})/2\}^2 + (\tau_{xy})^2]}$ ; when  $\theta = \alpha/2 45^\circ$ ,  $\alpha/2 + 135^\circ$  $\tau_{xy(min)} = -\sqrt{[\{(\sigma_{xx} - \sigma_{yy})/2\}^2 + (\tau_{xy})^2]}; \text{ when } \theta = \alpha/2 + 45^\circ, \alpha/2 = 135^\circ$
- \* Mohr's Circle of Stresses: Center (a, 0) =  $[(\sigma_{xx} + \sigma_{yy})/2, 0]$  and radius  $R = \sqrt{[(\sigma_{xx} \sigma_{yy})/2]^2 + (\tau_{xy})^2}$
- \* For Yielding to take place
  - Maximum Normal Stress Theory (Rankine):
- $|\sigma_1| \ge Y$ , or  $|\sigma_2| \geq Y$ .
  - Maximum Normal Strain Theory (St. Venant):
- $|\sigma_1 v\sigma_2| \ge Y$ , or  $|\sigma_2 v\sigma_1| \ge Y$ .
- Maximum Shear Stress Theory (Tresca):  $|\sigma_1 \sigma_2| \ge Y$ ,  $|\sigma_1| \ge Y$ , or  $|\sigma_2| \ge Y$  Maximum Distortion-Energy Theory (Von Mises):  $\sigma_1^2 + \sigma_2^2 \sigma_1 \sigma_2 \ge Y^2$

# University of Asia Pacific Department of Civil Engineering Mid Term Examination Fall 2017

Program: B.Sc. Engineering (Civil)

Course Title: Fluid Mechanics

Time- 1 hour

Course Code: CE 221

Full marks: 30

# Answer any 3 among the 4 questions. (Assume any missing value)

- (a) Show that the stream lines and potential lines are orthogonal. [5] (b) The velocity along a steam line is given by v=2s+t+3. What would be the [5] convective and local acceleration after 1 sec when s=2? 2. (a) A fluid has a dynamic viscosity of 1 poise. Calculate the Velocity gradient [5] and the intensify of shear stress at the boundary if the fluid is filled between two parallel plates 2.5 cm apart and one plate moving at a velocity of 2 m/s, other plate is stationary. Assume that distribution of velocity is U = 250 - $K(5 - y)^2$ . [1 poise =  $N \cdot sm^{-2}$ ] (b) Derive the formula for Newton's equation of viscosity with net sketch [5] (a) Prove mathematically that center of pressure and center of gravity is not same 3. [5] for a submerged plane surface. In which cases it becomes identical? Find the resultant force acting on the curved section AB of the open tank as [5] shown in the figure below. The shape of the curve is quadrant of a circle of radius 3.2m. The upper portion of the curve is at a depth of 2.7m from the free surface.
- 4. (a) Write short notes i) Density, ii) Specific Weight, iii) Cohesion [3]
  (b) Write the Scope of fluid mechanics [2]
  (c) Show the relationship among the atmospheric pressure, sub-atmospheric [2.5] pressure and absolute pressure with net sketch.
  (d) Calculate the barometric reading with Kerosene in order to find the [2.5] atmospheric pressure. Properties: The density of Kerosene is given to be 850 kg/m³, atmospheric pressure at sea level is 101325 N/m²