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Abstract 
 
Nonlinear analytical solution of liquid sloshing behavior in rigid rectangular tank is presented here. Theory of perturbation with 
the concept of velocity potential is applied to formulate the analytical solutions. The analytical procedure transforms the 
nonlinear problem into a multi-stage linear problem in such a way that the solution is efficiently and easily obtained in 
consecutive manner. Closed form solutions for velocity potential function, free surface shape, sloshing force and wave breaking 
are formulated for a sinusoidal horizontal excitation along the length of the tank. Significant participation of the second sloshing 
mode is observed in addition to the first sloshing mode when the excitation frequency is near to the first sloshing mode or when 
the excitation amplitude is relatively high. It results significant deviation between upward and downward movements of free 
surface. The solution also indicates the phenomenon of super-harmonic resonance. Extensive shaking table experiments were 
carried out on a rectangular tank with different depths of water to verify the analytical solutions and also to observe the 
nonlinear phenomenon visually. Free surface shape, time record and frequency response of sloshing amplitude and sloshing 
force, wave breaking length were carefully measured and compared with the solution. It is found that the experimental results 
agree reasonably well with the analytical solution. 
 
Keywords: Liquid sloshing; Tuned Liquid Damper; Harmonic ground motion; Free surface shape; Sloshing force; Wave 
breaking 

 
Introduction 
 
The understanding of liquid sloshing behavior in moving tanks 
is essential for many engineering applications, such as the 
seismic response analysis of the elevated water tanks, stability 
assurance of aerospace vehicles carrying liquid fuel, and also 
the design of Tuned Liquid Damper (TLD) to suppress the 
vibration of towers (Housner 1963, Abramson et al. 1966 and 
Qian et al. 1993).  
 
Several analytical solutions of liquid sloshing behavior were 
formulated since 1960. The solutions can be grouped as linear 
and nonlinear depending on the considerations of free surface 
conditions. Linear hydrodynamic models for specific tank 
geometries were formulated satisfying velocity potential 
function with linear free surface conditions as well as tank 
boundary conditions (Bauer 1966). Linear solution of liquid 
sloshing was also obtained adopting a generalized coordinate 
with the potential flow theory (Tospol 1993). Linear 
mechanical analogy model was also developed representing the 
system as a linear spring mass mechanical model (Housner 
1963).  The linear solution represents the free surface shape as 
a cosine function. It also consists primary modes only. 
However, the linear solution cannot be applied for a moderate 
to large sloshing amplitude, which is most likely to develop for 
an excitation frequency in the neighborhood of the resonant 
frequency, or for large excitation amplitudes. For these reasons, 
the free surface shape will no longer be a cosine shape due to 
the significant effect of nonlinear free surface condition. 
Therefore, the nonlinear solution of liquid sloshing behavior is 
necessary for accurate representation of water sloshing in tanks.  
 
The consideration of nonlinear free surface condition 
complicates the analytical procedure. As a result, the exact 
solutions have not yet been developed. Several nonlinear 
investigations were carried out to explain nonlinear behavior 
of liquid sloshing (Abramson et al. 1966). An approximate 
nonlinear solution for liquid sloshing in moving rigid tanks 
with harmonic excitations was also formulated (Bauer 1967).  
_________________________________________________ 
 
 
 

Approximate nonlinear solution for liquid flow in an 
oscillating channel during earthquakes was also formulated 
with a semi-analytical (combination of analytical and 
numerical process) process (Tahara & Chwang 1993). From 
these review, it was understood that liquid sloshing problem 
is limited to its linear solution or approximate nonlinear 
solutions. Further study on the behavior of nonlinear liquid 
sloshing is still necessary in order to grasp it in a physically 
meaningful way.   
 
In this study, closed form solutions were formulated for 
liquid sloshing in rectangular tank satisfying continuity 
equation with nonlinear free surface condition and other tank 
boundary conditions as well. Free surface shape, time history 
and frequency response of sloshing amplitude and sloshing 
force, super-harmonic resonance and wave breaking can be 
explained based on the analytical formulations. Finally, 
theoretical predictions were verified with extensive shaking 
table experiments. 
 
Analytical Formulations 
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Fig. 1  Liquid sloshing in a rectangular tank 

Assumptions 
 
A rigid rectangular tank of length ‘a’ and quiescent liquid depth 
‘h’ as shown in Fig. 1 is considered. The liquid in the tank is 
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assumed to be incompressible and inviscid. The motion of the 
liquid in the tank is assumed to be two dimensional and 
irrotational. The effect of surface tension is assumed to be 
negligible. A local Cartesian coordinate (X-O-Z) system is 
attached at the left-side tank wall such that z = 0 represents the 
quiescent free liquid surface. The free sloshing surface is 
defined by z = η(x,t).   
 
Basic Equations 
 
The velocity of the liquid particle relative to the tank can be 
represented by a gradient of velocity potential function   
Velocity potential function is necessary to satisfy the following 
Laplace equation: 

2 2
02 2x z

φ φ∂ ∂+ =
∂ ∂

 for 0 ≤ x ≤ a and −h ≤ z ≤ η                             (1) 

 
The kinematical boundary conditions are mentioned below: 

( , , ) 0 at 0 and u x z t x x ax
φ∂= = = =
∂

                                          (2a) 

 (boundary conditions at ends of the tank) 

 ( , , ) 0  at w x z t z hz
φ∂= = =−
∂

                                                   (2b) 

(boundary condition at bottom of the tank) 

where u(x,z,t) and w(x,z,t) are the x and z components of 
liquid velocity relative to the tank at point (x,z) and time t. 
 
The nonlinear kinematical free surface condition can be 
expressed as below (Bauer 1967): 

t x x zz z
η φ η φ

η η

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∂ ∂ ∂ ∂+ =
∂ ∂ ∂ ∂= =

                                                  (3)  

 
The fluid pressure P(x,z,t) can be represented as below based 
on the Bernoulli’s pressure equation (Tospol 1993) for 
excitation in the +ve x-direction: 

2 2 ..1
2 2

aP gx x z
φ φ φρ ρ ρ ρ

⎡ ⎤
⎢ ⎥⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎢ ⎥⎝ ⎠ ⎝ ⎠
⎢ ⎥⎣ ⎦

∂ ∂ ∂=− − + − − −
∂ ∂ ∂

z x X                    (4) 

At the free fluid surface, the fluid pressure is taken to be zero, 
which leads to the dynamic free surface condition as  

2 2 ..1 02 2
ag x Xt x z z

φ φ φ η
η

⎡ ⎤
⎛ ⎞ ⎛ ⎞⎢ ⎥⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∂ ∂ ∂+ + + + −
∂ ∂ ∂

=
=                 (5) 

Where g and 
..
X  represent the acceleration due to the gravity 

and the horizontal input acceleration to the rigid tank 
respectively. It is clear form this equation that the dynamic 
free surface condition is also nonlinear.  
 
Now to obtain the analytical solutions of velocity potential 
function ( )φ  as well as free surface shape ( )η , it is necessary 
to satisfy the continuity equations (Eq. 1) with rigid boundary 
conditions (Eq. 2), nonlinear kinematic and dynamic free 
surface conditions (Eqs. 3 and 5). 
 
Formulation of the Governing Equations 
 
Here, the second order perturbation method is applied in 
order to reduce the complexity of the solution process 
attributed to the consideration of nonlinear free surface 
conditions. Free surface and velocity potential function can 
be represented in series forms with a perturbed parameter ε (0 
< ε << 1) as below: 

 
1 2( , ) ...1 2x tη ε η ε η= + +                                                           (6) 

1 2( , , ) ...1 2x z tφ ε φ ε φ= + +                                                         (7) 

 
Substituting Eqs. 6 and 7 into Eq. 3 and applying Taylor’s 

series of expansion and finally equating  and  terms 
from both sides, the following equations can be obtained:  

1ε 2ε

 
1 1 ,    at 0z

t z
η φ∂ ∂

= =
∂ ∂

                      (8) 

2
2 1 1 1 2 ,      at z 01 2t x x zz

η φ η φ φ
η

∂ ∂ ∂ ∂ ∂
=− + +

∂ ∂ ∂ ∂∂
=                              (9) 

 
Similarly, from Eqs. 5, 6 and 5, the following two equations 

can be derived considering X&& is in the order of 1ε : 

..1 0,    at z 01 2
ag x Xt

φ
η ⎛ ⎞

⎜ ⎟⎜ ⎟
⎝ ⎠

∂
+ + − = =

∂
                                         (10) 
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η η
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∂ ∂ ∂ ∂ ∂
            (11) 

 
Combining Eqs. 8 and 10, the following equation can be 
obtained with one unknown 1φ : 

2 ...1 1 ,   at   z 02 2
ag x Xzt

φ φ ⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

∂ ∂
+ =− − =

∂∂
                                      (12) 

 
This equation is the governing equation for the first order 
solution i.e., the linear solution. Similarly Eqs. 9 and 11 can 
be combined as  

2 2
2 2 1 1 1 1 1

12 2g g gz x x t t zt z

2φ φ φ η φ η φ
η

∂ ∂ ∂ ∂ ∂ ∂ ∂
+ = − − −

∂ ∂ ∂ ∂ ∂ ∂∂ ∂
 

3 2 2
1 1 1 1 1,  at z 01 2 x x t z z tt z

φ φ φ φ φ
η

∂ ∂ ∂ ∂ ∂
− −
∂ ∂ ∂ ∂ ∂ ∂∂ ∂

=                                  (13) 

The above equation is the governing equation for the second 
order solution. If the first order solutions for  are known 
functions, then the right hand side becomes a known force 
function.  
 
First Order Solution 

From Eqs. 1 and 2, the velocity potential function can be 
represented in terms of the time and space function as below 
(Mohammed 1994): 

.
( , , ) ( )cosh cos1 1

nx z t A t z hn an
n x

a
π πφ ⎛ ⎞ ⎛⎛ ⎞⎜ ⎟⎜ ⎟ ⎜⎝ ⎠⎝ ⎠ ⎝

∞
= +∑

=
⎞
⎟
⎠
                     (14) 

Where, represent the derivative of an arbitrary time 
function. Substituting Eq. 14 into 12, and expanding 

)(
.

tnA

⎟
⎠

⎞
⎜
⎝

⎛ −
2
ax in Fourier series, the following equation can be 

obtained: 
 

...
( )cosh cos

1
n h n xA tn a an
π π⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

∞
+∑

=
.

sinh cos
1

n n h n xg An a a an
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∞
=∑

=
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( ) cos ...1 cos4
2 2 21

n x
n aa X

nn

π
π

π

⎛ ⎞
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⎝ ⎠⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

∞ −
∑
=

                                       (15) 

 

Integrating with respect to t and multiplying by cos j x
a
π⎛ ⎞

⎜ ⎟
⎜ ⎟
⎝ ⎠

, 

and again integrating with respect to x (limit x = 0 to a) to 
eliminate the terms of x and considering a specific loading 
function X = X0 cos (Ωt), the following equation can be 
obtained: 
 

( )
.. 2 cosA A F tn n n nω+ = Ω                                                  (16) 

where, 2 tanhn g n hn a a
π πω ⎛⎛ ⎞

⎜⎜ ⎟⎜ ⎟ ⎜⎝ ⎠ ⎝ ⎠
=

⎞
⎟
⎟ and  

Fn = (4 a/n2π2) [cos (nπ) −1]/(2 cos (nπh/a)] X0 Ω
2  

 
Here, the term nω represents the natural frequency of the nth 
sloshing mode. The steady state solution of Eq. 14 is 
 

( )cos2 2
FnA tn

nω
=

−Ω
Ω                                                       (17) 

 
Substituting Eq. 17 into Eq. 14, the following equation can be 
obtained 
 

( )( , , ) cosh cos sin1 2 21
F n n xnx z t z h ta an n

π πφ
ω

⎛ ⎞ ⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

∞ Ω= − + Ω∑
−Ω=

 (18) 

Substituting Eq. 18 into Eq. 8 and integrating with respect to 
t, the following equation can be obtained: 
 

( )( , ) sinh cos cos1 2 21
F n n h n xnx t ta a an n

π π πη
ω

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

∞
= Ω∑

−Ω=
     (19)  

 
Here, 1φ  and 1η  represent the linear solutions for the velocity 
potential function and free surface shape. 
 
Second Order Solution 
 
Like the first order solution, consider 2φ  as 

( )
.

( , , ) cosh cos2 1
nx z t B t z hn an

n x
a

π πφ ⎛ ⎞ ⎛⎛ ⎞⎜ ⎟⎜ ⎟ ⎜⎝ ⎠⎝ ⎠ ⎝

∞
= +∑

=
⎞
⎟
⎠
                  (20) 

Here, ( )
.

nB t  is considered as the derivative of an arbitrary 

time function to obtain second order solution. Substituting 
Eqs. 18, 19 and 20 into Eq. 13 and integrating with respect to 
t, the following equation can be obtained:  

.. ~
1 1

B Ch Co B n Sh Con n n n n n
n n

∞ ∞
+ =∑ ∑

= =
 

( ) (~
1 1

n k n k n k n kD t C nk kCh Sh Si Si g kSh Ch Co Co gnkn k

∞ ∞
−∑ ∑

= =
%% % +  

)2 23 n k n k n k n kSh Sh Co Co Ch Ch Si SiΩ +Ω  (21) 

 
where,  

cosh  , cos  , cosh  ,n h n x k hCh Co Chn na a k
π π⎛ ⎞ ⎛ ⎞⎛ ⎞

⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠
= = = a

π  

cos  , sinhk x n hCo Shna ak
π π⎛ ⎞ ⎛ ⎞

⎟
⎟  ⎜ ⎟ ⎜

⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠

= =

k xsin  , sinh  , Si sin , ak
n x k hSi Shn a ak
π π⎛ ⎞ ⎛ ⎞⎛ ⎞

⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
= = = π  

~ ~
,  ,n kn ka a

π π= =  

( ) ( )1,and cos 242 2 2 2
F Fn kC Dnk

n kω ω⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

t t= = Ω
−Ω −Ω

 

To eliminate x, multiply by ⎟
⎠

⎞
⎜
⎝

⎛
a

xjπcos  to the both sides and 

integrating with respect to x (limit of x = 0 to a). For n = 1 
and k = 1 and also for excitation frequency  close to the 
first mode frequency, the right hand side of the above 
equation will be significant. Considering these situations and 
also using the orthogonality of the trigonometric function, the 
following equation can be obtained:  

)(Ω

( )
.. 2 , , , cos 22 2 2B B Q h a X toω ⎛ ⎞⎜ ⎟

⎝ ⎠
+ = Ω Ω                                    (22) 

where, 
21 2( , , , ) 1128

hQ h a X C Sinh go a a ahCosh a

π π π
π

⎛ ⎛ ⎞⎛ ⎞ ⎜ ⎜ ⎟⎜ ⎟ ⎜ ⎜ ⎟⎛ ⎞ ⎜⎝ ⎠ ⎝ ⎠⎝⎜ ⎟
⎜ ⎟
⎝ ⎠

Ω = − +  

                                                                2 2 22 hSinh a
π ⎞⎛ ⎞

⎟⎜ ⎟
⎟⎜ ⎟ ⎟⎝ ⎠ ⎠

Ω −Ω  

 
Eq. (22) represents the equation of motion for the second 
order solution. The steady state solution of this equation can 
be written as: 
 

( )1( , , , ) cos 22 2 242
B Q h a X to

ω⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

= Ω Ω
− Ω

                             (23) 

 
Substituting Eq. 23 into Eq. 20, the following equation is 
obtained: 
 

( , , )2 x z tφ =  

( )2 2 2( , , , ) cosh cos sin 22 24 2

xQ h a X z h to a a
π π

ω
⎛ ⎞ ⎛ ⎞⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎜ ⎟

⎜ ⎟
⎝ ⎠

ΩΩ + Ω
Ω −

   

                                                                                            (24) 
 
Substituting Eqs. 18, 19 and 24 into Eq. 9 and integrating 
with respect to t, the following equation can be obtained: 

( , )2 x tη =  

( )
2 31 21 cosh sinh cos cos 24 2 2

1

F h h x ta a a a
π π π π

ω
⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎜ ⎟⎜ ⎟

⎝ ⎠

Ω +
−Ω

 

( )1 2 2 2( , , , ) sinh cos cos 22 242

h xQ h a X to a a a
π π π

ω
⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎛ ⎞ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎜ ⎟

⎜ ⎟
⎝ ⎠

Ω Ω
− Ω

  

                                                      (25) 
Where, 2φ and 2η are the contributions of the nonlinear 
effects. 
 
Combined Solutions 
 
Substituting Eqs. 18 and 24 into Eq. 7, the following equation 
can be obtained: 

( )1( , , ) cosh cos sin2 2( )1

F n n xx z t z h ta an n
π πφ

ω
⎛ ⎞ ⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

Ω∞
= − +∑

−Ω=
Ω +  

( )
(2 2 2( , , , ) cosh cos sin 22 22 2

xQ h a X z h to a a
π π

ω

⎛ ⎞ ⎛ ⎞⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

Ω )Ω + Ω
Ω −

     

                                                                                            (26) 

The first term of the above-equation represents the linear part 
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of the velocity potential function and the second part 
represents the additional part due to the consideration of the 
nonlinear free surface conditions. This term will give 
significant contribution when the excitation frequency is near 
the half of the second sloshing mode. This is known as super-
harmonic resonance. 
 
Substituting Eqs. 19 and 25 into Eq. 6, the following equation 
can be obtained: 

( )1( , ) sinh cos cos2 2
1

F h xx t ta a a
π π πη

ω
⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎛ ⎞ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎜ ⎟

⎜ ⎟
⎝ ⎠

= Ω +  
−Ω

( )
2 31 1 2cosh sinh cos cos 24 2 2

1

F h h x ta a a a
π π π π

ω
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⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎜ ⎟

⎜ ⎟
⎝ ⎠

Ω +
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( )1 2 2 2 ( , , , ) sinh cos cos 22 242

h xQ h a X to a a a
π π π

ω
⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎛ ⎞ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎜ ⎟

⎜ ⎟
⎝ ⎠

Ω Ω
− Ω

 

            (27) 

Eq. (27) shows that the free surface is the combination of 
three terms. The first term is the linear part. The other terms 
are the additional terms due to the considerations of nonlinear 
free surface conditions. The second term will be significant 
near the resonance frequency and also for higher excitation 
amplitude. The free surface is deviated from the cosine shape 
due to the addition of the second and third terms. The third 
term represents the presence of super-harmonic resonance.  
 
Damping of pure liquid was not included in the formulations, 
therefore the solutions for η  and φ  become unbound at the 
resonance. 
 
Sloshing Force 
 
The sloshing force exerted on the tank wall due to the 
sloshing of water inside the tank can be calculated from the 
unsteady Bernoulli’s equation of pressure (Eq. 4) as below: 

0
 dz0

a
F P b dz P bs x a xh h

 
ηη

= −∫ ∫= =
− −

                                         (28) 

where aη  and 0η are sloshing height at x=a , and x=0 
respectively. Substituting Eqs. 5, 6 and 7 into Eq. 28, and 
expanding hyperbolic functions in Taylor’s series and 
neglecting the higher order term, the sloshing force can be 
written as 

( ) 22 8cos tan 1
3 2

a hF bahX ts o aqh q
πρ

π ω

⎡ ⎤
⎢ ⎥
⎢ ⎥⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟⎛ ⎞ ⎝ ⎠⎢ ⎥⎜ ⎟

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

Ω= Ω Ω −
Ω −

−  

                     ( ) ( )
24 02 cos cos

2 2
1

X
bahX t to

h
ρ

π ω

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎛ ⎞⎢ ⎥
⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

Ω
Ω Ω Ω

Ω −
   (29) 

 
The first two terms are obtained from the first order solutions, 
which are the part of the linear solution. The third term is the 
additional term for the consideration of the nonlinear effect. 
Like other solutions, the sloshing force becomes unbound 
exactly at the resonance frequency. The effect of the super-
harmonic resonance did not observe in the sloshing force 
equation, because the second super-harmonic condition is 
observed due to the strong contribution of the second mode, 
which does not carry any sloshing force. 
 
 

Wave Breaking 
 
During sloshing, the fluid particles will separate during the 
reversal of free fluid surface, if their acceleration is greater or 
equal to that of acceleration due to the gravity. This condition 
for wave breaking can be written as (Bauer 1967): 

.. gη− ≥                                                                                  (30) 

Equation 27 can be rewritten as  

( ) ( ) ( ) ⎟
⎠

⎞
⎜
⎝

⎛Ω++⎟
⎠

⎞
⎜
⎝

⎛Ω=
a

xt
a
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Where, sinh1
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2 2sinh22 2
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π πβ

ω
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=

− Ω

⎞
⎟
⎟
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1
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π π πγ
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⎛ ⎞ ⎛ ⎞⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎜ ⎟⎜ ⎟

⎝ ⎠

=
−Ω

 

Substituting Eq. 31 into Eq. 30, the following equation can be 
obtained: 

( ) ( )28 4 2 0gx xCos Cosa a
π πα β γ β⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

γ+ + − + − ≥
Ω

                  (32) 

 
The above equation represents the wave breaking condition in 
the tank. 
 
Experimental Results and Verifications 
 
Experimental Setup 
 
Extensive experimental investigations were carried out to 
verify the analytical formulations and also to observe the 
sloshing phenomenon visually. The detail experimental setup 
is shown in Fig. 2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2  Experimental setup 

A rectangular acrylic transparent tank having length a = 40 
cm, width b = 20 cm was mounted on a force transducer 
which was firmly fixed on the bed of a shaking table. The 
liquid was tap water. The transparent tank allowed the visual 
observation of the free surface inside the tank. Vertical and 
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horizontal grid lines were drawn on a side face of the tank at 
one cm interval to measure the free surface profile and also to 
check the sloshing height measured from the wave gauge. 
The shaking table was one-directional type and was driven by 
a feedback control hydraulic actuator. The table movement 
represented the movement of the tank X(t). It was measured 
by a non-contact displacement transducer. The wave 
amplitude near the tank wall ( )t,0η  was measured by a 
capacitance wave gauge. The force transducer was designed 
to sense, exclusively, the horizontal component of force 
acting on it top. The transducer was made of steel pipe 
attached with two semi-conductor strain gauges. It was very 
rigid and sensitive to force. Another set of force transducer 
with a mass identical to the tank mass was used for 
simulating the inertia force of the empty tank. Subtraction of 
these output signals yields a pure signal of liquid-sloshing 
force, Fs. An additional 1.5 cm rectangular plywood plate, 
having the same dimension of the tank bottom was coupled 
with the tank’s bottom. The free vibration test of the empty 
tank assembly showed that the natural frequency of the tank 
was about 14 Hz, which was far away from the test 
frequency. Therefore, the rigid container assumption was 
satisfied. All signals were passed through the low pass filter 
with a cut-off frequency of 5 Hz, which was much higher 
than the interested frequency. One oscilloscope was used to 
observe and measure the distance between peak to peak of the 
output signals. An A/D conversion device was used to 
transfer the analogue data to digital data. All digital data were 
stored in a computer disk for further analysis. 
 
Free Surface Shape 
 
The steady state shape of the free surface for 

05.11/ and 0025.0/0X ,3.0/ =Ω== ωaah  is shown in Fig. 
3(a). The results are shown at the beginning and half of a 
sloshing cycle. It is found that the nodal point crossing the 
quiescent free surface is not fixed at the mid of the tank, it 
moves in between ‘m’ and ‘n’. In this case, the free surface 
shape is slightly different from the regular cosine shape. The 
steady state free surface shape for 

01.11/ and 0025.0/0X ,3.0/ =Ω== ωaah  is shown in Fig. 
3(b). For excitation frequency very close to the natural 
sloshing frequency, significant difference in upward and 
downward movements of water is observed. Reasonable 
agreement between experiment and theory is observed.  
 
Theoretical free surface shapes near super-harmonic 
resonance for 994.02/2 and 005.0/0X ,2.0/ =Ω== ωaah  
are shown in Fig. 3(c) at T=0.0, 0.25T, 0.5T, 0.75T and T. It 
is clear that during the super-harmonic resonance, the free 
surface shape changes very much from the regular cosine 
shape of the first sloshing mode. It is happened due to the 
strong coupling of the second sloshing mode at this particular 
frequency. The observation of super-harmonic resonance was 
clearer for a shallow depth of water. The experimental free 
surface profile could not be recorded for a particular time. 
Therefore, only the theoretical results are explained. 
 
Time History of Sloshing Amplitude 
 
Time history of sloshing amplitude ( )t,0η  is shown in Fig. 
4(a) for 05.11/ and 0025.0/0X ,3.0/ =Ω== ωaah . A little 
difference in upward and downward movements is found. 
The time history of sloshing amplitude for 

01.11/ and 0025.0/0X ,3.0/ =Ω== ωaah  is shown in Fig. 
4(b). Significant difference in upward and downward 
movements is observed for excitation frequency close to the 
resonant frequency. The upward peaks are very sharp 

compared to the downward peaks. Reasonably good 
agreement was observed between theory and experiment. 
 
The time history of sloshing amplitude ( )t,0η  near super-
harmonic resonance is shown in Fig. 4(c) for 

. 005.0/0X ,2.0/ == aah Theoretical results correspond to 

994.02/2 =Ω ω  and the experimental results correspond to 

0.12/2 =Ω ω . During the experiment, it was found that the 
super-harmonic resonance was very sensitive to the excitation 
frequency. It could not be found at the intended frequency 
similar to the theory. Therefore, different excitation 
frequency was used in theory and experiment. A good 
similarity is observed between experiment and theory. 
 
Upward and Downward Movement of Sloshing Water 
 
The upward and downward movements of sloshing amplitude 
with respect to excitation amplitude are shown in Fig. 5(a) for 

01.1/,3.0/ 1 =Ω= ωah . The upward movement of sloshing 
water is increased with increase of excitation amplitudes. The 
downward movement is increased in a much slower rate 
compared to the upward movement. The first order solution 
gives the linear relationship. The average sloshing amplitudes 
with the variation of excitation amplitude is shown in Fig. 
5(b) for 01.11/,3.0/ =Ω= ωah and 05.11/,3.0/ =Ω= ωah .  
 
For the excitation frequency close to the natural sloshing 
frequency and higher excitation amplitude 
( ) wave breaking was observed. Significant 
deviation between theoretical and experimental results is 
observed at wave breaking condition.  

00288.0/ ≥aoX

 
Frequency Response of Sloshing Height 
 
For 0025.0/0,3.0/ == aXah  and 01.0/0,3.0/ == aXah , 
the average sloshing height amplitude with respect to 
excitation frequency is shown in Fig. 6. Here, the amplitude 
was measured at the steady state condition. Reasonably good 
agreement is observed between experiment and theory. 
Super-harmonic resonance is observed at the excitation 
frequency half of the second sloshing mode frequency. It was 
observed for a very narrow frequency band. Very clear 
observation of super-harmonic resonance is observed for 
larger excitation amplitude. 
 
Time History of Sloshing Force  
 
The time history of sloshing force amplitude for 

05.11/ , 0025.0/0X ,3.0/ =Ω== ωaah  is shown in Fig. 
7(a).  Positive and negative sloshing force amplitudes are 
equal. The experimental results coincide with the theoretical 
results. The time history of sloshing force amplitude for 

01.11/ , 0025.0/0X ,3.0/ =Ω== ωaah  is shown in Fig. 
7(b). Positive and negative sloshing amplitudes are again 
equal. A difference is found between theory and experiment. 
Here, during the formulation of the equations, second order 
perturbation method was applied to avoid the complicacy of 
the solution process. For exact prediction of sloshing force, 
higher order perturbation is necessary. 
 
Sloshing Force Amplitude vs. Excitation Amplitude 
 
The sloshing force amplitude with the variation of excitation 
amplitude is shown in Fig. 8 for 05.11/,3.0/ =Ω= ωah and  

01.11/,3.0/ =Ω= ωah . 
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Fig. 3  Free surface shape for (a) Ω/ω1 = 1.05, (b) Ω/ω1 = 1.01 and (c) 2Ω/ω1 = 0.994 

Fig. 4  Steady state response of sloshing height at the tank edge for (a) Ω/ω1 = 1.05, (b) Ω/ω1 = 1.01 and (c) 2Ω/ω1 = 0.994

Fig. 5  (a) Upward and downward sloshing amplitude, (b) Average sloshing amplitude with the variation of excitation amplitude
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For 05.1/,3.0/ 1 =Ω= ωah , experimental results show a 
very good agreement with the theoretical results. For 

01.11/,3.0/ =Ω= ωah , a deviation between theory and 
experiment is observed, especially for larger excitation 
amplitudes. The reason of this deviation can be explained as 
before. 
 
Frequency Response of Sloshing Force Amplitude 
 
For , frequency response of 
sloshing force amplitude is shown in Fig. 9. Good agreement 
is observed between theory and experiment. 

0025.0/0,3.0/ == aXah

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8  Sloshing force amplitude vs. excitation amplitude Fig. 6  Frequency response of average sloshing amplitude 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 7  Steady state response of sloshing force for (a) Ω/ω1 = 1.05, (b) Ω/ω1 = 1.01 

 
The effect of super-harmonic resonance is not observed in the 
sloshing force amplitude as the super-harmonic mode occurs 
due to the strong contribution of the second sloshing mode 
that does not bring sloshing force. 
 
Wave Breaking 
 
The wave breaking length d (measured at the end of the tank) 
with excitation frequency is shown in Fig. 10. Near the 
resonant frequency, the wave breaking length is the highest. 
The frequency range for commencing the wave breaking is 
increased with the increase of excitation amplitude. Good 
agreement is observed between experiment and theory. 
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Conclusions 
 
Closed form analytical solutions are formulated to describe 
the first-mode-liquid- sloshing behavior in a rectangular tank 
due to a sinusoidal excitation. The solutions can predict the 
nonlinear liquid sloshing phenomenon very close to the 
resonant frequency. The solutions can evaluate steady state 
free surface shape, the existence of super-harmonic 
resonance, time history and frequency response of sloshing 
amplitudes and sloshing force, commencement and length of 
wave braking. Reasonably good agreement is observed 
between experiment and theory. 
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