Mathematics of Growth

Exponential Growth:

- N_0 = initial amount
- N_t = amount after t years
- r = growth rate (fraction per year)

Then N
$$_{t+1}$$
 = N $_t$ + r N $_t$ = N $_t$ (1+r)

For example , $N_1 = N_0 (1+r)$; $N_2 = N_1 (1+r) = N_0 (1+r)^2$;

and in general, $N_t = N_0 (1+r)^t$

Continuous Compounding

Rate of change of quantity N is proportional to N dN/dt = rN $N = N_0 e^{rt}$

Doubling Time

The doubling time (T_d) of a quantity that grows at a fixed exponential rate r is easily derived from

 $N = N_0 e^{rt}$

May 25, 2011

Doubling Time

Doubling time can be found by setting $N=2N_0$ at $t=T_d$ $2N_0 = N_0 e^{rt}$

 N_0 appears on both sides of the equation and can be canceled out and taking the natural log of both sides gives $\ln 2 = r T_d$ $T_d = \ln 2/r = 0.693/r$

If the growth r is expressed as a percentage instead of as a fraction, we get the following important result

 $T_d = 69.3/r(\%) = 70/r(\%)$

Problem

It took the world about 300 years to increase in population from 0.5 billion to 4.0 billion. If we assume exponential growth at a constant rate over the period of time, what would that growth rate be? Do it using both approach.

Logistic Growth

Figure : The logistic growth curve suggest a smooth transition from exponential growth to a steady – state population

May 25, 2011

Maximum Sustainable Yield

dN/dt = rN (1 - N/K)dN/dt = Maximum Setting the derivative equal to zero gives d/dt (dN/dt) = 0d/dt (rN (1 - N/K)) = 0 $d/dt (rN - rN^2 / K) = 0$ $r dN/dt - r/K d/dt (N^2) = 0$ r dN/dt - r/K 2N dN/dt = 0r dN/dt (1-2N/k) = 01 - 2N/k = 02N/k = 1N = K/2

Age Structure

A graphical presentation of the data, indicating numbers of people in each age category, is called an age structure.

