1. Coordinate Systems

Fig. 1: Coordinate System1
(widely used and also applied in this course)
2. Sign Convention for Joint Displacements and Forces

Fig. 3: Sign convention for Displacements

Fig. 4: Sign convention for Forces

Fig. 6: Two-Dimensional Forces

Consider a truss member $A B$ subjected to forces $\left(X_{A}, Y_{A}\right)$ and $\left(X_{B}, Y_{B}\right)$ at joints A and B.

Assume that the length of the member is L, its modulus of elasticity is E and cross-sectional area A.
\therefore The axial stiffness of the member, $\mathrm{S}_{\mathrm{x}}=$ Load to produce unit deflection $=\mathrm{EA} / \mathrm{L}$
Also assume that the member has no flexural or shear stiffness.
If the displacements of joints A and B are $\left(u_{A}, v_{A}\right)$ and $\left(u_{B}, v_{B}\right)$, the effect of the external forces may result in the following cases.

$\left(u_{B}=1\right)$

Equilibrium equations:

$$
\begin{align*}
& \sum \mathrm{F}_{\mathrm{x}(\mathrm{~A})}=0 \Rightarrow \mathrm{X}_{\mathrm{A}}=\mathrm{S}_{\mathrm{x}} \mathrm{u}_{\mathrm{A}}+0-\mathrm{S}_{\mathrm{x}} \mathrm{u}_{\mathrm{B}}+0 \tag{1}\\
& \sum \mathrm{~F}_{\mathrm{y}(\mathrm{~A})}=0 \Rightarrow \mathrm{Y}_{\mathrm{A}}=0+0+0+0 \tag{2}\\
& \sum \mathrm{~F}_{\mathrm{x}(\mathrm{~B})}=0 \Rightarrow \mathrm{X}_{\mathrm{B}}=-\mathrm{S}_{\mathrm{x}} \mathrm{u}_{\mathrm{A}}+0+\mathrm{S}_{\mathrm{x}} \mathrm{u}_{\mathrm{B}}+0 \tag{3}\\
& \sum \mathrm{~F}_{\mathrm{y}(\mathrm{~B})}=0 \Rightarrow \mathrm{Y}_{\mathrm{B}}=0+0+0+0 \tag{4}
\end{align*}
$$

Eqs. (1)~(4) can be summarized in matrix form as

$$
\begin{align*}
& {\left[\begin{array}{cccc}
S_{x} & 0 & -S_{x} & 0 \\
0 & 0 & 0 & 0 \\
-S_{x} & 0 & S_{x} & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\left\{\begin{array}{c}
u_{A} \\
v_{A} \\
u_{B} \\
v_{B}
\end{array}\right\}=\left\{\begin{array}{c}
X_{A} \\
Y_{A} \\
X_{B} \\
Y_{B}
\end{array}\right\}} \\
& \Rightarrow{K_{m}}^{L} \mathbf{u}_{m}^{L}=\mathbf{p}_{\mathbf{m}}^{L} \tag{5}
\end{align*}
$$

where $\mathbf{K}_{\mathbf{m}}^{\mathbf{L}}=$ The stiffness matrix of member AB in the local axis system,
$\mathbf{u}_{\mathrm{m}}{ }^{\mathbf{L}}=$ The displacement vector of the member in the local axis system, and
$\mathbf{p}_{\mathbf{m}}{ }^{\mathbf{L}}=$ The force vector of the member in the local axis system

The member matrices formed in the local axes system can be transformed into the global axes system by considering the angles they make with the horizontal.

The local vectors and global vectors are related by the following equations.

Local and global joint displacements of a truss member

$$
\begin{align*}
& \mathrm{u}_{\mathrm{A}}{ }^{\mathrm{L}}=\mathrm{u}_{\mathrm{A}}{ }^{\mathrm{G}} \cos \theta+\mathrm{v}_{\mathrm{A}}{ }^{\mathrm{G}} \sin \theta \tag{6}\\
& \mathrm{v}_{\mathrm{A}}{ }^{\mathrm{L}}=-\mathrm{u}_{\mathrm{A}}{ }^{\mathrm{G}} \sin \theta+\mathrm{v}_{\mathrm{A}}{ }^{\mathrm{G}} \cos \theta \tag{7}\\
& u_{B}{ }^{L}=u_{B}{ }^{G} \cos \theta+v_{B}{ }^{G} \sin \theta \tag{8}\\
& \mathrm{v}_{\mathrm{B}}{ }^{\mathrm{L}}=-\mathrm{u}_{\mathrm{B}}{ }^{\mathrm{G}} \sin \theta+\mathrm{v}_{\mathrm{B}}{ }^{\mathrm{G}} \cos \theta \tag{9}
\end{align*}
$$

In matrix form
where $\mathbf{T}_{\mathbf{m}}$ is called the transformation matrix for member $A B$, which connects the displacement vector $\mathbf{u}_{\mathrm{m}}{ }^{\mathrm{L}}$ in the local axes of AB with the displacement vector $\mathbf{u}_{\mathrm{m}}{ }^{\mathbf{G}}$ in the global axes.

A similar expression can be obtained for the force vectors $\mathbf{p}_{\mathrm{m}}{ }^{\mathrm{L}}$ and $\mathbf{p}_{\mathrm{m}}{ }^{\mathbf{G}}$; i.e.,

$$
\begin{equation*}
\Rightarrow \mathbf{p}_{\mathrm{m}}^{\mathrm{L}}=\mathbf{T}_{\mathrm{m}} \mathbf{p}_{\mathrm{m}}{ }^{\mathbf{G}} \tag{11}
\end{equation*}
$$

\therefore Eq. (5) can be rewritten as $\Rightarrow \mathbf{K}_{\mathrm{m}}{ }^{\mathbf{L}} \mathbf{T}_{\mathrm{m}} \mathbf{u}_{\mathrm{m}}{ }^{\mathbf{G}}=\mathbf{T}_{\mathrm{m}} \mathbf{p}_{\mathrm{m}}{ }^{\mathbf{G}}$

$$
\begin{align*}
& \Rightarrow\left(\mathbf{T}_{\mathrm{m}}{ }^{\mathbf{T}} \mathbf{K}_{\mathrm{m}}{ }^{\mathrm{L}} \mathbf{T}_{\mathrm{m}}\right) \mathbf{u}_{\mathrm{m}}{ }^{\mathbf{G}}=\mathbf{p}_{\mathrm{m}}{ }^{\mathbf{G}} \tag{12}
\end{align*}
$$

where $\mathbf{T}_{\mathrm{m}}{ }^{\mathbf{T}}$ is the transpose of the transformation matrix \mathbf{T}_{m}, which is also $=\mathbf{T}_{\mathrm{m}}{ }^{-1}$
If ($\mathbf{T}_{\mathrm{m}}{ }^{\mathbf{T}} \mathbf{K}_{\mathrm{m}}{ }^{\mathbf{L}} \mathbf{T}_{\mathrm{m}}$) is written as $\mathbf{K}_{\mathrm{m}}{ }^{\mathbf{G}}$, the member stiffness matrix in the global axis system, then

$$
\mathbf{K}_{\mathrm{m}}{ }^{\mathbf{G}}=\mathrm{S}_{\mathrm{x}}\left(\begin{array}{cccc}
\mathrm{C}^{2} & \mathrm{CS} & -\mathrm{C}^{2} & -\mathrm{CS} \\
\mathrm{CS} & \mathrm{~S}^{2} & -\mathrm{CS} & -\mathrm{S}^{2} \\
-\mathrm{C}^{2} & -\mathrm{CS} & \mathrm{C}^{2} & \mathrm{CS} \\
-\mathrm{CS} & -\mathrm{S}^{2} & \mathrm{CS} & \mathrm{~S}^{2}
\end{array}\right) \quad[\text { where } \mathrm{C}=\cos \theta, \mathrm{S}=\sin \theta]
$$

Assembly of Stiffness Matrix and Load Vector of a Truss

Assemble the global stiffness matrix and write the global load vector of the truss shown below. Also write the boundary conditions $[\mathrm{EA} / \mathrm{L}=$ Constant $=500 \mathrm{kip} / \mathrm{ft}]$.

Member AB: $(\mathrm{C}=1, \mathrm{~S}=0)$

$$
\mathbf{K}_{\mathbf{A B}}{ }^{\mathbf{G}}=500\left(\begin{array}{rrrr}
1 & 2 & 3 & 4 \\
1 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \begin{aligned}
& 1 \\
& 2 \\
& 3 \\
& 4
\end{aligned}
$$

Member BC: $(C=1, S=0)$

Member AD: $(C=1 / \sqrt{ } 2, S=1 / \sqrt{ } 2)$
Member CD: $(C=-1 / \sqrt{ } 2, S=1 / \sqrt{ } 2)$
$\mathbf{K}_{\mathrm{AD}}{ }^{\mathbf{G}}=500\left(\begin{array}{cccc}1 & 2 & 7 & 8 \\ 0.5 & 0.5 & -0.5 & -0.5 \\ 0.5 & 0.5 & -0.5 & -0.5 \\ -0.5 & -0.5 & 0.5 & 0.5 \\ -0.5 & -0.5 & 0.5 & 0.5\end{array}\right) 8 \begin{gathered}1 \\ 2 \\ 7\end{gathered}$
$\mathbf{K}_{\mathbf{C D}}^{\mathbf{G}}=500\left(\begin{array}{cccc}5 & 6 & 7 & 8 \\ 0.5 & -0.5 & -0.5 & 0.5 \\ -0.5 & 0.5 & 0.5 & -0.5 \\ -0.5 & 0.5 & 0.5 & -0.5 \\ 0.5 & -0.5 & -0.5 & 0.5\end{array}\right) 8$
$\mathbf{K}^{\mathbf{G}}=500\left(\begin{array}{cccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1+0.5 & 0+0.5 & -1 & 0 & & & -0.5 & -0.5 \\ 0+0.5 & 0+0.5 & 0 & 0 & & & -0.5 & -0.5 \\ -1 & 0 & 1+1+0 & 0+0+0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0+0+0 & 0+0+1 & 0 & 0 & 0 & -1 \\ 0 & -1 & 0 & 1+0.5 & 0-0.5 & -0.5 & 0.5 & 3 \\ \\ 0 & & 0 & 0 & 0-0.5 & 0+0.5 & 0.5 & -0.5 \\ -0.5 & -0.5 & 0 & 0 & -0.5 & 0.5 & 0+0.5+0.5 & 0+0.5-0.5 \\ -0.5 & 0 & -1 & 0.5 & -0.5 & 0+0.5-0.5 & 1+0.5+0.5\end{array}\right)$

Boundary Conditions: $\mathrm{u}_{1}=0, \mathrm{u}_{2}=0, \mathrm{u}_{3}=0, \mathrm{u}_{4}=0, \mathrm{u}_{6}=0$

Boundary Conditions, Support Reactions and Member Forces

After assembly of the member stiffness matrices, the equilibrium equations were

$$
500\left(\begin{array}{cccccccc}
1.5 & 0.5 & -1 & 0 & 0 & 0 & -0.5 & -0.5 \\
0.5 & 0.5 & 0 & 0 & 0 & 0 & -0.5 & -0.5 \\
-1 & 0 & 2 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 \\
0 & 0 & -1 & 0 & 1.5 & -0.5 & -0.5 & 0.5 \\
0 & 0 & 0 & 0 & -0.5 & 0.5 & 0.5 & -0.5 \\
-0.5 & -0.5 & 0 & 0 & -0.5 & 0.5 & 1 & 0 \\
-0.5 & -0.5 & 0 & -1 & 0.5 & -0.5 & 0 & 2
\end{array}\right\}\left\{\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4} \\
u_{5} \\
u_{6} \\
u_{7} \\
u_{8}
\end{array}\right\}=\left\{\begin{array}{l}
X_{A} \\
Y_{A} \\
X_{B} \\
Y_{B} \\
0 \\
Y_{C} \\
-20 \\
10
\end{array}\right\}
$$

Applying the boundary conditions $\left(u_{1}=0, u_{2}=0, u_{3}=0, u_{4}=0, u_{6}=0\right)$, the equations are modified to
$500\left(\begin{array}{ccc}1.5 & -0.5 & 0.5 \\ -0.5 & 1 & 0 \\ 0.5 & 0 & 2\end{array}\right)\left\{\begin{array}{l}\mathrm{u}_{5} \\ \mathrm{u}_{7} \\ \mathrm{u}_{8}\end{array}\right\}=\left\{\begin{array}{c}0 \\ -20 \\ 10\end{array}\right\} \Rightarrow\left[\begin{array}{l}\mathrm{u}_{5}=-22.22 \times 10^{-3} \mathrm{ft} \\ \mathrm{u}_{7}=-51.11 \times 10^{-3} \mathrm{ft} \\ \mathrm{u}_{8}=15.56 \times 10^{-3} \mathrm{ft}\end{array}\right.$
Once displacements are known, support reactions can be calculated from equilibrium equations; i.e.,
$X_{A}=750 u_{1}+250 u_{2}-500 u_{3}+0 u_{4}+0 u_{5}+0 u_{6}-250 u_{7}-250 u_{8}=0+0+0+0+0+0+12.78-3.89=$ 8.89^{k}
Similarly, $Y_{A}=12.78-3.89=8.89^{k}, X_{B}=11.11^{k}, Y_{B}=-7.78^{k}, Y_{C}=5.56-12.78-3.89=-11.11^{k}$

The bar forces can be calculated from the equation $P_{A B}=(E A / L)\left\{\left(u_{B}{ }^{G}-u_{A}{ }^{G}\right) \cos \theta+\left({v_{B}}^{G}-v_{A}{ }^{G}\right) \sin \theta\right\}$
$\therefore \mathrm{P}_{\mathrm{AB}}=500\left\{\left(\mathrm{u}_{3}-\mathrm{u}_{1}\right) \cos 0^{\circ}+\left(\mathrm{u}_{4}-\mathrm{u}_{2}\right) \sin 0^{\circ}\right\}=0, \mathrm{P}_{\mathrm{BC}}=500\left\{\left(\mathrm{u}_{5}-\mathrm{u}_{3}\right) \cos 0^{\circ}+\left(\mathrm{u}_{6}-\mathrm{u}_{4}\right) \sin 0^{\circ}\right\}=-11.11^{\mathrm{k}}$, $\mathrm{P}_{\mathrm{BD}}=500\left\{\left(\mathrm{u}_{7}-\mathrm{u}_{3}\right) \cos 90^{\circ}+\left(\mathrm{u}_{8}-\mathrm{u}_{4}\right) \sin 90^{\circ}\right\}=7.78^{\mathrm{k}}, \mathrm{P}_{\mathrm{AD}}=500\left\{\left(\mathrm{u}_{7}-\mathrm{u}_{1}\right) \cos 45^{\circ}+\left(\mathrm{u}_{8}-\mathrm{u}_{2}\right) \sin 45^{\circ}\right\}=-12.57^{\mathrm{k}}, \mathrm{P}_{\mathrm{CD}}=$ $500\left\{\left(\mathrm{u}_{7}-\mathrm{u}_{5}\right) \cos 135^{\circ}+\left(\mathrm{u}_{8}-\mathrm{u}_{6}\right) \sin 135^{\circ}\right\}=15.71^{\mathrm{k}}$

In addition to the externally applied forces if the support C settles 0.10^{\prime}, then $\mathrm{u}_{6}=-0.10^{\prime}$ is known
\therefore Applying boundary conditions $\left(u_{1}=0, u_{2}=0, u_{3}=0, u_{4}=0, u_{6}=-0.10^{\prime}\right)$, the equations become

$$
\begin{aligned}
& 500\left(\begin{array}{ccc}
1.5 & -0.5 & 0.5 \\
-0.5 & 1 & 0 \\
0.5 & 0 & 2
\end{array}\right)\left\{\begin{array}{c}
\mathrm{u}_{5} \\
\mathrm{u}_{7} \\
\mathrm{u}_{8}
\end{array}\right\}=\left\{\begin{array}{c}
0+250 \mathrm{u}_{6} \\
-20-250 \mathrm{u}_{6} \\
10+250 \mathrm{u}_{6}
\end{array}\right\}=\left\{\begin{array}{c}
-25 \\
5 \\
-15
\end{array}\right\} \Rightarrow\left[\begin{array}{l}
\mathrm{u}_{5}=-33.33 \times 10^{-3} \mathrm{ft} \\
\mathrm{u}_{7}=-6.67 \times 10^{-3} \mathrm{ft} \\
\mathrm{u}_{8}=-6.67 \times 10^{-3} \mathrm{ft}
\end{array}\right. \\
& \therefore \mathrm{P}_{\mathrm{AB}}=0, \mathrm{P}_{\mathrm{BC}}=-16.67^{\mathrm{k}}, \mathrm{P}_{\mathrm{BD}}=-3.33^{\mathrm{k}}, \mathrm{P}_{\mathrm{AD}}=-4.71^{\mathrm{k}}, \mathrm{P}_{\mathrm{CD}}=23.57^{\mathrm{k}}
\end{aligned}
$$

For the truss $A B C D$, the equilibrium equations of joints A, B, C and D take the following forms when the equation for member force [i.e., $\mathrm{P}_{\mathrm{AB}}=(\mathrm{EA} / \mathrm{L})\left\{\left(\mathrm{u}_{\mathrm{B}}{ }^{\mathrm{G}}-\mathrm{u}_{\mathrm{A}}{ }^{\mathrm{G}}\right) \cos \theta+\left(\mathrm{v}_{\mathrm{B}}{ }^{\mathrm{G}}-\mathrm{v}_{\mathrm{A}}{ }^{\mathrm{G}}\right) \sin \theta\right\}$] is applied
$\sum \mathrm{F}_{\mathrm{xA}}=0 \Rightarrow \mathrm{X}_{\mathrm{A}}+\mathrm{P}_{\mathrm{AB}}+\mathrm{P}_{\mathrm{AD}} \cos 45^{\circ}=0$
$\Rightarrow \mathrm{X}_{\mathrm{A}}+500\left(\mathrm{u}_{3}-\mathrm{u}_{1}\right)+500\left\{\left(\mathrm{u}_{7}-\mathrm{u}_{1}\right) \cos 45^{\circ}+\left(\mathrm{u}_{8}-\mathrm{u}_{2}\right) \sin 45^{\circ}\right\} \cos 45^{\circ}=0$
$\Rightarrow 500\left\{(1.0+0.5) \mathrm{u}_{1}+0.5 \mathrm{u}_{2}-1.0 \mathrm{u}_{3}-0.5 \mathrm{u}_{7}-0.5 \mathrm{u}_{8}\right\}=\mathrm{X}_{\mathrm{A}}$
$\sum \mathrm{F}_{\mathrm{yA}}=0 \Rightarrow \mathrm{Y}_{\mathrm{A}}+\mathrm{P}_{\mathrm{AD}} \sin 45^{\circ}=0 \Rightarrow \mathrm{Y}_{\mathrm{A}}+500\left\{\left(\mathrm{u}_{7}-\mathrm{u}_{1}\right) \cos 45^{\circ}+\left(\mathrm{u}_{8}-\mathrm{u}_{2}\right) \sin 45^{\circ}\right\} \sin 45^{\circ}=0$
$\Rightarrow 500\left\{0.5 \mathrm{u}_{1}+0.5 \mathrm{u}_{2}-0.5 \mathrm{u}_{7}-0.5 \mathrm{u}_{8}\right\}=\mathrm{Y}_{\mathrm{A}}$
$\sum \mathrm{F}_{\mathrm{xB}}=0 \Rightarrow \mathrm{X}_{\mathrm{B}}-\mathrm{P}_{\mathrm{AB}}+\mathrm{P}_{\mathrm{BC}}=0 \Rightarrow \mathrm{X}_{\mathrm{B}}-500\left(\mathrm{u}_{3}-\mathrm{u}_{1}\right)+500\left(\mathrm{u}_{5}-\mathrm{u}_{3}\right)=0$
$\Rightarrow 500\left\{-1.0 \mathrm{u}_{1}+2.0 \mathrm{u}_{3}-1.0 \mathrm{u}_{5}\right\}=\mathrm{X}_{\mathrm{B}}$
$\sum \mathrm{F}_{\mathrm{yB}}=0 \Rightarrow \mathrm{Y}_{\mathrm{B}}+\mathrm{P}_{\mathrm{BD}}=0 \Rightarrow \mathrm{Y}_{\mathrm{B}}+500\left(\mathrm{u}_{8}-\mathrm{u}_{4}\right)=0$
$\Rightarrow 500\left\{1.0 \mathrm{u}_{4}-1.0 \mathrm{u}_{8}\right\}=\mathrm{Y}_{\mathrm{B}}$
$\Sigma \mathrm{F}_{\mathrm{xC}}=0 \Rightarrow-\mathrm{P}_{\mathrm{BC}}-\mathrm{P}_{\mathrm{CD}} \cos 45^{\circ}=0$
$\Rightarrow-500\left(\mathrm{u}_{5}-\mathrm{u}_{3}\right)-500\left\{\left(\mathrm{u}_{7}-\mathrm{u}_{5}\right) \cos 135^{\circ}+\left(\mathrm{u}_{8}-\mathrm{u}_{6}\right) \sin 135^{\circ}\right\} \cos 45^{\circ}=0$
$\Rightarrow 500\left\{-1.0 u_{3}+(1.0+0.5) \mathrm{u}_{5}-0.5 \mathrm{u}_{6}-0.5 \mathrm{u}_{7}+0.5 \mathrm{u}_{8}\right\}=0$
$\Sigma \mathrm{F}_{\mathrm{yC}}=0 \Rightarrow \mathrm{Y}_{\mathrm{C}}+\mathrm{P}_{\mathrm{CD}} \sin 45^{\circ}=0 \Rightarrow \mathrm{Y}_{\mathrm{C}}+500\left\{\left(\mathrm{u}_{7}-\mathrm{u}_{5}\right) \cos 135^{\circ}+\left(\mathrm{u}_{8}-\mathrm{u}_{6}\right) \sin 135^{\circ}\right\} \sin 45^{\circ}=0$
$\Rightarrow 500\left\{-0.5 \mathrm{u}_{5}+0.5 \mathrm{u}_{6}+0.5 \mathrm{u}_{7}-0.5 \mathrm{u}_{8}\right\}=\mathrm{Y}_{\mathrm{C}}$
$\sum \mathrm{F}_{\mathrm{xD}}=0 \Rightarrow-20-\mathrm{P}_{\mathrm{AD}} \cos 45^{\circ}+\mathrm{P}_{\mathrm{CD}} \cos 45^{\circ}=0 \Rightarrow-20-500\left\{\left(\mathrm{u}_{7}-\mathrm{u}_{1}\right) \cos 45^{\circ}+\left(\mathrm{u}_{8}-\mathrm{u}_{2}\right) \sin 45^{\circ}\right\} \cos 45^{\circ}+$ $500\left\{\left(\mathrm{u}_{7}-\mathrm{u}_{5}\right) \cos 135^{\circ}+\left(\mathrm{u}_{8}-\mathrm{u}_{6}\right) \sin 135^{\circ}\right\} \cos 45^{\circ}=0$
$\Rightarrow 500\left\{-0.5 \mathrm{u}_{1}-0.5 \mathrm{u}_{2}-0.5 \mathrm{u}_{5}+0.5 \mathrm{u}_{6}+(0.5+0.5) \mathrm{u}_{7}+(0.5-0.5) \mathrm{u}_{8}\right\}=-20$
$\sum \mathrm{F}_{\mathrm{yD}}=0 \Rightarrow 10-\mathrm{P}_{\mathrm{BD}}-\mathrm{P}_{\mathrm{AD}} \sin 45^{\circ}-\mathrm{P}_{\mathrm{CD}} \sin 45^{\circ}=0$
$\Rightarrow 10-500\left(\mathrm{u}_{8}-\mathrm{u}_{4}\right)-500\left\{\left(\mathrm{u}_{7}-\mathrm{u}_{1}\right) \cos 45^{\circ}+\left(\mathrm{u}_{8}-\mathrm{u}_{2}\right) \sin 45^{\circ}\right\} \sin 45^{\circ}$
$-500\left\{\left(\mathrm{u}_{7}-\mathrm{u}_{5}\right) \cos 135^{\circ}+\left(\mathrm{u}_{8}-\mathrm{u}_{6}\right) \sin 135^{\circ}\right\} \sin 45^{\circ}=0$
$\Rightarrow 500\left\{-0.5 \mathrm{u}_{1}-0.5 \mathrm{u}_{2}-1.0 \mathrm{u}_{4}+0.5 \mathrm{u}_{5}-0.5 \mathrm{u}_{6}+(0.5-0.5) \mathrm{u}_{7}+(1.0+0.5+0.5) \mathrm{u}_{8}\right\}=10$
Eqs. (1)~(8) are the same equations given by the Stiffness Matrix assembled earlier.
After applying boundary conditions for the known displacements $\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}, \mathrm{u}_{4}$ and u_{6}, Eqs. (5), (7) and (8) can be solved for the three unknown displacements u_{5}, u_{7} and u_{8}, whereupon Eqs. (1)~(4) and (6) can be used to calculate the support reactions $X_{A}, Y_{A}, X_{B}, Y_{B}$ and Y_{C}.

Problems on Stiffness Method for Trusses

1. Assemble the global stiffness matrix and write the global load vector of the truss shown below (do not apply boundary conditions) $[\mathrm{EA} / \mathrm{L}=$ Constant $=1000 \mathrm{kip} / \mathrm{ft}]$.

2. In the truss shown below, ignore the zero-force members and formulate the stiffness matrix, load vector and write down the boundary conditions [Given: EA/L $=$ constant $=1000 \mathrm{kip} / \mathrm{ft}$].

3. In the truss shown below, ignore the zero-force members and formulate the stiffness matrix, load vector and write down the boundary conditions [Given: $\mathrm{EA} / \mathrm{L}=$ constant $=1000 \mathrm{kip} / \mathrm{ft}]$.

4. In the truss described in Question 1, the forces in members BC and BD are both 10 kips (tensile). Calculate the other member forces and the applied loads P_{x} and P_{y}.
5. For the truss described in Question 2, the force in member DE is 8 k (tension). Calculate the forces in the other members of the truss and deflections of joints D and E .
6. In the truss shown below, the joint B moves 0.05^{\prime} horizontally (i.e., no vertical movement) due to the applied force P . Calculate the forces in all the members of the truss $[\mathrm{EA} / \mathrm{L}=$ Constant $=500 \mathrm{kip} / \mathrm{ft}]$.

Consider a frame member $A B$ subjected to forces $\left(X_{A}, Y_{A}, M_{A}\right)$ and $\left(X_{B}, Y_{B}, M_{B}\right)$ at joints A and B.

Assume that the length of the member $=\mathrm{L}$, its modulus of elasticity $=\mathrm{E}$, cross-sectional area $=\mathrm{A}$ and moment of inertia about z-axis $=I$.
\therefore The axial stiffness of the member, $\mathrm{S}_{\mathrm{x}}=$ Load to produce unit deflection $=\mathrm{EA} / \mathrm{L}$
Also assume $S_{1}=$ shear stiffness $=12 E I / L^{3}, S_{2}=6 E I / L^{2}, S_{3}=$ flexural stiffness $=4 \mathrm{EI} / \mathrm{L}, \mathrm{S}_{4}=2 \mathrm{EI} / \mathrm{L}$

If the displacements and rotations of joints A and B are $\left(u_{A}, v_{A}, \theta_{A}\right),\left(u_{B}, v_{B}, \theta_{B}\right)$ and the fixed-end reactions are denoted by ' FE ', the external forces may result in the following cases.

Equilibrium equations:

$$
\begin{align*}
& \sum \mathrm{F}_{\mathrm{x}(\mathrm{~A})}=0 \Rightarrow \mathrm{X}_{\mathrm{A}}=\mathrm{FEX}_{\mathrm{A}}+\mathrm{S}_{\mathrm{x}} \mathrm{u}_{\mathrm{A}}+0+0-\mathrm{S}_{\mathrm{x}} \mathrm{u}_{\mathrm{B}}+0+0 \tag{1}\\
& \sum \mathrm{~F}_{\mathrm{y}(\mathrm{~A})}=0 \Rightarrow \mathrm{Y}_{\mathrm{A}}=\mathrm{FEY}_{\mathrm{A}}+0+\mathrm{S}_{1} \mathrm{v}_{\mathrm{A}}+\mathrm{S}_{2} \theta_{\mathrm{A}}+0-\mathrm{S}_{1} \mathrm{v}_{\mathrm{B}}+\mathrm{S}_{2} \theta_{\mathrm{B}} \tag{2}\\
& \sum \mathrm{M}_{\mathrm{z}(\mathrm{~A})}=0 \Rightarrow \mathrm{M}_{\mathrm{A}}=\mathrm{FEM}_{\mathrm{A}}+0+\mathrm{S}_{2} \mathrm{v}_{\mathrm{A}}+\mathrm{S}_{3} \theta_{\mathrm{A}}+0-\mathrm{S}_{2} \mathrm{v}_{\mathrm{B}}+\mathrm{S}_{4} \theta_{\mathrm{B}} \tag{3}\\
& \sum \mathrm{~F}_{\mathrm{x}(\mathrm{~B})}=0 \Rightarrow \mathrm{X}_{\mathrm{B}}=\mathrm{FEX}_{\mathrm{A}}-\mathrm{S}_{\mathrm{x}} \mathrm{u}_{\mathrm{A}}+0+0+\mathrm{S}_{\mathrm{x}} \mathrm{u}_{\mathrm{B}}+0+0 \tag{4}\\
& \sum \mathrm{~F}_{\mathrm{y}(\mathrm{~B})}=0 \Rightarrow \mathrm{Y}_{\mathrm{B}}=\mathrm{FEY}_{\mathrm{B}}+0-\mathrm{S}_{1} \mathrm{v}_{\mathrm{A}}-\mathrm{S}_{2} \theta_{\mathrm{A}}+0+\mathrm{S}_{1} \mathrm{v}_{\mathrm{B}}-\mathrm{S}_{2} \theta_{\mathrm{B}} \tag{5}\\
& \sum \mathrm{M}_{\mathrm{z}(\mathrm{~B})}=0 \Rightarrow \mathrm{M}_{\mathrm{B}}=\mathrm{FEM}_{\mathrm{B}}+0+\mathrm{S}_{2} \mathrm{v}_{\mathrm{A}}+\mathrm{S}_{4} \theta_{\mathrm{A}}+0-\mathrm{S}_{2} \mathrm{v}_{\mathrm{B}}+\mathrm{S}_{3} \theta_{\mathrm{B}} \tag{6}
\end{align*}
$$

where $\mathbf{K}_{\mathbf{m}}{ }^{\mathbf{L}}=$ The stiffness matrix of member $A B$ in the local axis system,
$\mathbf{u}_{\mathrm{m}_{\mathrm{L}}}{ }^{\mathbf{L}}=$ The displacement vector of the member in the local axis system, and
$\mathbf{p}_{\mathrm{m}}{ }^{\mathrm{L}}=$ The force vector of the member in the local axis system
$\left(=\mathbf{q}_{\mathbf{m}}{ }^{\mathbf{L}}-\mathbf{f}_{\mathbf{m}}{ }^{\mathbf{L}}=\right.$ Imposed load vector - Fixed end reaction vector $)$

The member matrices formed in the local axes system can be transformed into the global axes system by considering the angles they make with the horizontal. The local displacements/rotations and global displacements/rotations are related by the following equations.

Local and global joint displacements and rotations of a frame member

$$
\begin{align*}
& \mathrm{u}_{\mathrm{A}}{ }^{\mathrm{L}}=\mathrm{u}_{\mathrm{A}}{ }^{\mathrm{G}} \cos \theta+\mathrm{v}_{\mathrm{A}}{ }^{\mathrm{G}} \sin \theta \tag{8}\\
& \mathrm{v}_{\mathrm{A}}{ }^{\mathrm{L}}=-\mathrm{u}_{\mathrm{A}}{ }^{\mathrm{G}} \sin \theta+\mathrm{v}_{\mathrm{A}}{ }^{\mathrm{G}} \cos \theta \tag{9}\\
& \theta_{\mathrm{A}}{ }^{\mathrm{L}}=\theta_{\mathrm{A}}{ }^{\mathrm{G}} \tag{10}\\
& u_{B}{ }^{L}=u_{B}{ }^{G} \cos \theta+v_{B}{ }^{G} \sin \theta \tag{11}\\
& \mathrm{v}_{\mathrm{B}}{ }^{\mathrm{L}}=-\mathrm{u}_{\mathrm{B}}{ }^{\mathrm{G}} \sin \theta+\mathrm{v}_{\mathrm{B}}{ }^{\mathrm{G}} \cos \theta \tag{12}\\
& \theta_{\mathrm{B}}{ }^{\mathrm{L}}=\theta_{\mathrm{B}}{ }^{\mathrm{G}} \tag{13}
\end{align*}
$$

In matrix form, using $C=\cos \theta, S=\sin \theta$

$$
\left.\begin{array}{l}
\left\{\begin{array}{c}
u_{A}{ }^{\mathrm{L}} \\
\mathrm{v}_{\mathrm{A}}{ }^{\mathrm{L}} \\
\theta_{\mathrm{A}}{ }^{\mathrm{L}} \\
\mathrm{u}_{\mathrm{B}}{ }^{\mathrm{L}} \\
\mathrm{v}_{\mathrm{B}}{ }^{\mathrm{L}} \\
\theta_{\mathrm{B}}{ }^{\mathrm{L}}
\end{array}\right\}=\left(\begin{array}{cccccc}
\mathrm{C} & \mathrm{~S} & 0 & 0 & 0 & 0 \\
-\mathrm{S} & \mathrm{C} & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & \mathrm{C} & \mathrm{~S} & 0 \\
0 & 0 & 0 & -\mathrm{S} & \mathrm{C} & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)\left\{\begin{array}{c}
\mathrm{u}_{\mathrm{A}}{ }^{\mathrm{G}} \\
\mathrm{v}_{\mathrm{A}}{ }^{\mathrm{G}} \\
\theta_{\mathrm{A}}{ }^{\mathrm{G}}
\end{array}\right\} \\
\mathrm{u}_{\mathrm{B}}{ }^{\mathrm{G}} \tag{14}\\
\mathrm{v}_{\mathrm{B}}{ }^{\mathrm{G}} \\
\theta_{\mathrm{B}}{ }^{\mathrm{G}}
\end{array}\right\}, \begin{gathered}
\end{gathered}
$$

where $\mathbf{T}_{\mathbf{m}}$ is the transformation matrix for member $A B$, which connects the displacement vector $\mathbf{u}_{\mathbf{m}}{ }^{\mathbf{L}}$ in the local axes of $A B$ with the displacement vector $\mathbf{u}_{m}{ }^{\mathbf{G}}$ in the global axes.

A similar expression can be obtained for the force vectors $\mathbf{p}_{\mathbf{m}}{ }^{\mathbf{L}}$ and $\mathbf{p}_{\mathbf{m}}{ }^{\mathbf{G}}$; i.e.,

$$
\begin{equation*}
\Rightarrow \mathbf{p}_{\mathrm{m}}^{\mathrm{L}}=\mathbf{T}_{\mathrm{m}} \mathbf{p}_{\mathrm{m}}^{\mathbf{G}} \tag{15}
\end{equation*}
$$

\therefore Eq. (7) can be rewritten as $\Rightarrow \mathbf{K}_{\mathbf{m}}{ }^{\mathbf{L}} \mathbf{T}_{\mathbf{m}} \mathbf{u}_{\mathbf{m}}{ }^{\mathbf{G}}=\mathbf{T}_{\mathbf{m}} \mathbf{p}_{\mathbf{m}}{ }^{\mathbf{G}}$

$$
\begin{align*}
& \Rightarrow\left(\mathbf{T}_{\mathrm{m}}^{-1} \mathbf{K}_{\mathrm{m}}^{\mathrm{L}} \mathbf{T}_{\mathrm{m}}\right) \mathbf{u}_{\mathrm{m}}^{\mathrm{G}}=\mathbf{p}_{\mathrm{m}}^{\mathbf{G}} \tag{16}\\
& \Rightarrow\left(\mathbf{T}_{\mathrm{m}}{ }^{\mathrm{T}} \mathbf{K}_{\mathrm{m}}{ }^{\mathrm{L}} \mathbf{T}_{\mathrm{m}}\right) \mathbf{u}_{\mathrm{m}}{ }^{\mathbf{G}}=\mathbf{p}_{\mathrm{m}}{ }^{\mathbf{G}} \tag{17}
\end{align*}
$$

where $\mathbf{T}_{\mathbf{m}}{ }^{\mathbf{T}}$ is the transpose of the transformation matrix $\mathbf{T}_{\mathbf{m}}$, which is also $=\mathbf{T}_{\mathbf{m}}{ }^{-\mathbf{1}}$
If ($\mathbf{T}_{\mathbf{m}}{ }^{\mathbf{T}} \mathbf{K}_{\mathbf{m}}{ }^{\mathbf{L}} \mathbf{T}_{\mathbf{m}}$) is written as $\mathbf{K}_{\mathbf{m}}^{\mathbf{G}}$, the member stiffness matrix in the global axis system, then

$$
\begin{equation*}
\mathbf{K}_{\mathrm{m}}{ }^{\mathbf{G}} \mathbf{u}_{\mathrm{m}}{ }^{\mathbf{G}}={\mathbf{p}_{\mathrm{m}}{ }^{\mathbf{G}} .{ }^{2}} \tag{18}
\end{equation*}
$$

Assembly of Stiffness Matrix and Load Vector of a 2D Frame

The general form of the stiffness matrix for any member of a 2-dimensional frame is

Example

Assemble the global stiffness matrix and write the global load vector of the frame shown below. Also write the boundary conditions [E, A, I are constant for all the members].
Since E, A, I and L are uniform, so are $S_{x}, S_{1}, S_{2}, S_{3}$ and S_{4}
If $\mathrm{E}=500 \times 10^{3} \mathrm{ksf}, \mathrm{A}=1 \mathrm{ft}^{2}, \mathrm{I}=0.10 \mathrm{ft}^{4}, \mathrm{~L}=10 \mathrm{ft}$
$\mathrm{S}_{\mathrm{x}}=\mathrm{EA} / \mathrm{L}=50,000 \mathrm{k} / \mathrm{ft}$
$\mathrm{S}_{1}=12 \mathrm{EI} / \mathrm{L}^{3}=600 \mathrm{k} / \mathrm{ft}, \mathrm{S}_{2}=6 \mathrm{EI} / \mathrm{L}^{2}=3,000 \mathrm{k} / \mathrm{rad}$
$\mathrm{S}_{3}=4 \mathrm{EI} / \mathrm{L}=20,000 \mathrm{k}-\mathrm{ft} / \mathrm{rad}, \mathrm{S}_{4}=2 \mathrm{EI} / \mathrm{L}=10,000 \mathrm{k}-\mathrm{ft} / \mathrm{rad}$
For member $\mathrm{AB}, \mathrm{C}=1, \mathrm{~S}=0$
For member $B C, C=0, S=-1$

d.o.k.i $=3 \times 3=9$, which are $\left(u_{A}, v_{A}, \theta_{A}\right),\left(u_{B}, v_{B}, \theta_{B}\right)$ and $\left(u_{C}, v_{C}, \theta_{C}\right)$, denoted by $u_{1} \sim u_{9}$.
$\mathbf{K}_{\mathbf{A B}}^{\mathbf{G}}=\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ \mathrm{~S}_{\mathrm{x}} & 0 & 0 & -S_{\mathrm{x}} & 0 & 0 \\ 0 & \mathrm{~S}_{1} & \mathrm{~S}_{2} & 0 & -\mathrm{S}_{1} & \mathrm{~S}_{2} \\ 0 & \mathrm{~S}_{2} & \mathrm{~S}_{3} & 0 & -\mathrm{S}_{2} & \mathrm{~S}_{4} \\ -\mathrm{S}_{\mathrm{x}} & 0 & 0 & \mathrm{~S}_{\mathrm{x}} & 0 & 0 \\ 0 & -\mathrm{S}_{1} & -\mathrm{S}_{2} & 0 & \mathrm{~S}_{1} & -\mathrm{S}_{2} \\ 0 & \mathrm{~S}_{2} & \mathrm{~S}_{4} & 0 & -\mathrm{S}_{2} & \mathrm{~S}_{3}\end{array}\right)$

$$
\mathbf{K}_{\mathbf{B C}} \mathbf{G}=\left(\begin{array}{cccccc}
4 & 5 & 6 & 7 & 8 & 9 \\
\mathrm{~S}_{1} & 0 & \mathrm{~S}_{2} & -\mathrm{S}_{1} & 0 & \mathrm{~S}_{2} \\
0 & \mathrm{~S}_{\mathrm{x}} & 0 & 0 & -\mathrm{S}_{\mathrm{x}} & 0 \\
\mathrm{~S}_{2} & 0 & \mathrm{~S}_{3} & -\mathrm{S}_{2} & 0 & \mathrm{~S}_{4} \\
-\mathrm{S}_{1} & 0 & -\mathrm{S}_{2} & \mathrm{~S}_{1} & 0 & -\mathrm{S}_{2} \\
0 & -\mathrm{S}_{\mathrm{x}} & 0 & 0 & \mathrm{~S}_{\mathrm{x}} & 0 \\
\mathrm{~S}_{2} & 0 & \mathrm{~S}_{4} & -\mathrm{S}_{2} & 0 & \mathrm{~S}_{3}
\end{array}\right)
$$

Boundary Conditions: $u_{1}=0, u_{2}=0, u_{7}=0, u_{8}=0, u_{9}=0$
Therefore, the matrices and vectors can be modified accordingly (similar to the analysis of truss).
Solving the resulting (4×4) matrix, the following displacements and rotations are obtained

$$
\mathrm{u}_{3}=-8.12 \times 10^{-4} \mathrm{rad}, \mathrm{u}_{4}=-5.14 \times 10^{-4} \mathrm{ft}, \mathrm{u}_{5}=-1.27 \times 10^{-4} \mathrm{ft}, \mathrm{u}_{6}=3.36 \times 10^{-4} \mathrm{rad}
$$

If axial deformations are neglected in the problem shown before, the displacements u_{4} and u_{5} are zero and the only unknown displacements are the rotations u_{3} and u_{6}. In that case, the modified equilibrium equations are

$$
\begin{aligned}
& \quad S_{3} u_{3}+S_{4} u_{6}=-12.5 \Rightarrow 20 \times 10^{3} u_{3}+10 \times 10^{3} \mathrm{u}_{6}=-12.5 \\
& \text { and } \mathrm{S}_{4} \mathrm{u}_{3}+2 \mathrm{~S}_{3} \mathrm{u}_{6}=4.17 \Rightarrow 10 \times 10^{3} \mathrm{u}_{3}+40 \times 10^{3} \mathrm{u}_{6}=4.17 \\
& {\left[\text { Note: } \mathrm{S}_{1}=600 \mathrm{k} / \mathrm{ft}, \mathrm{~S}_{2}=3,000 \mathrm{k} / \mathrm{rad}, \mathrm{~S}_{3}=20,000 \mathrm{k}-\mathrm{ft} / \mathrm{rad}, \mathrm{~S}_{4}=10,000 \mathrm{k}-\mathrm{ft} / \mathrm{rad}\right]}
\end{aligned}
$$

Solving, $\mathrm{u}_{3}=-7.74 \times 10^{-4} \mathrm{rad}, \mathrm{u}_{6}=2.98 \times 10^{-4} \mathrm{rad}$ [instead of $-8.12 \times 10^{-4}, 3.36 \times 10^{-4}$ found before]
\therefore If the axial deformations are neglected, the calculations and formulations are much simplified without significant loss of accuracy.
Neglecting the axial deformations, the earlier problem can be formulated as shown below

Here, d.o.k.i. $=2$
There can be three cases of response
(i) Case0: The fixed-end reactions
(ii) Case 1: The reactions due to u_{3}
(iii) Case2: The reactions due to u_{6}

Equilibrium equations:

$$
\begin{array}{ll}
\sum \mathrm{M}_{\mathrm{z}(\mathrm{~A})}=0 \Rightarrow 12.5+\mathrm{S}_{3} \mathrm{u}_{3}+\mathrm{S}_{4} \mathrm{u}_{6}=0 & \Rightarrow 20 \times 10^{3} \mathrm{u}_{3}+10 \times 10^{3} \mathrm{u}_{6}=-12.5 \\
\sum \mathrm{M}_{\mathrm{z}(\mathrm{~B})}=0 \Rightarrow-12.5+8.33+\mathrm{S}_{4} \mathrm{u}_{3}+\left(\mathrm{S}_{3}+\mathrm{S}_{3}\right) \mathrm{u}_{6}=0 & \Rightarrow 10 \times 10^{3} \mathrm{u}_{3}+40 \times 10^{3} \mathrm{u}_{6}=4.17
\end{array}
$$

Solving the two equations, $\mathrm{u}_{3}=-7.74 \times 10^{-4} \mathrm{rad}, \mathrm{u}_{6}=2.98 \times 10^{-4} \mathrm{rad}$
Calculation of Internal Forces (SF and BM):
$\mathrm{SF}_{(\mathrm{A})}=5+\mathrm{S}_{2} \mathrm{u}_{3}+\mathrm{S}_{2} \mathrm{u}_{6}=5+3,000 \times\left(-7.74 \times 10^{-4}\right)+3,000 \times\left(2.98 \times 10^{-4}\right)=3.54 \mathrm{k}$
$\mathrm{SF}_{(\mathrm{B})}($ in AB$)=5-\mathrm{S}_{2} \mathrm{u}_{3}-\mathrm{S}_{2} \mathrm{u}_{6}=5-3,000 \times\left(-7.74 \times 10^{-4}\right)-3,000 \times\left(2.98 \times 10^{-4}\right)=6.46 \mathrm{k}$
$\mathrm{SF}_{(\mathrm{B})}($ in BC$)=25+0+\mathrm{S}_{2} \mathrm{u}_{6}=25+3,000 \times\left(2.98 \times 10^{-4}\right)=25.89 \mathrm{k}$
$\mathrm{SF}_{(\mathrm{C})}($ in BC$)=5+0-\mathrm{S}_{2} \mathrm{u}_{6}=5-3,000 \times\left(2.98 \times 10^{-4}\right)=4.11 \mathrm{k} \quad$ should be zero
$\mathrm{BM}_{(\mathrm{A})}=12.5+\mathrm{S}_{3} \mathrm{u}_{3}+\mathrm{S}_{4} \mathrm{u}_{6}=12.5+20,000 \times\left(-7.74 \times 10^{-4}\right)+10,000 \times\left(2.98 \times 10^{-4}\right)=0$
$\mathrm{BM}_{(\text {(в) }}($ in AB$)=-12.5+\mathrm{S}_{4} \mathrm{u}_{3}+\mathrm{S}_{3} \mathrm{u}_{6}=-12.5+10,000 \times\left(-7.74 \times 10^{-4}\right)+20,000 \times\left(2.98 \times 10^{-4}\right)=-14.28 \mathrm{k}^{\prime}$
$\mathrm{BM}_{(\mathrm{B})}($ in BC$)=8.33+0+\mathrm{S}_{3} \mathrm{u}_{6}=8.33+20,000 \times\left(2.98 \times 10^{-4}\right)=14.29 \mathrm{k}^{\prime}$
$\mathrm{BM}_{(\mathrm{C})}=-8.33+0+\mathrm{S}_{4} \mathrm{u}_{6}=-8.33+10,000 \times\left(2.98 \times 10^{-4}\right)=-5.35 \mathrm{k}^{\prime}$ should be equal

Problems on Stiffness Method for Beams/Frames

1.

Support A settles 0.05'
2.

3.

A and B are guided roller supports; $\mathrm{EI}_{\mathrm{AB}}=2 \mathrm{EI}$
4.

5.

Neglect axial deformations and assume $\mathrm{EI}=40,000 \mathrm{k}-\mathrm{ft}^{2}$
$1 \mathrm{k} /{ }^{\prime}$

6. Assemble the stiffness matrix, load vector and calculate the unknown joint deflections and rotations of the beam ABC shown below, considering flexural and axial deformations as well as boundary conditions [Given: $P=250 \mathrm{k}, w=1 \mathrm{k} / \mathrm{ft}, F=10 \mathrm{k}, E=400 \times 10^{3} \mathrm{k} / \mathrm{ft}^{2}$].

7.

8.

9. Use the Stiffness Method (considering flexural deformations only) to calculate the unknown joint deflections and rotations of the frame loaded as shown below [Given: EI $=$ constant $=10 \times 10^{3} \mathrm{kN}-\mathrm{m}^{2}$].

Analysis of Three-Dimensional Trusses and Frames

1. Three-Dimensional Trusses

Three-dimensional trusses have 3 unknown displacements at each joint; i.e., the deflection u along x-axis, deflection v along y -axis and deflection w along z -axis. Therefore the size of the member stiffness matrix is (6×6). If $S_{x}=E A / L$, then the stiffness matrix in the local axes system is

$$
\mathbf{K}_{\mathrm{m}}{ }^{\mathbf{L}}=\mathbf{S}_{\mathrm{x}}\left(\begin{array}{rrrrrr}
1 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

The member stiffness matrix in the global axes system is
where $\mathrm{C}_{\mathrm{x}}=\cos \alpha, \mathrm{C}_{\mathrm{y}}=\cos \beta, \mathrm{C}_{\mathrm{z}}=\cos \gamma$
[α, β and γ are the angles the member makes with the coordinate axes x, y and z respectively]
After assembling the stiffness matrix and load vector and applying known boundary conditions, the unknown displacements are calculated by any standard method of solving simultaneous equations.
Once the displacements are known, the member forces are calculated by the following equation

$$
P_{A B}=S_{x}\left[\left(u_{B}-u_{A}\right) C_{x}+\left(v_{B}-v_{A}\right) C_{y}+\left(w_{B}-w_{A}\right) C_{z}\right]
$$

2. Three-Dimensional Frames

Three-dimensional frames have 6 unknown displacements at each joint; i.e., the deflections (u, v, w) along the x, y and z -axis and rotations $\left(\theta_{\mathrm{x}}, \theta_{\mathrm{y}}, \theta_{\mathrm{z}}\right)$ around the x, y and z -axis. Therefore the size of the member stiffness matrix is (12×12), which has the following form in the local axes system

	S_{x}						$-S_{x}$					
		S_{12}				S_{22}		$-\mathrm{S}_{12}$				$\mathrm{S}_{2 z}$
			$\mathrm{S}_{1 \mathrm{l}}$		$-\mathrm{S}_{2 \mathrm{y}}$				$-\mathrm{S}_{1 \mathrm{l}}$		$-\mathrm{S}_{2 \mathrm{y}}$	
				T_{x}						- T_{x}		
			$-\mathrm{S}_{2 y}$		$\mathrm{S}_{3 y}$				$\mathrm{S}_{2 \mathrm{y}}$		$\mathrm{S}_{4 \mathrm{y}}$	
		$\mathrm{S}_{2 \mathrm{z}}$				$\mathrm{S}_{3 z}$		$-\mathrm{S}_{22}$				$\mathrm{S}_{4 z}$
$\mathrm{K}_{\mathrm{m}}{ }^{\mathbf{L}}=$	$-S_{x}$						S_{x}					
		$-\mathrm{S}_{17}$				$-\mathrm{S}_{2 z}$		$\mathrm{S}_{1 z}$				$-\mathrm{S}_{22}$
			$-\mathrm{S}_{1 \mathrm{l}}$		$\mathrm{S}_{2 \mathrm{y}}$				$\mathrm{S}_{1 \mathrm{l}}$		$\mathrm{S}_{2 \mathrm{y}}$	
				$-\mathrm{T}_{\mathrm{x}}$						T_{x}		
			$-\mathrm{S}_{2 \mathrm{y}}$		$\mathrm{S}_{4 \mathrm{y}}$				$\mathrm{S}_{2 \mathrm{y}}$		$\mathrm{S}_{3 \mathrm{y}}$	
		$\mathrm{S}_{2 z}$				$\mathrm{S}_{4 z}$		$-\mathrm{S}_{27}$				$\mathrm{S}_{3 z}$

The transformation matrix \mathbf{T}_{m} and the transformed stiffness matrix $\mathbf{K}_{\mathrm{m}}{ }^{\mathbf{G}}$ in the global axes system are complicated and not written here. However, the method of applying boundary conditions and solving for the unknown displacements are similar to the methods mentioned earlier.

Assembly of Stiffness Matrix and Load Vector of a Three-Dimensional Truss

Assemble the global stiffness matrix and write the global load vector of the three dimensional truss shown below. Also write the boundary conditions $[\mathrm{EA} / \mathrm{L}=$ Constant $=500 \mathrm{kip} / \mathrm{ft}]$.

Member DB: $\left(\mathrm{C}_{\mathrm{x}}=1, \mathrm{C}_{\mathrm{y}}=0, \mathrm{C}_{\mathrm{z}}=0\right)$
$\mathbf{K}_{\mathbf{D B}} \mathbf{G}^{\mathbf{G}}=500\left(\begin{array}{rrrrrrr}10 & 11 & 12 & 4 & 5 & 6 \\ 1 & 0 & 0 & -1 & 0 & 0 & 10 \\ 0 & 0 & 0 & 0 & 0 & 0 & 11 \\ 0 & 0 & 0 & 0 & 0 & 0 & 12 \\ -1 & 0 & 0 & 1 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right) \frac{6}{5}$

Member DC: $\left(C_{x}=0, C_{y}=0, C_{z}=-1\right)$

$$
\mathbf{K}_{\mathbf{D C}} \mathbf{G}^{\mathbf{G}}=500\left(\begin{array}{rrrrrr}
10 & 11 & 12 & 7 & 8 & 9 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 1
\end{array}\right) \begin{gathered}
\\
11 \\
7 \\
8 \\
9
\end{gathered}
$$

Member DA: $\left(\mathrm{C}_{\mathrm{x}}=-0.707, \mathrm{C}_{\mathrm{y}}=-0.707, \mathrm{C}_{\mathrm{z}}=0\right)$

$$
\mathbf{K}_{\mathbf{D A}}^{\mathbf{G}}=500\left(\begin{array}{cccccc}
10 & 11 & 12 & 1 & 2 & 3 \\
0.5 & 0.5 & 0 & -0.5 & -0.5 & 0 \\
0.5 & 0.5 & 0 & -0.5 & -0.5 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
-0.5 & -0.5 & 0 & 0.5 & 0.5 & 0 \\
-0.5 & -0.5 & 0 & 0.5 & 0.5 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \frac{11}{12} 12
$$

Boundary Conditions: $u_{1}=0, u_{2}=0, u_{3}=0, u_{4}=0, u_{5}=0, u_{6}=0, u_{7}=0, u_{8}=0, u_{9}=0$

Applying boundary conditions

$$
500\left(\begin{array}{ccc}
1.5 & 0.5 & 0 \\
0.5 & 0.5 & 0 \\
0 & 0 & 1
\end{array}\right)\left\{\begin{array}{l}
\mathrm{u}_{10} \\
\mathrm{u}_{11} \\
\mathrm{u}_{12}
\end{array}\right\}=\left\{\begin{array}{c}
10 \\
-20 \\
0
\end{array}\right\}
$$

Solving the three equations $\Rightarrow \mathrm{u}_{10}=0.06^{\prime}, \mathrm{u}_{11}=-0.14^{\prime}, \mathrm{u}_{12}=0$

Support Reactions

$X_{A}=250 \mathrm{u}_{1}+250 \mathrm{u}_{2}-250 \mathrm{u}_{10}-250 \mathrm{u}_{11}=20 \mathrm{k}$
$\mathrm{Y}_{\mathrm{A}}=250 \mathrm{u}_{1}+250 \mathrm{u}_{2}-250 \mathrm{u}_{10}-250 \mathrm{u}_{11}=20 \mathrm{k}$
$\mathrm{Z}_{\mathrm{A}}=0$
$X_{B}=500 \mathrm{u}_{4}-500 \mathrm{u}_{10}=-30 \mathrm{k}$
$Y_{B}=0$
$\mathrm{Z}_{\mathrm{B}}=0$
$X_{C}=0$
$Y_{C}=0$
$\mathrm{Z}_{\mathrm{C}}=500 \mathrm{u}_{9}-500 \mathrm{u}_{12}=0$

Member Forces

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{DA}}=500\left\{-0.707\left(\mathrm{u}_{1}-\mathrm{u}_{10}\right)-0.707\left(\mathrm{u}_{2}-\mathrm{u}_{11}\right)+0\left(\mathrm{u}_{3}-\mathrm{u}_{12}\right)\right\}=-28.28 \mathrm{k} \\
& \mathrm{~F}_{\mathrm{DB}}=500\left\{1\left(\mathrm{u}_{4}-\mathrm{u}_{10}\right)+0\left(\mathrm{u}_{5}-\mathrm{u}_{11}\right)+0\left(\mathrm{u}_{6}-\mathrm{u}_{12}\right)\right\}=-30 \mathrm{k} \\
& \mathrm{~F}_{\mathrm{DC}}=500\left\{0\left(\mathrm{u}_{7}-\mathrm{u}_{10}\right)+0\left(\mathrm{u}_{8}-\mathrm{u}_{11}\right)-1\left(\mathrm{u}_{9}-\mathrm{u}_{12}\right)\right\}=0
\end{aligned}
$$

Problems on the Analysis of Three-Dimensional Trusses

Apply boundary conditions and ignore zero-force members whenever necessary/convenient [Assume EA/L = constant $=500 \mathrm{k} / \mathrm{ft}$ for all questions]

1. Calculate the joint deflections, support reactions and member forces of the space truss analyzed in class if support A settles 0.10^{\prime} vertically downwards.
2. Calculate the member forces of the space truss abcd loaded as shown below, if $P_{x}=0, P_{y}=10 \mathrm{k}, P_{z}=0$.

3. Calculate the member forces and applied loads P_{x}, P_{y}, P_{z} in the space truss $a b c d$ shown in Question 2, if the joint a moves 0.10^{\prime} right wards and 0.05^{\prime} downwards due to the applied loads (i.e., no displacement in z-direction).
4. Calculate the support reactions and member forces of the space truss loaded as shown below.

5. Assemble the stiffness matrix, load vector and write down the boundary reactions of the threedimensional truss loaded as shown below.

Calculation of Degree of Kinematic Indeterminacy (Doki)

Determine the doki (i.e., size of the stiffness matrix) for the structures shown below, considering boundary conditions. For the frames, also determine the doki if axial deformations are neglected.

3D Frame

2D Frame

2D Frame

2D Frame

3D Frame

3D Frame

Energy Formulation of Geometric Nonlinearity

Linear structural analysis is based on the assumption of small deformations and linear elastic behavior of materials. The analysis is performed on the initial undeformed shape of the structure. As the applied loads increase, this assumption is no longer accurate, because the deformations may cause significant changes in the structural shape. Geometric nonlinearity is the change in the elastic load-deformation characteristics of the structure caused by the change in the structural shape.

Among various types of geometric nonlinearity, the structural instability or moment magnification caused by large compressive forces, stiffening of structures due to large tensile forces, change in structural parameters due to applied dynamic loads are significant. Rather than using equilibrium equations, it is often more convenient to formulate geometrically nonlinear problems by the Method of Virtual Work.

Method of Virtual Work

Another way of representing Newton's equation of equilibrium is by energy methods, which is based on the law of conservation of energy. According to the principle of virtual work, if a system in equilibrium is subjected to virtual displacements $\delta \mathrm{u}$, the virtual work done by the external forces $\left(\delta \mathrm{W}_{\mathrm{E}}\right)$ is equal to the virtual work done by the internal forces $\left(\delta \mathrm{W}_{\mathrm{I}}\right)$

$$
\begin{equation*}
\delta \mathrm{W}_{\mathrm{I}}=\delta \mathrm{W}_{\mathrm{E}} \tag{1}
\end{equation*}
$$

where the symbol δ is used to indicate 'virtual'. This term is used to indicate hypothetical increments of displacements and works that are assumed to happen in order to formulate the problem.

Energy Formulation and Buckling of Beams-columns

Transversely Loaded Member and Assumed Shape
Applying the method of virtual work to flexural members subjected to transverse load of $q(x)$ per unit length and axial (tensile) force $P \Rightarrow \int u^{\prime \prime} E I \delta u^{\prime \prime} d x+\int u^{\prime} P \delta u^{\prime} d x=\int q(x) d x \delta u$

Using the energy formulation assuming $u(x)=u_{0} \psi(x)$ provides the following equation

$$
\begin{align*}
& \int \mathrm{u}_{0} \psi^{\prime \prime}(\mathrm{x}) \mathrm{EI} \delta \mathrm{u}_{0} \psi^{\prime \prime}(\mathrm{x}) \mathrm{dx}+\int \mathrm{u}_{0} \psi^{\prime}(\mathrm{x}) \mathrm{P} \delta \mathrm{u}_{0} \psi^{\prime}(\mathrm{x}) \mathrm{dx}=\int \mathrm{q}(\mathrm{x}) \mathrm{dx} \delta \mathrm{u}_{0} \psi(\mathrm{x}) \\
& \Rightarrow\left\{\int \mathrm{EI}\left[\psi^{\prime \prime}(\mathrm{x})\right]^{2} \mathrm{dx}+\int \mathrm{P}\left[\psi^{\prime}(\mathrm{x})\right]^{2} \mathrm{dx}\right\} \mathrm{u}_{0}=\int \mathrm{q}(\mathrm{x}) \psi(\mathrm{x}) \mathrm{dx} \quad \ldots \ldots \ldots \tag{3}
\end{align*}
$$

\therefore Carrying out the integrations after knowing (or assuming) $\psi(x)$, Eq. (3) can be rewritten as,

$$
\begin{equation*}
\mathrm{k}_{\text {Total }} * \mathrm{u}_{0}=\mathrm{f}^{*} \tag{4}
\end{equation*}
$$

where $\mathrm{k}^{*}, \mathrm{f}^{*}$ are the 'effective' stiffness and force of the system, with

$$
\begin{align*}
& \mathrm{k}_{\text {Total }} *=\int \mathrm{EI}\left[\psi^{\prime \prime}(\mathrm{x})\right]^{2} \mathrm{dx}+\int \mathrm{P}\left[\psi^{\prime}(\mathrm{x})\right]^{2} \mathrm{dx} \tag{5.1}\\
& \mathrm{f}^{*}=\int \mathrm{q}(\mathrm{x}) \psi(\mathrm{x}) \mathrm{dx} \tag{5.2}
\end{align*}
$$

Therefore a tensile force P (i.e., positive P) will further stiffen the beam-column (i.e., increase its stiffness) and a compressive force (i.e., negative P) will make it more flexible and increase the resulting deflection and internal forces compared to linear analysis. In the extreme case, the beam-column will buckle if the effective stiffness k^{*} becomes zero, which is possible only for a compressive force

$$
\begin{equation*}
\mathrm{P}_{\mathrm{cr}}=-\left\{\int \mathrm{EI}\left[\psi^{\prime \prime}(\mathrm{x})\right]^{2} \mathrm{dx}\right\} / \int\left[\psi^{\prime}(\mathrm{x})\right]^{2} \mathrm{dx} \tag{6}
\end{equation*}
$$

It is obvious that the accuracy of the formulation depends on the accuracy of the assumed shape function $\psi(x)$, which must at least satisfy the natural boundary conditions. However, other than assuming a more appropriate shape function, its accuracy cannot be improved by any other means.

Two-noded elements with cubic interpolation functions for u_{1}, u_{2}, u_{3} and u_{4} are typically chosen in such cases, so that $u(x)=u_{1} \psi_{1}+u_{2} \psi_{2}+u_{3} \psi_{3}+u_{4} \psi_{4}$
where $\psi_{1}(x)=1-3(x / L)^{2}+2(x / L)^{3}, \psi_{2}(x)=x\{1-(x / L)\}^{2}$
$\psi_{3}(x)=3(x / L)^{2}-2(x / L)^{3}, \psi_{4}(x)=(x-L)(x / L)^{2}$
$\therefore \mathrm{u}^{\prime}=\mathrm{u}_{1} \psi_{1}{ }^{\prime}+\mathrm{u}_{2} \psi_{2}{ }^{\prime}+\mathrm{u}_{3} \psi_{3}{ }^{\prime}+\mathrm{u}_{4} \psi_{4}{ }^{\prime} ; \delta \mathrm{u}^{\prime}=\delta \mathrm{u}_{1} \psi_{1}{ }^{\prime}+\delta \mathrm{u}_{2} \psi_{2}{ }^{\prime}+\delta \mathrm{u}_{3} \psi_{3}{ }^{\prime}+\delta \mathrm{u}_{4} \psi_{4}{ }^{\prime}$
$\therefore \mathrm{u}^{\prime \prime}=\mathrm{u}_{1} \psi_{1}{ }^{\prime \prime}+\mathrm{u}_{2} \psi_{2}{ }^{\prime \prime}+\mathrm{u}_{3} \psi_{3}{ }^{\prime \prime}+\mathrm{u}_{4} \psi_{4}{ }^{\prime \prime} ; \delta \mathrm{u}^{\prime \prime}=\delta \mathrm{u}_{1} \psi_{1}{ }^{\prime \prime}+\delta \mathrm{u}_{2} \psi_{2}{ }^{\prime \prime}+\delta \mathrm{u}_{3} \psi_{3}{ }^{\prime \prime}+\delta \mathrm{u}_{4} \psi_{4}{ }^{\prime \prime}$

Shape functions $\psi_{1}(x), \psi_{2}(x), \psi_{3}(x)$ and $\psi_{4}(x)$
Inserting the values of $u^{\prime}, \delta u^{\prime}, u^{\prime \prime}$ and $\delta u^{\prime \prime}$ in Eq. (1), and equating the coefficients of $\psi_{1} \Rightarrow$
$\left(\int E \mathrm{I} \psi_{1}{ }^{\prime \prime} \psi_{1}{ }^{\prime \prime} \mathrm{dx}+\int \mathrm{P} \psi_{1}{ }^{\prime} \psi_{1}{ }^{\prime} \mathrm{dx}\right) \mathrm{u}_{1}+\left(\int \mathrm{E} \operatorname{I} \psi_{1}{ }^{\prime \prime} \psi_{2}{ }^{\prime \prime} \mathrm{dx}+\int \mathrm{P} \psi_{1}{ }^{\prime} \psi_{2}{ }^{\prime} \mathrm{dx}\right) \mathrm{u}_{2}$
$+\left(\int E \mathrm{I} \psi_{1}^{\prime \prime} \psi_{3}^{\prime \prime} \mathrm{dx}+\int \mathrm{P} \psi_{1}^{\prime} \psi_{3}^{\prime} \mathrm{dx}\right) \mathrm{u}_{3}+\left(\int \mathrm{E}\right.$ I $\left.\psi_{1}^{\prime \prime} \psi_{4}^{\prime \prime} \mathrm{dx}+\int \mathrm{P} \psi_{1}^{\prime} \psi_{4}{ }^{\prime} \mathrm{dx}\right) \mathrm{u}_{4}=\int \mathrm{q}(\mathrm{x}) \psi_{1} \mathrm{dx}$
Similarly, equating the coefficients of ψ_{2}, ψ_{3} and ψ_{4} will produce two (4×4) matrices $\mathbf{K}_{\mathbf{m}}$ and $\mathbf{G}_{\mathbf{m}}$, along with a (4×1) load vector $\mathbf{p}_{\mathbf{m}}$ here, and their elements are given by

$$
\begin{equation*}
\mathrm{K}_{\mathrm{mij}}=\int \mathrm{EI} \psi_{\mathrm{i}}^{\prime \prime} \psi_{\mathrm{j}}^{\prime \prime} \mathrm{dx} \quad \mathrm{G}_{\mathrm{mij}}=\int \mathrm{P} \psi_{\mathrm{i}}^{\prime} \psi_{\mathrm{j}}^{\prime} \mathrm{dx} \quad \mathrm{p}_{\mathrm{mi}}=\int \mathrm{q}(\mathrm{x}) \psi_{\mathrm{i}} \mathrm{dx} \tag{12}
\end{equation*}
$$

The equations of the stiffness matrix and geometric stiffness matrix for flexural members guarantee that for 'linear' problems,
(i) The stiffness and geometric stiffness matrices are symmetric [i.e., element (i,j) = element (j, i)],
(ii) The diagonal elements of the matrices are positive [as the element (i,i) involves squares].

As mentioned, for structural analysis the effect of axial load on flexural behavior can be approximated by simplified formulations of the geometric nonlinearity problem. For this purpose, a new matrix called the geometric stiffness matrix (G) has been added to the original stiffness matrix \mathbf{K} obtained from linear analysis of the undeformed deflected shape of the structure. Therefore, the total stiffness matrix of a flexural member is the sum of these two matrices; i.e.,

$$
\begin{equation*}
\mathbf{K}_{\text {total }}=\mathbf{K}+\mathbf{G} \tag{13}
\end{equation*}
$$

Using the same shape functions $\psi_{i}(i=1 \sim 4)$ as done for the linear analyses of beams and frames, the following geometric stiffness matrix is formed in the local axes system of a member of length L.

$$
\mathbf{G}_{\mathbf{m}}^{\mathbf{L}}=(\mathrm{P} / 30 \mathrm{~L})\left(\begin{array}{cccc}
36 & 3 \mathrm{~L} & -36 & 3 \mathrm{~L} \tag{14}\\
3 \mathrm{~L} & 4 \mathrm{~L}^{2} & -3 \mathrm{~L} & -\mathrm{L}^{2} \\
-36 & -3 \mathrm{~L} & 36 & -3 \mathrm{~L} \\
3 \mathrm{~L} & -\mathrm{L}^{2} & -3 \mathrm{~L} & 4 \mathrm{~L}^{2}
\end{array}\right)
$$

This geometric stiffness matrix can be added to the linear stiffness matrix shown before, and the total stiffness matrix is transformed and assembled using the equations and formulations mentioned in earlier lectures. Once the total stiffness matrix $\mathbf{K}_{\text {total }}$ is obtained in the global axes after applying appropriate boundary conditions, the structural analyses can be carried out using the procedures mentioned before.

The governing equations of motion can be written in matrix form as

$$
\begin{equation*}
\mathbf{K}_{\text {total }} \mathbf{u}=\mathbf{f} \tag{15}
\end{equation*}
$$

However it should be noted that the presence of axial force P in the geometric stiffness matrix makes the problem nonlinear because P is obtained from member deformations, which cannot be found before performing the structural analysis. Therefore the system properties and output are interdependent, which calls for iterative methods of structural analysis. However, P is known for special cases (e.g., single column subjected to a known axial load) so that the problem is not nonlinear any more.

Buckling occurs when the structure loses its stiffness, i.e., when the total stiffness matrix $\mathbf{K}_{\text {total }}$ becomes singular. Therefore, the buckling load can be obtained by solving the eigenvalue problem

$$
\begin{equation*}
\left|\mathbf{K}_{\text {total }}\right|=0 \Rightarrow|\mathbf{K}+\mathbf{G}|=0 \tag{16}
\end{equation*}
$$

Since the stiffness and geometric stiffness matrix are derived from approximate shape functions, the critical buckling load obtained from Eq. (16) is also approximate and can be improved if the beam-column is divided into more segments throughout its length.

Just as an axial compressive load can reduce the effective stiffness of a structural member, a tensile load may increase it. This will cause stiffening of the member and a corresponding decrease in deformations.

Example

For EI $=40 \times 10^{3} \mathrm{k}$ - $\mathrm{ft}^{2}, \mathrm{~L}=10 \mathrm{ft}$, calculate the approximate first buckling load for
(i) a simply supported beam, (ii) a cantilever beam
(iii) Suggest how to improve the results.
(iv) Also calculate the tip deflection and rotation of the cantilever beam when subjected to a uniformly distributed transverse load of $1 \mathrm{k} / \mathrm{ft}$ along with a compressive load of 400 kips .

Solution

(i) For the simply supported beam, the two d.o.f. are θ_{A} and θ_{B}, so the \mathbf{K} and \mathbf{G} matrices are

$$
\mathbf{K}=10^{3}\left(\begin{array}{cc}
16 & 8 \\
8 & 16
\end{array}\right) \quad \text { and } \quad \mathbf{G}=(\mathrm{P} / 300)\left(\begin{array}{cc}
400 & -100 \\
-100 & 400
\end{array}\right) \stackrel{\text { A }}{\text { A }}
$$

\therefore For critical buckling load P , the determinant of $(\mathbf{K}+\mathbf{G})$ is $=0$
$\Rightarrow(16000+4 \mathrm{P} / 3)^{2}-(8000-\mathrm{P} / 3)^{2}=0 \Rightarrow 16000+4 \mathrm{P} / 3= \pm(8000-\mathrm{P} / 3)$
$\Rightarrow 5 \mathrm{P} / 3=-8000$; i.e., $\mathrm{P}=-4800 \mathrm{k}$, or $\mathrm{P}+24000=0$; i.e., $\mathrm{P}=-24000 \mathrm{k}$ (negative \Rightarrow compression)
Compared to the first two 'exact' buckling loads, $\pi^{2} \mathrm{EI} / \mathrm{L}^{2}$ and $4 \pi^{2} \mathrm{EI} / \mathrm{L}^{2}$; i.e., -3948 k and -15791 k
(ii) For the cantilever beam, the two d.o.f. are v_{A} and θ_{A}, the \mathbf{K} and \mathbf{G} matrices being

$$
\mathbf{K}=10^{3}\left(\begin{array}{lr}
0.48 & 2.4 \\
2.4 & 16
\end{array}\right) \quad \text { and } \quad \mathbf{G}=(\mathrm{P} / 300)\left(\begin{array}{cc}
36 & 30 \\
30 & 400
\end{array}\right) \quad \mathrm{A} \longrightarrow \mathrm{~B}
$$

\therefore For critical buckling load P , the determinant of $(\mathbf{K}+\mathbf{G})$ is $=0$
$\Rightarrow(480+0.12 \mathrm{P})(16000+4 \mathrm{P} / 3)-(2400+0.10 \mathrm{P})^{2}=0 \Rightarrow 0.15 \mathrm{P}^{2}+2080 \mathrm{P}+192 \times 10^{4}=0$
$\Rightarrow \mathrm{P}=\left[-2080 \pm \sqrt{ }\left\{(-2080)^{2}-4 \times 0.15 \times 192 \times 10^{4}\right\}\right] / 0.30=-994 \mathrm{k}$ and -12872 k
Compared to the first two 'exact' buckling loads, $\pi^{2} \mathrm{EI} /(2 \mathrm{~L})^{2}$ and $9 \pi^{2} \mathrm{EI} /(2 \mathrm{~L})^{2}$; i.e. $-987 \mathrm{k},-8883 \mathrm{k}$
(iii) The predictions can be improved by dividing the beams into more segments or using more appropriate shape functions. For the simply supported beam
Dividing into two segments, half of the symmetric beam takes the form
For the simply supported beam, the two d.o.f. are θ_{A} and v_{C}, so the \mathbf{K} and \mathbf{G} matrices are

$$
\mathbf{K}=10^{3}\left(\begin{array}{ll}
32 & -9.6 \\
-9.6 & 3.84
\end{array}\right) \quad \text { and } \quad \mathbf{G}=(\mathrm{P} / 150)\left(\begin{array}{rr}
100 & -15 \\
-15 & 36
\end{array}\right) \quad \overbrace{\text { on }}^{\mathrm{A}} \quad \mathrm{C}
$$

\therefore For critical buckling load P , the determinant of $(\mathbf{K}+\mathbf{G})$ is $=0$
$\Rightarrow(32000+2 \mathrm{P} / 3)(3840+0.24 \mathrm{P})-(-9600-\mathrm{P} / 10)^{2}=0 \Rightarrow 0.15 \mathrm{P}^{2}+8320 \mathrm{P}+30.72 \times 10^{6}=0$
$\Rightarrow \mathrm{P}=-3978 \mathrm{k}$, or -51489 k (negative \Rightarrow compression)
They only represent the first two 'odd' buckling loads, $\pi^{2} \mathrm{EI} / \mathrm{L}^{2}$ and $9 \pi^{2} \mathrm{EI} / \mathrm{L}^{2}$; i.e., $-3948 \mathrm{k},-35531 \mathrm{k}$
Assuming $\psi(x)=\sin (\pi \mathrm{x} / \mathrm{L})\left[\right.$ with $\left.\psi(0)=\psi(\mathrm{L})=0, \psi^{\prime}(\mathrm{x})=(\pi / \mathrm{L}) \cos (\pi \mathrm{x} / \mathrm{L}), \psi^{\prime \prime}(\mathrm{x})=-(\pi / \mathrm{L})^{2} \sin (\pi \mathrm{x} / \mathrm{L})\right]$
Effective stiffness $\mathrm{k}^{*}=\int \mathrm{EI}\left[\psi^{\prime \prime}(\mathrm{x})\right]^{2} \mathrm{dx}=(\pi / \mathrm{L})^{4} \mathrm{EIL} / 2$
Effective geometric stiffness $\mathrm{g}^{*}=\int \mathrm{P}\left[\psi^{\prime}(\mathrm{x})\right]^{2} \mathrm{dx}=(\pi / \mathrm{L})^{2} \mathrm{PL} / 2$
$\therefore \mathrm{k}_{\text {Total }}{ }^{*}=\mathrm{k}^{*}+\mathrm{g}^{*}=0 \Rightarrow$ Buckling load $\mathrm{P}_{\mathrm{cr}}=-\left\{(\pi / \mathrm{L})^{4} \mathrm{EI} \mathrm{L} / 2\right\} /\left\{(\pi / \mathrm{L})^{2} \mathrm{~L} / 2\right\}=-\pi^{2} \mathrm{EI} / / \mathrm{L}^{2}=-3948 \mathrm{k}$, which is the exact first buckling load.
(iv) If $\mathrm{P}=-400 \mathrm{kips}$ for the cantilever beam, the total stiffness matrix $\mathbf{K}_{\text {total }}$ and load vector \mathbf{f} are

$$
\mathbf{K}_{\text {total }}=\left(\begin{array}{cc}
480-48 & 2400-40 \\
2400-40 & 16000-533.33
\end{array}\right)=\left\{\begin{array}{cc}
432 & 2360 \\
2360 & 15466.67
\end{array}\right) \quad \mathbf{f}=\left\{\begin{array}{l}
-5.00 \\
-8.33
\end{array}\right\}
$$

Solving the two equations, $\mathrm{v}_{\mathrm{A}}=-51.86 \times 10^{-3} \mathrm{ft}$, and $\theta_{\mathrm{A}}=7.374 \times 10^{-3} \mathrm{rad}$
(compared to the results when $\mathrm{P}=0$, i.e., $\mathrm{v}_{\mathrm{A}}=-31.25 \times 10^{-3} \mathrm{ft}$, and $\theta_{\mathrm{A}}=4.167 \times 10^{-3} \mathrm{rad}$)
Assuming $\psi(\mathrm{x})=1-\sin (\pi \mathrm{x} / 2 \mathrm{~L}), \psi^{\prime}(\mathrm{x})=-(\pi / 2 \mathrm{~L}) \cos (\pi \mathrm{x} / 2 \mathrm{~L})$
Effective stiffness $\mathrm{k}^{*}=\int \mathrm{EI}\left[\psi^{\prime \prime}(\mathrm{x})\right]^{2} \mathrm{dx}=(\pi / 2 \mathrm{~L})^{4} \mathrm{EI} \mathrm{L} / 2=121.76 \mathrm{k} / \mathrm{ft}$
Effective geometric stiffness $\mathrm{g}^{*}=\int \mathrm{P}\left[\psi^{\prime}(\mathrm{x})\right]^{2} \mathrm{dx}=(\pi / 2 \mathrm{~L})^{2} \mathrm{PL} / 2=-49.35 \mathrm{k} / \mathrm{ft}$
Effective force $\mathrm{f}^{*}=\int \mathrm{q}(\mathrm{x}) \psi(\mathrm{x}) \mathrm{dx}=-\mathrm{qL}(1-2 / \pi)=-3.63 \mathrm{kips}$
$\therefore(121.76-49.35) \mathrm{u}_{2}=-3.63 \Rightarrow \mathrm{u}_{2}=-50.18 \times 10^{-3} \mathrm{ft}$
$\Rightarrow \mathrm{v}_{\mathrm{A}}=\mathrm{u}_{2} \psi(0)=\mathrm{u}_{2}=-50.18 \times 10^{-3} \mathrm{ft}$, and $\theta_{\mathrm{A}}=\mathrm{u}_{2} \psi^{\prime}(0)=-\mathrm{u}_{2}(\pi / 2 \mathrm{~L})=7.882 \times 10^{-3} \mathrm{rad}$

Assembling Stiffness Matrix and Geometric Stiffness Matrix

Assume $\mathrm{EI}=40 \times 10^{3} \mathrm{k}-\mathrm{ft}^{2}$ for the following problems
1.

Stiffness Matrix K $=(8000+8000)=(16000)$
Geometric Stiffness Matrix $\mathbf{G}=-(\mathrm{P} / 600)(1600+1600)=-(\mathrm{P} / 600)[3200)$
2.

Stiffness Matrix $\mathbf{K}=\left(\begin{array}{ll}8000+8000 & 4000 \\ 4000 & 8000\end{array}\right)=\left(\begin{array}{ll}16000 & 4000 \\ 4000 & 8000\end{array}\right)$
Geometric Stiffness Matrix $\mathbf{G}=-(\mathrm{P} / 600)\left(\begin{array}{cc}1600+1600 \\ -400 & -400 \\ 1600\end{array}\right)=-(\mathrm{P} / 0.6)\left(\begin{array}{cc}3.2 & -0.4 \\ -0.4 & 1.6\end{array}\right)$
3.

Stiffness Matrix $\mathbf{K}=\left(\begin{array}{cc}8000+8000 & -600 \\ -600 & 60\end{array}\right)=\left(\begin{array}{cc}16000 & -600 \\ -600 & 60\end{array}\right)$
Geometric Stiffness Matrix $\mathbf{G}=-(\mathrm{P} / 600)\left(\begin{array}{ll}1600+1600 & -60 \\ -60 & 36\end{array}\right)=-(\mathrm{P} / 600)\left(\begin{array}{cc}3200 & -60 \\ -60 & 36\end{array}\right)$

Practice Problems on Geometrically Nonlinear Structures

1. Calculate the force P needed to cause buckling of the beam ABC shown below
[Given: $\mathrm{EI}_{\mathrm{AB}}=20 \times 10^{3} \mathrm{k}-\mathrm{ft}^{2}, \mathrm{EI}_{\mathrm{BC}}=40 \times 10^{3} \mathrm{k}-\mathrm{ft}^{2}$].

2. Approximately calculate the critical buckling load of the beam ABC shown below.

3. Calculate the value of force P needed to cause buckling of the beam abcdef shown below [Given: $\mathrm{EI}_{a e}=$ $\left.20 \times 10^{3} \mathrm{k}-\mathrm{ft}^{2}, \mathrm{EI}_{e f}=2 \mathrm{EI}_{a e}\right]$.

c is an Internal Hinge
4. Use the Stiffness Method (considering geometric nonlinearity) to calculate the horizontal deflection at A and vertical deflection at C of the frame loaded as shown below [Given: $\mathrm{EI}=$ constant $=15 \times 10^{3} \mathrm{k}-\mathrm{ft}^{2}$].

A, B, C are Guided Rollers
5. Calculate the load w to cause buckling of the frame ABC shown below.

6. Calculate the force P to cause buckling of the frame shown below, using $w=0.15 P\left[\mathrm{EI}=40 \times 10^{3} \mathrm{k}-\mathrm{ft}^{2}\right]$.

Material Nonlinearity and Plastic Moment

As mentioned in the previous section, structural properties cannot be assumed to remain constant in many practical situations. In addition to the geometric nonlinearity that may lead to instability of structures with linearly materials properties, the variation in material properties itself can make the structural analysis nonlinear. For example, yielding of the structural materials, a likely situation in a severe loading conditions or ground vibrations, may alter the stiffness properties, which needs to be updated with structural deformations.

Material Nonlinearity in Concrete, Steel and Reinforced Concrete

Concrete and steel are the most common among the construction materials used for Civil Engineering constructions. Among them, concrete is much stronger in compression than in tension (tensile strength is of the order of one-tenth of compressive strength). While its tensile stress-strain relationship is almost linear, the stress-strain relationship in compression is nonlinear from the beginning (Fig. 1).

Steel on the other hand, has similar stress-strain properties in tension and compression. After an initial linearly-elastic portion, the stress remains almost constant while the strain increases significantly (a phenomenon called yielding). This is typically followed by some increase in stress (strain hardening) at a reducing elasticity, and finally a decrease in stress leading to breaking of the specimen (Fig. 2).

Reinforced Concrete or RC is a unique combination of these two materials where the complexities of their constitutive behavior come into effect. The behavior of RC cannot be modeled properly by linear elastic behavior. Recognizing this, the design of RC structures has gradually shifted over the years from the 'elastic' Working Stress Design (WSD) to the more rational Ultimate Strength Design (USD). The design of steel structures has also undergone similar transition from the Allowable Stress Design (ASD) method to the Load and Resistant Factor Design (LRFD) method.

Fig. 1: Stress-Strain Model for Concrete (Compression)

Fig. 2: Typical Stress vs. Strain for Steel

Analysis of Linearly Elastic and Inelastic Systems

For a linearly elastic system the relationship between the applied force f_{s} and the resulting deformation u is linear, i.e.,

$$
\begin{equation*}
\mathrm{f}_{\mathrm{s}}=\mathrm{ku} \tag{1}
\end{equation*}
$$

where k is the linear stiffness of the system; its units are force/length. Implicit in Eq. (1) is the assumption that the linear $f_{s}-u$ relationship determined for small deformations of structure is also valid for large deformations. Because the resisting force is a single valued function of u, the system is elastic; hence the term k can be used in linearly elastic system. This is however not valid when the load-deformation relationship is nonlinear, i.e., when the stiffness itself is not constant but is a function of u. Thus the resisting force can be expressed as

$$
\begin{equation*}
\mathrm{f}_{\mathrm{s}}=\mathrm{f}_{\mathrm{s}}(\mathrm{u}) \tag{2}
\end{equation*}
$$

and the system is called inelastic dynamic system. The structural analysis of such systems can only be performed by iterative methods.

Plastic Moment of Typical Sections

The iterative method required to analyze nonlinear systems is quite laborious, time consuming and its convergence to the exact solution is not always guaranteed, it is usually not followed in typical structural analyses other than for very important projects. However, the calculation of the ultimate moment capacity of a cross-section or the ultimate load carrying capacity of a structure is usually much simpler, and is of more interest to a structural designer.

The following examples show the calculation of yielding and ultimate moment capacities of typical steel and RC sections.

Example 1

Calculate the Yield Moment and Plastic Moment capacity of the sections shown below if they are made of elastic-fully plastic material (e.g., steel model shown in Fig. 2).

For the rectangular section, the neutral axis divides the area into two segments of $(b \times h / 2)$
\therefore Compressive force $=$ Tensile force $=\sigma_{y p}(\mathrm{bh} / 2)$
\therefore Plastic moment $M_{p}=$ Tensile (or compressive) force \times Moment arm $=\sigma_{y p}(\mathrm{bh} / 2) \times \mathrm{h} / 2$
$\therefore M_{p}=\sigma_{y p}\left(\mathrm{bh}^{2} / 4\right)$

The yield moment is $M_{y}=\sigma_{y p}(\mathrm{~S})=\sigma_{y p}\left(\mathrm{bh}^{3} / 12\right) /(\mathrm{h} / 2)=\sigma_{y p}\left(\mathrm{bh}^{2} / 6\right)$
For the T -section, the equal-area axis divides the area along the flange line.
\therefore Compressive force $=$ Tensile force $=\sigma_{y p}(12 \times 2)=24 \sigma_{y p}$
\therefore Plastic moment $M_{p}=$ Tensile (or compressive) force \times Moment arm $=24 \sigma_{y p} \times(1+6)$
$\therefore M_{p}=\sigma_{y p}(168)=6048 \mathrm{k}-\mathrm{in}=504 \mathrm{k}-\mathrm{ft} \quad$ [assuming $\left.\sigma_{y p}=36 \mathrm{ksi}\right]$
Also, $\overline{\mathrm{y}}=(24 \times 1+24 \times 8) / 48=4.5^{\prime \prime} ; \quad \mathrm{c}=14-4.5=9.5^{\prime \prime}$
$\overline{\mathrm{I}}=12 \times 2^{3} / 12+24(1-4.5)^{2}+2 \times 12^{3} / 12+24(8-4.5)^{2}=884 \mathrm{in}^{4}$
$S=884 / 9.5=93.05 \mathrm{in}^{3} \Rightarrow M_{y}=\sigma_{y p}(93.05)=279.15 \mathrm{k}-\mathrm{ft}$
For the I-section, the equal-area axis divides the area symmetrically.
\therefore Compressive force $=$ Tensile force $=\sigma_{y p}\{6 \times 5 / 16+(6-5 / 16) \times 0.25\}=3.297 \sigma_{y p}$
\therefore Plastic moment $M_{p}=\sigma_{y p}\{1.875 \times(6-5 / 32)+1.422 \times(6-5 / 16) / 2\} \times 2=30 \sigma_{y p}$
$\therefore M_{p}=\sigma_{y p}(30)=1800 \mathrm{k}-\mathrm{in}=150 \mathrm{k}-\mathrm{ft} \quad$ [assuming $\left.\sigma_{y p}=60 \mathrm{ksi}\right]$

.

Example 2
Calculate the Ultimate Moment capacity of the rectangular RC beam section shown below
[Given: $\mathrm{f}_{\mathrm{c}}{ }^{\prime}=4 \mathrm{ksi}, \mathrm{f}_{\mathrm{y}}=60 \mathrm{ksi}$].

For $\mathrm{b}=12^{\prime \prime}, \mathrm{d}=15.5^{\prime \prime}, \mathrm{A}_{\mathrm{s}}=3 \times \pi(1)^{2} / 4=2.36 \mathrm{in}^{2}$
$\Rightarrow \mathrm{a}=\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}} /\left(0.85 \mathrm{f}_{\mathrm{c}}{ }^{\prime} \mathrm{b}\right)=2.36 \times 60 /(0.85 \times 4 \times 12)=3.46^{\prime \prime}$
$\therefore \mathrm{M}_{\mathrm{ult}}=\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}}(\mathrm{d}-\mathrm{a} / 2)=2.36 \times 60(15.5-3.46 / 2)=1946 \mathrm{k}-\mathrm{in}=162.2 \mathrm{k}-\mathrm{ft}$

Plastic Hinge and Ultimate Load

Since Plastic Moment of a section is its ultimate moment capacity, it cannot take any more moment beyond this. As such, the section behaves almost like an internal hinge within a structure. Such a hypothetical internal hinge is called Plastic Hinge; and by adding a new equation of statics, it reduces by one the degree of statical indeterminacy of the structure. Therefore, formation of such hinges can make the structure statically determinate, and eventually lead to its instability, which can cause the ultimate collapse of the structure, at the formation of Collapse Mechanism.
By calculating the external loads necessary to form such hinges, it is possible to calculate the loads needed to form Collapse Mechanism of the structure. This load is called the Ultimate Load of the structure and is important to a designer because it provides information about the load that the structure can possibly sustain, as demonstrated by the following examples.

Example 3

Calculate the ultimate load capacity of the simply supported beams loaded as shown below
[Given: Plastic Moment $\left(\mathrm{M}_{\mathrm{p}}\right)$ of the section $=150 \mathrm{k}-\mathrm{ft}$, as calculated for the I-section in Example 1].

When $\mathrm{P}=\mathrm{P}_{1}$, Plastic Hinge forms at the midspan of the beam at a moment $\mathrm{P}_{1} \mathrm{~L} / 4$.

$$
\begin{aligned}
& \therefore \mathrm{P}_{1} \mathrm{~L} / 4=\mathrm{M}_{\mathrm{p}} \Rightarrow \mathrm{P}_{1}=4 \mathrm{M}_{\mathrm{p}} / \mathrm{L} \\
& \therefore \mathrm{~L}=25^{\prime} \text { and } \mathrm{M}_{\mathrm{p}}=150 \mathrm{k}^{\prime} \\
& \Rightarrow \mathrm{P}_{\mathrm{ult}}=\mathrm{P}_{1}=4 \times 150 / 25=24 \mathrm{k}
\end{aligned}
$$

When $w=w_{1}$, Plastic Hinge forms again at the midspan at a moment of $\mathrm{w}_{1} \mathrm{~L}^{2} / 8$.
$\therefore \mathrm{w}_{1} \mathrm{~L}^{2} / 8=\mathrm{M}_{\mathrm{p}} \Rightarrow \mathrm{w}_{1}=8 \mathrm{M}_{\mathrm{p}} / \mathrm{L}^{2}$
$\therefore \mathrm{L}=25^{\prime}$ and $\mathrm{M}_{\mathrm{p}}=150 \mathrm{k}^{\prime}$
$\Rightarrow \mathrm{w}_{\mathrm{ult}}=\mathrm{w}_{1}=8 \times 150 / 25^{2}=1.92 \mathrm{k} / \mathrm{ft}$

Example 4

Calculate the ultimate load capacity of the fixed-ended beams loaded as shown below.

When $\mathrm{P}=\mathrm{P}_{1}$, Plastic Hinges form at both ends and midspan of the beam at moments of $\mathrm{P}_{1} \mathrm{~L} / 8$.
$\therefore \mathrm{P}_{1} \mathrm{~L} / 8=\mathrm{M}_{\mathrm{p}} \Rightarrow \mathrm{P}_{1}=8 \mathrm{M}_{\mathrm{p}} / \mathrm{L}$, when a Collapse
Mechanism is formed
$\therefore \mathrm{L}=25^{\prime}, \mathrm{M}_{\mathrm{p}}=150 \mathrm{k}^{\prime}$
$\Rightarrow P_{\text {ult }}=P_{1}=8 \times 150 / 25=48 \mathrm{k}$

When $w=w_{1}$, the first Plastic Hinges form at both ends at moments of $\mathrm{w}_{1} \mathrm{~L}^{2} / 12$.

$$
\therefore \mathrm{w}_{1} \mathrm{~L}^{2} / 12=\mathrm{M}_{\mathrm{p}} \Rightarrow \mathrm{w}_{1}=12 \mathrm{M}_{\mathrm{p}} / \mathrm{L}^{2}
$$

But a Collapse Mechanism is not formed until another hinge forms at midspan at a load $\mathrm{w}=\mathrm{w}_{2}$; i.e., when $w_{2} L^{2} / 8-M_{p}=M_{p} \Rightarrow w_{2}=16 M_{p} / L^{2}$
$\therefore \mathrm{L}=25^{\prime}, \mathrm{M}_{\mathrm{p}}=150 \mathrm{k}^{\prime} \Rightarrow \mathrm{w}_{\text {ult }}=\mathrm{w}_{2}=3.84 \mathrm{k} / \mathrm{ft}$

Energy Formulation of Collapse Mechanism

The calculation of ultimate load capacity based on bending moment diagrams demonstrates the actual sequence of plastic hinge formulation in a structure leading to its ultimate failure. However, it requires the bending moment diagram after each hinge formation, which may not always be convenient to form. A more direct (though not as detailed) calculation of the ultimate load capacity is possible by using the virtual work method on assumed collapse mechanisms of structures. As mentioned in previous formulations, if a system in equilibrium is subjected to virtual displacements $\delta \mathrm{u}$, the virtual work done by the external forces $\left(\delta \mathrm{W}_{\mathrm{E}}\right)$ is equal to the virtual work done by the internal forces $\left(\delta \mathrm{W}_{\mathrm{I}}\right)$; i.e., $\delta \mathrm{W}_{\mathrm{E}}=\delta \mathrm{W}_{\mathrm{I}}$

Example 5

Use Energy Formulation to calculate the ultimate load capacity of the simply supported beams shown below.

For the deflected shape δ_{1}
External work done $=\mathrm{P} \Delta$
Internal work done $=M_{p}(\theta+\theta)=2 M_{p} \theta$
$\therefore \mathrm{P} \Delta=2 \mathrm{M}_{\mathrm{p}} \theta=2 \mathrm{M}_{\mathrm{p}}\{\Delta /(\mathrm{L} / 2)\}$
$\Rightarrow \mathrm{P}=4 \mathrm{M}_{\mathrm{p}} / \mathrm{L}$
$\Rightarrow \mathrm{P}=4 \mathrm{M}_{\mathrm{p}} / \mathrm{L}$
For the deflected shape δ_{2}
External work done $=\mathrm{P} \Delta^{\prime}=\mathrm{P} \beta \mathrm{L} / 2$
Internal work done $=\mathrm{M}_{\mathrm{p}}(\alpha+\beta)$

$$
\begin{aligned}
& \therefore \mathrm{P} \beta \mathrm{~L} / 2=\mathrm{M}_{\mathrm{p}}(\alpha+\beta) \\
& \Rightarrow \mathrm{P}\{\Delta /(\mathrm{L}-\mathrm{x})\} \mathrm{L} / 2=\mathrm{M}_{\mathrm{p}}\{\Delta / \mathrm{x}+\Delta /(\mathrm{L}-\mathrm{x})\} \\
& \Rightarrow \mathrm{P}=2 \mathrm{M}_{\mathrm{p}} / \mathrm{L}\{(\mathrm{~L} / \mathrm{x}-1)+1\}=2 \mathrm{M}_{\mathrm{p}} / \mathrm{x} \\
& \mathrm{P}_{\min }=2 \mathrm{M}_{\mathrm{p}} /(\mathrm{L} / 2)=4 \mathrm{M}_{\mathrm{p}} / \mathrm{L}
\end{aligned}
$$

External work done $=w L \Delta / 2$
Internal work done $=M_{p}(\alpha+\beta)$

$$
\begin{aligned}
& \therefore \mathrm{wL} \Delta / 2=\mathrm{M}_{\mathrm{p}}(\alpha+\beta)=\mathrm{M}_{\mathrm{p}}\{\Delta \mathrm{x}+\Delta /(\mathrm{L}-\mathrm{x})\} \\
& \Rightarrow \mathrm{w}=\left(2 \mathrm{M}_{\mathrm{p}} / \mathrm{L}\right)\{1 / \mathrm{x}+1 /(\mathrm{L}-\mathrm{x})\} \\
& \partial \mathrm{w} / \partial \mathrm{x}=0 \Rightarrow-1 / \mathrm{x}^{2}+1 /(\mathrm{L}-\mathrm{x})^{2}=0 \Rightarrow \mathrm{x}=\mathrm{L} / 2 \\
& \Rightarrow \mathrm{w}_{\mathrm{ult}}=\mathrm{w}_{\min }=\left(2 \mathrm{M}_{\mathrm{p}} / \mathrm{L}^{2}\right)(2+2)=8 \mathrm{M}_{\mathrm{p}} / \mathrm{L}^{2}
\end{aligned}
$$

Example 6

Use Energy Formulation to calculate the ultimate load capacity of the beams shown below.

External work done $=P \Delta$
Internal work done $=M_{p}(2 \theta)+M_{p} \theta+M_{p} \theta$

$$
=4 \mathrm{M}_{\mathrm{p}} \theta
$$

$\therefore \mathrm{P} \Delta=4 \mathrm{M}_{\mathrm{p}} \theta=2 \mathrm{M}_{\mathrm{p}}\{\Delta /(\mathrm{L} / 2)\}$
$\Rightarrow \mathrm{P}_{\mathrm{ult}}=8 \mathrm{M}_{\mathrm{p}} / \mathrm{L}$

External work done $=w L \Delta / 2$
Internal work done $=M_{p}(\alpha+\beta)+M_{p} \beta=M_{p}(\alpha+2 \beta)$
$\therefore \mathrm{wL} \Delta / 2=\mathrm{M}_{\mathrm{p}}(\alpha+2 \beta)=\mathrm{M}_{\mathrm{p}}\{\Delta / \mathrm{x}+2 \Delta /(\mathrm{L}-\mathrm{x})\}$
$\Rightarrow \mathrm{w}=\left(2 \mathrm{M}_{\mathrm{p}} / \mathrm{L}\right)\{1 / \mathrm{x}+2 /(\mathrm{L}-\mathrm{x})\}$
$\partial \mathrm{w} / \partial \mathrm{x}=0 \Rightarrow-1 / \mathrm{x}^{2}+2 /(\mathrm{L}-\mathrm{x})^{2}=0 \Rightarrow \mathrm{x}=\mathrm{L} /(\sqrt{ } 2+1)$
$\Rightarrow \mathrm{w}_{\mathrm{ult}}=\mathrm{w}_{\text {min }}=\left(2 \mathrm{M}_{\mathrm{p}} / \mathrm{L}^{2}\right)\{\sqrt{ } 2+1+2+\sqrt{ } 2\}=11.66 \mathrm{M}_{\mathrm{p}} / \mathrm{L}^{2}$

Example 7

Use the Energy Method to calculate the plastic moment M_{p} needed to prevent the development of plastic hinge mechanism in the beam ABCD loaded as shown below [Given: $M_{p(A B)}=M_{p(B C)}=M_{p}, M_{p(C D)}=2 M_{p}$.

For span $A B$: $w=11.66 M_{p(A B)} / L^{2} \Rightarrow 5=11.66 M_{p} / 10^{2} \Rightarrow M_{p}=42.88 \mathrm{k}-\mathrm{ft}$
For span $B C$: $w=16 M_{p(B C)} / L^{2} \Rightarrow 5=16 M_{p} / 15^{2} \Rightarrow M_{p}=70.31 \mathrm{k}-\mathrm{ft}$
For span CD: $\mathrm{P}=8 \mathrm{M}_{\mathrm{p}(\mathrm{CD})} / \mathrm{L} \Rightarrow 50=8\left(2 \mathrm{M}_{\mathrm{p}}\right) / 20 \Rightarrow \mathrm{M}_{\mathrm{p}}=62.50 \mathrm{k}-\mathrm{ft}$
$\therefore \mathrm{M}_{\mathrm{p} \text { (req) }}=70.31 \mathrm{k}-\mathrm{ft}$
If $M_{p(\text { req })}=70.31 \mathrm{k}-\mathrm{ft}, \mathrm{w}_{(\text {all }) \mathrm{AB}}=11.66 \times 70.31 / 10^{2}=8.20 \mathrm{k} / \mathrm{ft}$

$$
\begin{aligned}
& \mathrm{w}_{(\mathrm{all}) \mathrm{BC}}=16 \times 70.31 / 15^{2}=5.00 \mathrm{k} / \mathrm{ft} \\
& \mathrm{P}_{(\mathrm{all}) \mathrm{CD}}=8 \times 2 \times 70.31 / 20=56.25 \mathrm{k}
\end{aligned}
$$

Example 8
Use the Energy Method to calculate the load (i) w needed to form beam mechanism, (ii) P needed to form the sidesway mechanism in the frames $A B C D$ loaded as shown below [Given: $M_{p b} \neq M_{p c}$].

For beam mechanism, $\mathrm{w}_{\mathrm{ult}}=16 \mathrm{M}_{\mathrm{pb}} / \mathrm{L}^{2}$
For sidesway mechanism,
$\mathrm{P} \Delta=\mathrm{M}_{\mathrm{pc}} \theta+\mathrm{M}_{\mathrm{pc}} \theta=2 \mathrm{M}_{\mathrm{pc}} \theta=2 \mathrm{M}_{\mathrm{pc}} \Delta / \mathrm{H}$
$\therefore \mathrm{P}_{\mathrm{ult}}=2 \mathrm{M}_{\mathrm{pc}} / \mathrm{H}$

For beam mechanism, $\mathrm{w}_{\mathrm{ult}}=16 \mathrm{M}_{\mathrm{pb}} / \mathrm{L}^{2}$
For sidesway mechanism,

$$
\begin{aligned}
& \mathrm{P} \Delta=\mathrm{M}_{\mathrm{pc}} \theta+\mathrm{M}_{\mathrm{pc}} \theta+\mathrm{M}_{\mathrm{pc}} \theta+\mathrm{M}_{\mathrm{pc}} \theta \\
& \quad=4 \mathrm{M}_{\mathrm{pc}} \theta=4 \mathrm{M}_{\mathrm{pc}} \Delta / \mathrm{H} \\
& \therefore \mathrm{P}_{\mathrm{ult}}=4 \mathrm{M}_{\mathrm{pc}} / \mathrm{H}
\end{aligned}
$$

Practice Problems on Material Nonlinearity and Plastic Moment

1. Use bending moment diagram of the beam ABCDE loaded as shown below to calculate the force P needed to develop plastic hinge mechanism [Given: $\sigma_{y p}=40 \mathrm{ksi}$].

Cross-section of the beam
2. Calculate the distributed load $w \mathrm{k} / \mathrm{ft}$ needed to develop plastic hinge mechanism of the beam ABC loaded as shown below (by using the bending moment diagram) [Given: $\sigma_{y p}=40 \mathrm{ksi}$].

3. Use the bending moment diagram of the reinforced concrete beam ABCD loaded as shown below to calculate the concentrated load P needed to develop plastic hinge mechanism, assuming P to act
(i) upward, (ii) downward [Given: $f_{c}{ }^{\prime}=3 \mathrm{ksi}, f_{y}=50 \mathrm{ksi}$.

4. Answer Question 1, 2 and 3 using the Energy Method of Collapse Mechanism.
5. Calculate the plastic moment M_{p} needed to prevent the development of plastic hinge mechanism in the beam ABCD loaded as shown below (by using the Energy Method) [Given: $M_{p(A B)}=M_{p(B C D)}=M_{p}$].

6. Use the Energy Method to calculate the plastic moment M_{p} of the cross-sections necessary to prevent the development of collapse mechanism in the (i) continuous bridge ABCD , and (ii) balanced cantilever bridge ABEFCD loaded as shown below.

Dynamic Equations of Motion for Lumped Mass Systems

Formulation of the Single-Degree-of-Freedom (SDOF) Equation

A dynamic system resists external forces by a combination of forces due to its stiffness (spring force), damping (viscous force) and mass (inertia force). For the system shown in Fig. 1.1, k is the stiffness, c the viscous damping, m the mass and $u(t)$ is the dynamic displacement due to the time-varying excitation force $f(t)$. Such systems are called Single-Degree-of-Freedom (SDOF) systems because they have only one dynamic displacement [$u(t)$ here].

Fig. 1.1: Dynamic SDOF system subjected to dynamic force $f(t)$

Considering the free body diagram of the system, $f(t)-f_{S}-f_{V}=m a$.(1.1)
where $\mathrm{f}_{\mathrm{S}}=$ Spring force $=$ Stiffness times the displacement $=\mathrm{ku}$.(1.2)
$\mathrm{f}_{\mathrm{V}}=$ Viscous force $=$ Viscous damping times the velocity $=\mathrm{cdu} / \mathrm{dt}$.(1.3)
$\mathrm{f}_{\mathrm{I}}=$ Inertia force $=$ Mass times the acceleration $=\mathrm{md}^{2} \mathbf{u} / \mathrm{dt}^{2}$(1.4)

Combining the equations (1.2)-(1.4) with (1.1), the equation of motion for a SDOF system is derived as,

$$
\begin{equation*}
\mathrm{md}^{2} \mathrm{u} / \mathrm{dt}^{2}+\mathrm{c} \mathrm{du} / \mathrm{dt}+\mathrm{ku}=\mathrm{f}(\mathrm{t}) \tag{1.5}
\end{equation*}
$$

This is a $2^{\text {nd }}$ order ordinary differential equation (ODE), which needs to be solved in order to obtain the dynamic displacement $u(t)$. As will be shown subsequently, this can be done analytically or numerically.

Eq. (1.5) has several limitations; e.g., it is assumed on linear input-output relationship [constant spring (k) and dashpot (c)]. It is only a special case of the more general equation (1.1), which is an equilibrium equation and is valid for linear or nonlinear systems. Despite these, Eq. (1.5) has wide applications in Structural Dynamics. Several important derivations and conclusions in this field have been based on it.

Governing Equation of Motion for Systems under Seismic Vibration

The loads induced by earthquake are not body-forces; rather it is a ground vibration that induces certain forces in the structure. For the SDOF system subjected to ground displacement $\mathrm{u}_{\mathrm{g}}(\mathrm{t})$

Fig. 1.2: Dynamic SDOF system subjected to ground displacement $u_{g}(t)$
$f_{S}=$ Spring force $=k\left(u-u_{g}\right), f_{V}=$ Viscous force $=c\left(d u / d t-d u_{g} / d t\right), f_{I}=$ Inertia force $=m d^{2} u / d t^{2}$
Combining the equations, the equation of motion for a SDOF system is derived as,

$$
\begin{align*}
& \mathrm{md}^{2} \mathrm{u} / \mathrm{dt}^{2}+\mathrm{c}\left(\mathrm{du} / \mathrm{dt}-\mathrm{d} \mathrm{v}_{\mathrm{g}} / \mathrm{dt}\right)+\mathrm{k}\left(\mathrm{u}-\mathrm{u}_{\mathrm{g}}\right)=0 \Rightarrow \mathrm{md}^{2} \mathrm{u} / \mathrm{dt}^{2}+\mathrm{cdu} / \mathrm{dt}+\mathrm{ku}=\mathrm{c} d \mathrm{u}_{\mathrm{g}} / \mathrm{dt}+\mathrm{k} \mathrm{u}_{\mathrm{g}} . \tag{1.6}\\
& \Rightarrow \mathrm{m} \mathrm{~d}^{2} \mathrm{u}_{\mathrm{r}} / \mathrm{dt}^{2}+\mathrm{cdu}_{\mathrm{r}} / \mathrm{dt}+\mathrm{k} \mathrm{u}_{\mathrm{r}}=-\mathrm{m} \mathrm{~d}^{2} \mathrm{u}_{\mathrm{g}} / \mathrm{dt}^{2} \tag{1.7}
\end{align*}
$$

where $u_{r}=u-u_{g}$ is the relative displacement of the SDOF system with respect to the ground displacement. Eqs. (1.6) and (1.7) show that the ground motion appears on the right side of the equation of motion just like a time-dependent load. Therefore, although there is no body-force on the system, it is still subjected to dynamic excitation by the ground displacement.

Formulation of the Two-Degrees-of-Freedom (2-DOF) Equation

The simplest extension of the SDOF system is a two-degrees-of-freedom (2-DOF) system, i.e., a system with two unknown displacements for two masses. The two masses may be connected to each other by several spring-dashpot systems, which will lead to two differential equations of motion, the solution of which gives the displacements and internal forces in the system.

Fig. 2.1: Dynamic 2-DOF system and free body diagrams of m_{1} and m_{2}
Fig. 2.1 shows a 2-DOF dynamic system and the free body diagrams of the two masses m_{1} and m_{2}. In the figure, ' u ' stands for displacement (i.e., u_{1} and u_{2}) while ' v ' stands for velocity (v_{1} and v_{2}). Denoting accelerations by a_{1} and a_{2}, the differential equations of motion are formed by applying Newton's $2^{\text {nd }}$ law of motion to m_{1} and m_{2}; i.e.,

$$
\begin{align*}
& \mathrm{m}_{1} \mathrm{a}_{1}=\mathrm{f}_{1}(\mathrm{t})+\mathrm{k}_{2}\left(\mathrm{u}_{2}-\mathrm{u}_{1}\right)+\mathrm{c}_{2}\left(\mathrm{v}_{2}-\mathrm{v}_{1}\right)-\mathrm{k}_{1} \mathrm{u}_{1}-\mathrm{c}_{1} \mathrm{v}_{1} \\
& \Rightarrow \mathrm{~m}_{1} \mathrm{a}_{1}+\left(\mathrm{c}_{1}+\mathrm{c}_{2}\right) \mathrm{v}_{1}+\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right) \mathrm{u}_{1}-\mathrm{c}_{2} \mathrm{v}_{2}-\mathrm{k}_{2} \mathrm{u}_{2}=\mathrm{f}_{1}(\mathrm{t}) \tag{2.1}
\end{align*}
$$

and $\mathrm{m}_{2} \mathrm{a}_{2}=\mathrm{f}_{2}(\mathrm{t})-\mathrm{k}_{2}\left(\mathrm{u}_{2}-\mathrm{u}_{1}\right)-\mathrm{c}_{2}\left(\mathrm{v}_{2}-\mathrm{v}_{1}\right) \Rightarrow \mathrm{m}_{2} \mathrm{a}_{2}-\mathrm{c}_{2} \mathrm{v}_{1}+\mathrm{c}_{2} \mathrm{v}_{2}-\mathrm{k}_{2} \mathrm{u}_{1}+\mathrm{k}_{2} \mathrm{u}_{2}=\mathrm{f}_{2}(\mathrm{t})$
Putting $v=d u / d t$ (i.e., $v_{1}=d u_{1} / d t, v_{2}=d u_{2} / d t$) and $a=d^{2} u / d t^{2}$ (i.e., $a_{1}=d^{2} u_{1} / d t^{2}, a_{2}=d^{2} u_{2} / d t^{2}$) in Eqs. (2.1) and (2.2), the following equations are obtained

$$
\begin{align*}
& \mathrm{m}_{1} \mathrm{~d}^{2} \mathrm{u}_{1} / \mathrm{dt}^{2}+\left(\mathrm{c}_{1}+\mathrm{c}_{2}\right) \mathrm{du}_{1} / \mathrm{dt}-\mathrm{c}_{2} \mathrm{du}_{2} / \mathrm{dt}+\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right) \mathrm{u}_{1}-\mathrm{k}_{2} \mathrm{u}_{2}=\mathrm{f}_{1}(\mathrm{t}) \tag{2.3}\\
& \mathrm{m}_{2} \mathrm{~d}^{2} \mathrm{u}_{2} / \mathrm{dt}^{2}-\mathrm{c}_{2} \mathrm{du}_{1} / \mathrm{dt}+\mathrm{c}_{2} \mathrm{du}_{2} / \mathrm{dt}-\mathrm{k}_{2} \mathrm{u}_{1}+\mathrm{k}_{2} \mathrm{u}_{2}=\mathrm{f}_{2}(\mathrm{t}) \tag{2.4}
\end{align*}
$$

Eqs. (2.3) and (2.4) can be arranged in matrix form as

$$
\left(\begin{array}{cc}
m_{1} & 0 \tag{2.5}\\
0 & m_{2}
\end{array}\right)\left\{\begin{array}{l}
d^{2} u_{1} / d t^{2} \\
d^{2} u_{2} / d t^{2}
\end{array}\right\}+\left(\begin{array}{cc}
c_{1}+c_{2} & -c_{2} \\
-c_{2} & c_{2}
\end{array}\right)\left\{\begin{array}{l}
d u_{1} / d t \\
d u_{2} / d t
\end{array}\right\}+\left(\begin{array}{cc}
k_{1}+k_{2} & -k_{2} \\
-k_{2} & k_{2}
\end{array}\right]\left\{\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right\}=\left\{\begin{array}{l}
f_{1}(t) \\
f_{2}(t)
\end{array}\right\}
$$

Eqs. (2.5) represent in matrix form the set of equations [i.e. (2.3) and (2.4)] to evaluate the displacements $\mathrm{u}_{1}(\mathrm{t})$ and $\mathrm{u}_{2}(\mathrm{t})$. In this set, the matrix consisting of the masses $\left(\mathrm{m}_{1}\right.$ and $\left.\mathrm{m}_{2}\right)$ is called the mass matrix, the one consisting of the dampings (c_{1} and c_{2}) is called the damping matrix_ and the one consisting of the stiffnesses (k_{1} and k_{2}) is called the stiffness matrix of this particular system. These matrices are different for various 2DOF systems, so that Eq. (2.5) cannot be taken as a general form for any 2-DOF system.

For a lumped 2-DOF system subjected to ground displacement $u_{g}(t)$, velocity $v_{g}(t)$ and acceleration $a_{g}(t)$, the following equations are obtained in matrix form

$$
\begin{align*}
& \left(\begin{array}{cc}
m_{1} & 0 \\
0 & m_{2}
\end{array}\right)\left\{\begin{array}{l}
d^{2} u_{1} / d t^{2} \\
d^{2} u_{2} / d t^{2}
\end{array}\right\}+\left(\begin{array}{cc}
c_{1}+c_{2} & -c_{2} \\
-c_{2} & c_{2}
\end{array}\right)\left\{\begin{array}{l}
d u_{1} / d t \\
d u_{2} / d t
\end{array}\right\}+\left(\begin{array}{cc}
k_{1}+k_{2} & -k_{2} \\
-k_{2} & k_{2}
\end{array}\right)\left\{\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right\}=\left\{\begin{array}{c}
c_{1} v_{g}+k_{1} u_{g} \\
0
\end{array}\right\} \\
& \left(\begin{array}{ll}
m_{1} & 0 \\
0 & m_{2}
\end{array}\right)\left\{\begin{array}{l}
d^{2} u_{1 /} / d t^{2} \\
d^{2} u_{2 /} / d t^{2}
\end{array}\right\}+\left(\begin{array}{cc}
c_{1}+c_{2} & -c_{2} \\
-c_{2} & c_{2}
\end{array}\right)\left\{\begin{array}{l}
d u_{1 /} / d t \\
{d u_{2 /} / d t}^{2}
\end{array}\right\}+\left(\begin{array}{cc}
k_{1}+k_{2} & -k_{2} \\
-k_{2} & k_{2}
\end{array}\right)\left\{\begin{array}{l}
u_{1 r} \\
u_{2 r}
\end{array}\right\}=-\left\{\begin{array}{l}
m_{1} a_{g} \\
m_{2} a_{g}
\end{array}\right\} \tag{2.6}
\end{align*}
$$

For a MDOF system, Eq. (2.5) can be written in the general form of the dynamic equations of motion,

$$
\begin{equation*}
\mathbf{M} \mathrm{d}^{2} \mathbf{u} / \mathrm{dt}^{2}+\mathbf{C} \mathrm{d} \mathbf{u} / \mathrm{dt}+\mathbf{K} \mathbf{u}=\mathbf{f}(\mathrm{t}) \tag{2.8}
\end{equation*}
$$

Numerical Solution of SDOF Equation

The equation of motion for a SDOF system can be solved analytically for different loading functions. Even if the assumptions of linear structural properties are satisfied; the practical loading situations can be more complicated and not convenient to solve analytically. Numerical methods must be used in such situations.

The most widely used numerical approach for solving dynamic problems is the Newmark- β method. Actually, it is a set of solution methods with different physical interpretations for different values of β. The total simulation time is divided into a number of intervals (usually of equal duration Δt) and the unknown displacement (as well as velocity and acceleration) is solved at each instant of time. The method solves the dynamic equation of motion in the $(i+1)^{\text {th }}$ time step based on the results of the $\mathrm{i}^{\text {th }}$ step.

The equation of motion for the $(i+1)^{\text {th }}$ time step is

$$
\begin{equation*}
m\left(d^{2} u / d t^{2}\right)_{i+1}+c(d u / d t)_{i+1}+k(u)_{i+1}=f_{i+1} \Rightarrow m a_{i+1}+c v_{i+1}+k u_{i+1}=f_{i+1} \tag{3.1}
\end{equation*}
$$

where ' a ' stands for the acceleration, ' v ' for velocity and ' u ' for displacement.
To solve for the displacement or acceleration at the $(i+1)^{\text {th }}$ time step, the following equations are assumed for the velocity and displacement at the $(i+1)^{\text {th }}$ step in terms of the values at the $i^{\text {th }}$ step.

$$
\begin{align*}
& v_{i+1}=v_{i}+\left\{(1-\alpha) a_{i}+\alpha a_{i+1}\right\} \Delta t \tag{3.2}\\
& u_{i+1}=u_{i}+v_{i} \Delta t+\left\{(0.5-\beta) a_{i}+\beta a_{i+1}\right\} \Delta t^{2} \tag{3.3}
\end{align*}
$$

By putting the value of v_{i+1} from Eq. (3.2) and u_{i+1} from Eq. (3.3) in Eq. (3.1), the only unknown variable a_{i+1} can be solved from Eq. (3.1).

In the solution set suggested by the Newmark- β method, the Constant Average Acceleration (CAA) method is the most popular because of the stability of its solutions and the simple physical interpretations it provides. This method assumes the acceleration to remain constant during each small time interval Δt, and this constant is assumed to be the average of the accelerations at the two instants of time t_{i} and t_{i+1}. The CAA is a special case of Newmark $-\beta$ method where $\alpha=0.50$ and $\beta=0.25$. Thus in the CAA method, the equations for velocity and displacement [Eqs. (3.2) and (3.3)] become

$$
\begin{align*}
& \mathrm{v}_{\mathrm{i}+1}=\mathrm{v}_{\mathrm{i}}+\left(\mathrm{a}_{\mathrm{i}}+\mathrm{a}_{\mathrm{i}+1}\right) \Delta \mathrm{t} / 2 \tag{3.4}\\
& \mathrm{u}_{\mathrm{i}+1}=\mathrm{u}_{\mathrm{i}}+\mathrm{v}_{\mathrm{i}} \Delta \mathrm{t}+\left(\mathrm{a}_{\mathrm{i}}+\mathrm{a}_{\mathrm{i}+1}\right) \Delta \mathrm{t}^{2} / 4 \tag{3.5}
\end{align*}
$$

Inserting these values in Eq. (3.1) and rearranging the coefficients, the following equation is obtained,

$$
\begin{align*}
& \left(m+c \Delta t / 2+k \Delta t^{2} / 4\right) a_{i+1}=f_{i+1}-k u_{i}-(c+k \Delta t) v_{i}-\left(c \Delta t / 2+k \Delta t^{2} / 4\right) a_{i} \tag{3.6}\\
& \left(m_{\text {eff }}\right) a_{i+1}=f_{i+1}-k u_{i}-\left(c_{\text {eff }}\right) v_{i}-\left(m_{\text {effi }}\right) a_{i} \tag{3.6}
\end{align*}
$$

To obtain the acceleration a_{i+1} at an instant of time t_{i+1} using Eq. (3.6), the values of u_{i}, v_{i} and a_{i} at the previous instant t_{i} have to be known (or calculated) before. Once $\mathrm{a}_{\mathrm{i}+1}$ is obtained, Eqs. (3.4) and (3.5) can be used to calculate the velocity v_{i+1} and displacement u_{i+1} at time t_{i+1}. All these values can be used to obtain the results at time $\mathrm{t}_{\mathrm{i}+2}$. The method can be used for subsequent time-steps also.

The simulation should start with two initial conditions, like the displacement u_{0} and velocity v_{0} at time $\mathrm{t}_{0}=0$. The initial acceleration can be obtained from the equation of motion at time $t_{0}=0$ as

$$
\begin{equation*}
\mathrm{a}_{0}=\left(\mathrm{f}_{0}-\mathrm{cv}_{0}-\mathrm{ku}_{0}\right) / \mathrm{m} \tag{3.7}
\end{equation*}
$$

Example 3.1
For the undamped SDOF system described before ($\mathrm{m}=1 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}, \mathrm{k}=25 \mathrm{k} / \mathrm{ft}, \mathrm{c}=0 \mathrm{k}-\mathrm{sec} / \mathrm{ft}$), calculate the dynamic response for a Ramped Step Loading with p0 $=25$ kips and $\mathrm{t} 0=0.5 \mathrm{sec}$ [i.e., $\mathrm{p}(\mathrm{t})=50 \mathrm{t} \leq 25 \mathrm{kips}$]

Results using the CAA Method (for time interval $\Delta t=0.05 \mathrm{sec}$) as well as the exact analytical equation are shown below in tabular form.

Table 3.1: Acceleration, Velocity and Displacement for $\Delta t=0.05 \mathrm{sec}$

$\mathrm{m}\left(\mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}\right)$	$\mathrm{c}(\mathrm{k}-\mathrm{sec} / \mathrm{ft})$	$\mathrm{k}(\mathrm{k} / \mathrm{ft})$	$\mathrm{t}_{0}(\mathrm{sec})$	$\mathrm{dt}(\mathrm{sec})$	$\mathrm{m}_{\text {eff }}\left(\mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}\right)$	$\mathrm{c}_{\text {eff }}(\mathrm{k}-\mathrm{sec} / \mathrm{ft})$	$\mathrm{m}_{\text {effl }}\left(\mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}\right)$
1.00	0.00	25.00	0.50	0.05	1.0156	1.2500	0.0156

i	$\mathrm{t}(\mathrm{sec})$	$\mathrm{f}_{\mathrm{i}}(\mathrm{kips})$	$\mathrm{a}_{\mathrm{i}}\left(\mathrm{ft} / \mathrm{sec}^{2}\right)$	$\mathrm{v}_{\mathrm{i}}(\mathrm{ft} / \mathrm{sec})$	$\mathrm{u}_{\mathrm{i}}(\mathrm{ft})$	$\mathrm{u}_{\mathrm{ex}}(\mathrm{ft})$
0	0.00	0.0	0.0000	0.0000	0.0000	0.0000
1	0.05	2.5	2.4615	0.0615	0.0015	0.0010
2	0.10	5.0	4.7716	0.2424	0.0091	0.0082
3	0.15	7.5	6.7880	0.5314	0.0285	0.0273
4	0.20	10.0	8.3867	0.9107	0.0645	0.0634
5	0.25	12.5	9.4693	1.3571	0.1212	0.1204
6	0.30	15.0	9.9692	1.8431	0.2012	0.2010
7	0.35	17.5	9.8556	2.3387	0.3058	0.3064
8	0.40	20.0	9.1354	2.8135	0.4346	0.4363
9	0.45	22.5	7.8531	3.2382	0.5859	0.5888
10	0.50	25.0	6.0876	3.5867	0.7565	0.7606
11	0.55	25.0	1.4858	3.7760	0.9406	0.9463
12	0.60	25.0	-3.2073	3.7330	1.1283	1.1353
13	0.65	25.0	-7.7031	3.4603	1.3081	1.3159
14	0.70	25.0	-11.7249	2.9746	1.4690	1.4769
15	0.75	25.0	-15.0251	2.3058	1.6010	1.6082
16	0.80	25.0	-17.4007	1.4952	1.6960	1.7017
17	0.85	25.0	-18.7055	0.5925	1.7482	1.7516
18	0.90	25.0	-18.8592	-0.3466	1.7544	1.7547
19	0.95	25.0	-17.8523	-1.2644	1.7141	1.7109
20	1.00	25.0	-15.7468	-2.1044	1.6299	1.6230
21	1.05	25.0	-12.6723	-2.8149	1.5069	1.4962
22	1.10	25.0	-8.8179	-3.3521	1.3527	1.3387
23	1.15	25.0	-4.4209	-3.6831	1.1768	1.1600
24	1.20	25.0	0.2481	-3.7874	0.9901	0.9715
25	1.25	25.0	4.9019	-3.6586	0.8039	0.7846
26	1.30	25.0	9.2540	-3.3048	0.6298	0.6112
27	1.35	25.0	13.0367	-2.7475	0.4785	0.4620
28	1.40	25.0	16.0171	-2.0211	0.3593	0.3462
29	1.45	25.0	18.0118	-1.1704	0.2795	0.2711
30	1.50	25.0	18.8981	-0.2477	0.2441	0.2412
31	1.55	25.0	18.6214	0.6903	0.2551	0.2586
32	1.60	25.0	17.1989	1.5858	0.3120	0.3220
33	1.65	25.0	14.7179	2.3837	0.4113	0.4276
34	1.70	25.0	11.3312	3.0350	0.5468	0.5688
35	1.75	25.0	7.2472	3.4994	0.7101	0.7368
36	1.80	25.0	2.7172	3.7485	0.8913	0.9212
37	1.85	25.0	-1.9800	3.7670	1.0792	1.1105
38	1.90	25.0	-6.5553	3.5536	1.2622	1.2929
39	1.95	25.0	-10.7273	3.1215	1.4291	1.4570
40	2.00	25.0	-14.2391	2.4974	1.5696	1.5928
10						

Time (sec)
Fig. 3.1: Acceleration vs. Time

Time (sec)
Fig. 3.2: Velocity vs. Time

Fig. 3.3: Displacement vs. Time

Axial Members

Applying the method of virtual work to undamped members subjected to axial load of $\mathrm{p}(\mathrm{x}, \mathrm{t})$ per unit length,

$$
\begin{equation*}
\delta \mathrm{W}_{\mathrm{I}}=\delta \mathrm{W}_{\mathrm{E}} \Rightarrow \int \mathrm{mdx} \mathrm{~d}{ }^{2} \mathrm{u} / \mathrm{dt}^{2} \delta \mathrm{u}+\int \mathrm{u}^{\prime} \mathrm{E} \mathrm{~A} \delta \mathrm{u}^{\prime} \mathrm{dx}=\int \mathrm{p}(\mathrm{x}, \mathrm{t}) \mathrm{dx} \delta \mathrm{u} \tag{4.1}
\end{equation*}
$$

Fig. 4.1: Axially Loaded Member
If the displacements of a member AB (Fig. 4.1) are assumed to be interpolating functions [$\phi_{1}(\mathrm{x})$ and $\phi_{2}(\mathrm{x})$] of two nodal displacements $u_{1 A}$ and $u_{1 B}$,

$$
\begin{align*}
& \mathrm{u}=\mathrm{u}_{1 \mathrm{~A}} \phi_{1}+\mathrm{u}_{1 \mathrm{~B}} \phi_{2} \Rightarrow \mathrm{u}^{\prime}=\mathrm{u}_{1 \mathrm{~A}} \phi_{1}{ }^{\prime}+\mathrm{u}_{1 \mathrm{~B}} \phi_{2}{ }^{\prime} \tag{4.2}\\
& \mathrm{d}^{2} \mathrm{u} / \mathrm{dt}^{2}=\mathrm{d}^{2} \mathbf{u}_{1 \mathrm{~A}} / \mathrm{dt}^{2} \phi_{1}+\mathrm{d}^{2} \mathbf{u}_{1 \mathrm{~B}} / \mathrm{dt}^{2} \phi_{2} \\
& \delta \mathrm{u}=\delta \mathrm{u}_{1 \mathrm{~A}} \phi_{1}+\delta \mathbf{u}_{1 \mathrm{~B}} \phi_{2} \Rightarrow \delta \mathrm{u}^{\prime}=\delta \mathrm{u}_{1 \mathrm{~A}} \phi_{1}{ }^{\prime}+\delta \mathrm{u}_{1 \mathrm{~B}} \phi_{2}{ }^{\prime} \tag{4.5}
\end{align*}
$$

\therefore Eq. (4.1) can be written in matrix form as,

$$
\left(\begin{array}{ll}
\int \mathrm{m} \phi_{1} \phi_{1} \mathrm{dx} & \int \mathrm{~m} \phi_{1} \phi_{2} \mathrm{dx} \tag{4.7}\\
\int \mathrm{~m} \phi_{2} \phi_{1} \mathrm{dx} & \int \mathrm{~m} \phi_{2} \phi_{2} \mathrm{dx}
\end{array}\right)\left\{\begin{array}{l}
\mathrm{d}^{2} \mathrm{u}_{1 \mathrm{~A}} / \mathrm{dt}^{2} \\
\mathrm{~d}^{2} \mathrm{u}_{1 \mathrm{~B}} / \mathrm{dt}^{2}
\end{array}\right\}+\left(\begin{array}{ll}
\int \mathrm{EA} \phi_{1}{ }^{\prime} \phi_{1}{ }^{\prime} \mathrm{dx} & \int \mathrm{EA} \phi_{1}{ }^{\prime} \phi_{2}{ }^{\prime} \mathrm{dx} \\
\int E A \phi_{2}{ }^{\prime} \phi_{1}{ }^{\prime} \mathrm{dx} & \int \mathrm{EA} \phi_{2}{ }^{\prime} \phi_{2}{ }^{\prime} \mathrm{dx}
\end{array}\right\}\left\{\begin{array}{l}
\mathrm{u}_{1 \mathrm{~A}} \\
\mathrm{u}_{1 \mathrm{~B}}
\end{array}\right\}=\left\{\begin{array}{l}
\int \mathrm{p}(\mathrm{x}, \mathrm{t}) \phi_{1} \mathrm{dx} \\
\int \mathrm{p}(\mathrm{x}, \mathrm{t}) \phi_{2} \mathrm{dx}
\end{array}\right\}
$$

For concentrated loads $p(x, t)$ is a delta function of x, as mentioned before. If loads X_{A} and X_{B} are applied at joints A and B, they can be added to the right side of Eq. (4.7).
Eq. (4.7) can be rewritten as, $\mathbf{M}_{m} \mathrm{~d}^{2} \mathbf{u}_{\mathbf{m}} / \mathrm{dt}^{2}+\mathbf{K}_{\mathrm{m}} \mathbf{u}_{\mathbf{m}}=\mathbf{f}_{\mathbf{m}}$
where $\mathbf{M}_{\mathbf{m}}$ and \mathbf{K}_{m} are the mass and stiffness matrices of the member respectively, while $\mathrm{d}^{2} \mathbf{u}_{\mathrm{m}} / \mathrm{dt}^{2}, \mathbf{u}_{\mathrm{m}}$ and $\mathbf{f}_{\mathbf{m}}$ are the member acceleration, displacement and load vectors. They can be formed once the shape functions ϕ_{1} and ϕ_{2} are known or assumed.

$$
\begin{equation*}
\mathbf{M}_{\mathrm{mij}}=\int \mathrm{m} \phi_{\mathrm{i}} \phi_{\mathrm{j}} \mathrm{dx}, \text { and } \mathrm{K}_{\mathrm{mij}}=\int \mathrm{EA} \phi_{\mathrm{i}}^{\prime} \phi_{\mathrm{j}}^{\prime} \mathrm{dx} \tag{4.9}
\end{equation*}
$$

Flexural Members

Fig. 4.2: Transversely Loaded Member
Applying the method of virtual work to undamped members subjected to flexural load of $q(x, t)$ per unit length $\Rightarrow \int m d x d^{2} u / d t^{2} \delta u+\int u^{\prime \prime} E I \delta u^{\prime \prime} d x=\int q(x, t) d x \delta u$

Following the same type of formulation as for axial members, the member equations for undamped flexural members subjected to transverse load of $\mathrm{q}(\mathrm{x}, \mathrm{t})$ per unit length (Fig. 4.2) can be written in matrix form like Eq. (4.8), but the member matrices are different here.

Interpolation functions for $u_{2 A}, \theta_{3 A}, u_{2 B}$ and $\theta_{3 B}$ are typically chosen in such cases, so that

$$
\begin{equation*}
\mathrm{u}(\mathrm{x})=\mathrm{u}_{2 \mathrm{~A}} \psi_{1}+\theta_{3 \mathrm{~A}} \psi_{2}+\mathrm{u}_{2 \mathrm{~B}} \psi_{3}+\theta_{3 \mathrm{~B}} \psi_{4} \tag{4.11}
\end{equation*}
$$

The size of the matrices is (4×4) here, due to transverse joint displacements $\left(u_{2 A}, u_{2 B}\right)$ joint rotations $\left(\theta_{3 A}\right.$, $\theta_{3 \mathrm{~B}}$) and their elements are given by

$$
\begin{equation*}
\mathbf{M}_{\mathrm{mij}}=\int \mathrm{m} \psi_{\mathrm{i}} \psi_{\mathrm{j}} \mathrm{dx}, \text { and } \mathrm{K}_{\mathrm{mij}}=\int E I \psi_{\mathrm{i}}^{\prime \prime} \psi_{\mathrm{j}}^{\prime \prime} \mathrm{dx} \tag{4.12}
\end{equation*}
$$

Example 4.1

For modulus of elasticity $E=450000 \mathrm{ksf}$, cross-sectional area $\mathrm{A}=1 \mathrm{ft}^{2}$, length $\mathrm{L}=10 \mathrm{ft}$, mass per length m $=0.0045 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}^{2}$, calculate the natural frequencies of a cantilever beam in axial direction, analyzing with (i) one lumped-mass element, (ii) one consistent-mass element, (iii) two lumped-mass elements.

Solution

(i) For lumped-mass elements

$$
\mathbf{M}_{\mathbf{m}}=\left(\begin{array}{lc}
\mathrm{mL} / 2 & 0 \\
0 & \mathrm{~mL} / 2
\end{array}\right) \quad \mathbf{K}_{\mathrm{m}}=\left(\begin{array}{cc}
\mathrm{EA} / \mathrm{L} & -\mathrm{EA} / \mathrm{L} \\
-\mathrm{EA} / \mathrm{L} & \mathrm{EA} / \mathrm{L}
\end{array}\right)
$$

Assuming one linear element with properties mentioned, $\mathrm{mL} / 2=0.0225 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}, \mathrm{EA} / \mathrm{L}=45000 \mathrm{k} / \mathrm{ft}$

$$
\therefore \mathbf{M}_{\mathbf{m}}=\left(\begin{array}{cc}
0.0225 & 0 \\
0 & 0.0225
\end{array}\right) \quad \mathbf{K}_{\mathbf{m}}=\left(\begin{array}{cc}
45000 & -45000 \\
-45000 & 45000
\end{array}\right)
$$

Applying the boundary conditions that the only non-zero DOF is the axial deformation at $B\left(u_{1 B}\right)$, the mass and stiffness matrices are reduced to (1×1) matrices $\quad \mathbf{M}=0.0225, \quad \mathbf{K}=45000$

$$
\therefore\left|\mathbf{K}-\omega_{\mathrm{n}}^{2} \mathbf{M}\right|=0 \Rightarrow 45000-\omega_{\mathrm{n}}^{2} 0.0225=0 \Rightarrow \omega_{\mathrm{n}}^{2}=2 \times 10^{6} \Rightarrow \omega_{\mathrm{n}}=1414 \mathrm{rad} / \mathrm{sec}
$$

(ii) For linear functions $\phi_{1}(x)=1-x / L, \quad \phi_{2}(x)=x / L$, the mass and stiffness matrices obtained from Eq. (4.7)

$$
\mathbf{M}_{\mathrm{m}}=\left(\begin{array}{cc}
\mathrm{mL} / 3 & \mathrm{~mL} / 6 \\
\mathrm{~mL} / 6 & \mathrm{~mL} / 3
\end{array}\right) \quad \mathbf{K}_{\mathrm{m}}=\left(\begin{array}{cc}
\mathrm{EA} / \mathrm{L} & -\mathrm{EA} / \mathrm{L} \\
-\mathrm{EA} / \mathrm{L} & \mathrm{EA} / \mathrm{L}
\end{array}\right)
$$

Assuming one linear element with properties mentioned, $\mathrm{mL} / 3=0.015 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}, \mathrm{EA} / \mathrm{L}=45000 \mathrm{k} / \mathrm{ft}$

$$
\therefore \mathbf{M}_{\mathbf{m}}=\left(\begin{array}{cc}
0.0150 & 0.0075 \\
0.0075 & 0.0150
\end{array}\right) \quad \mathbf{K}_{\mathbf{m}}=\left(\begin{array}{cc}
45000 & -45000 \\
-45000 & 45000
\end{array}\right)
$$

Applying the boundary conditions that the only non-zero DOF is the axial deformation at $\mathrm{B}\left(\mathrm{u}_{1 \mathrm{~B}}\right)$, the mass and stiffness matrices are reduced to (1×1) matrices $\quad \mathbf{M}=0.015, \quad \mathbf{K}=45000$

$$
\therefore\left|\mathbf{K}-\omega_{\mathrm{n}}^{2} \mathbf{M}\right|=0 \Rightarrow 45000-\omega_{\mathrm{n}}^{2} 0.015=0 \Rightarrow \omega_{\mathrm{n}}^{2}=3 \times 10^{6} \Rightarrow \omega_{\mathrm{n}}=1732 \mathrm{rad} / \mathrm{sec}
$$

(iii) For two lumped-mass elements of length 5^{\prime} each, $\mathrm{mL} / 2=0.01125 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}, \mathrm{EA} / \mathrm{L}=90000 \mathrm{k} / \mathrm{ft}$

The following mass and stiffness matrices are obtained for each element

$$
\mathbf{M}_{\mathbf{m}}=\left(\begin{array}{cc}
0.01125 & 0 \\
0 & 0.01125
\end{array}\right) \quad \mathbf{K}_{\mathrm{m}}=\left(\begin{array}{cc}
90000 & -90000 \\
-90000 & 90000
\end{array}\right)
$$

Applying the boundary conditions that axial deformation at $\mathrm{A}\left(\mathrm{u}_{1 \mathrm{~A}}\right)$ is zero, only the axial deformations at B $\left(u_{1 B}\right)$ and $C\left(u_{1 C}\right)$ are non-zero, the mass and stiffness matrices are reduced to (2×2) matrices.

$$
\begin{aligned}
& \mathbf{M}=\left(\begin{array}{cc}
0.01125 & 0 \\
0 & 0.0225
\end{array}\right) \quad \mathbf{K}=\left(\begin{array}{lc}
90000 & -90000 \\
-90000 & 180000
\end{array}\right) \\
& \therefore\left|\mathbf{K}-\omega_{\mathrm{n}}{ }^{2} \mathbf{M}\right|=0 \Rightarrow\left(90000-\omega_{\mathrm{n}}{ }^{2} 0.01125\right)\left(180000-\omega_{\mathrm{n}}{ }^{2} 0.0225\right)-(-90000)^{2}=0 \\
& \quad \Rightarrow \omega_{\mathrm{n}}=1531 \mathrm{rad} / \mathrm{sec}, 3696 \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

Analytical solutions for the first two natural frequencies are $1571 \mathrm{rad} / \mathrm{sec}, 4712 \mathrm{rad} / \mathrm{sec}$ respectively.

Example 4.2

For the member properties $E=450000 \mathrm{ksf}, \mathrm{I}=0.08 \mathrm{ft}^{4}, \mathrm{~L}=10 \mathrm{ft}, \mathrm{m}=0.0045 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}^{2}$, calculate the approximate first natural frequency of the cantilever beam in transverse direction, analyzing with (i) one lumped-mass element, (ii) one consistent-mass element.

Solution

(i) For cubic polynomial functions
$\psi_{1}(x)=1-3(x / L)^{2}+2(x / L)^{3}, \quad \psi_{2}(x)=x\{1-(x / L)\}^{2}, \quad \psi_{3}(x)=3(x / L)^{2}-2(x / L)^{3}, \quad \psi_{4}(x)=(x-L)(x / L)^{2}$ with lumped mass $\mathrm{mL} / 2$ at both ends and constant EI, the following matrices are obtained from Eq. (4.12)
$\mathbf{M}_{\mathbf{m}}=(\mathrm{mL} / 2)\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$
$\mathbf{K}_{\mathrm{m}}=\left(\mathrm{EI} / \mathrm{L}^{3}\right)\left(\begin{array}{c}12 \\ 6 \mathrm{~L} \\ -12 \\ 6 \mathrm{~L}\end{array}\right.$
$\left.\begin{array}{ccc}6 \mathrm{~L} & -12 & 6 \mathrm{~L} \\ 4 \mathrm{~L}^{2} & -6 \mathrm{~L} & 2 \mathrm{~L}^{2} \\ -6 \mathrm{~L} & 12 & -6 \mathrm{~L} \\ 2 \mathrm{~L}^{2} & -6 \mathrm{~L} & 4 \mathrm{~L}^{2}\end{array}\right)$
\therefore In this case, $\mathrm{mL}=0.045 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}, \mathrm{EI} / \mathrm{L}^{3}=36 \mathrm{k} / \mathrm{ft}$

$$
\mathbf{M}_{\mathbf{m}}=0.0225\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad \mathbf{K}_{\mathbf{m}}=36\left(\begin{array}{cccc}
12 & 60 & -12 & 60 \\
60 & 400 & -60 & 200 \\
-12 & -60 & 12 & -60 \\
60 & 200 & -60 & 400
\end{array}\right)
$$

Applying the boundary conditions that the only non-zero degrees of freedom are the vertical deflection and rotation at $\mathrm{B}\left(\mathrm{u}_{2 \mathrm{~B}}\right.$ and $\left.\theta_{3 \mathrm{~B}}\right)$, the mass and stiffness matrices are reduced to (2×2) matrices

$\therefore\left|\mathbf{K}-\omega_{\mathrm{n}}{ }^{2} \mathbf{M}\right|=0 \Rightarrow\left(432-\omega_{\mathrm{n}}{ }^{2} 0.0225\right) 14400-(-2160)^{2}=0 \Rightarrow \omega_{\mathrm{n}}=69.28 \mathrm{rad} / \mathrm{sec}$
(ii) For cubic polynomial functions with uniform m
$\mathbf{M}_{\mathbf{m}}=(\mathrm{mL} / 420)\left(\begin{array}{cccc}156 & 22 \mathrm{~L} & 54 & -13 \mathrm{~L} \\ 22 \mathrm{~L} & 4 \mathrm{~L}^{2} & 13 \mathrm{~L} & -3 \mathrm{~L}^{2} \\ 54 & 13 \mathrm{~L} & 156 & -22 \mathrm{~L} \\ -13 \mathrm{~L} & -3 \mathrm{~L}^{2} & -22 \mathrm{~L} & 4 \mathrm{~L}^{2}\end{array}\right)=1.071 \times 10^{-4}\left(\begin{array}{cccc}156 & 220 & 54 & -130 \\ 220 & 400 & 130 & -300 \\ 54 & 130 & 156 & -220 \\ -130 & -300 & -220 & 400\end{array}\right)$
Applying the boundary conditions, the mass and stiffness matrices are reduced to

$$
\begin{aligned}
& \mathbf{M}=1.071 \times 10^{-4}\left(\begin{array}{ll}
156 & -220 \\
-220 & 400
\end{array}\right) \quad \mathbf{K}=\left(\begin{array}{ll}
432 & -2160 \\
-2160 & 14400
\end{array}\right) \\
& \therefore\left|\mathbf{K}-\omega_{\mathrm{n}}^{2} \mathbf{M}\right|=0 \Rightarrow\left(432-\omega_{\mathrm{n}}^{2} 0.01671\right)\left(14400-\omega_{\mathrm{n}}^{2} 0.04286\right)-\left(-2160+\omega_{\mathrm{n}}^{2} 0.02357\right)^{2}=0 \\
& \quad \Rightarrow \omega_{\mathrm{n}}=99.92 \mathrm{rad} / \mathrm{sec}, 984.49 \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

The exact results for the first two natural frequencies are $99.45 \mathrm{rad} / \mathrm{sec}$ and $623.10 \mathrm{rad} / \mathrm{sec}$ respectively. Therefore, as was the case for axial vibrations, the natural frequencies are under-estimated for lumped-mass element and over-estimated for consistent-mass element.

Dynamic Analysis of Trusses and Frames

Two-dimensional Trusses

The mass and stiffness matrices derived for axially loaded members can be used for the dynamic analysis of two-dimensional trusses. One difference is that here the transverse displacements $\left(\mathrm{u}_{2 \mathrm{~A}}, \mathrm{u}_{2 \mathrm{~B}}\right)$ are also considered in forming the matrices, so that the size of the matrices is (4×4) instead of (2×2).

$$
\mathbf{M}_{\mathbf{m}}^{\mathbf{L}}=\left(\begin{array}{cccc}
\mathrm{mL} / 2 & 0 & 0 & 0 \tag{5.1}\\
0 & 0 & 0 & 0 \\
0 & 0 & \mathrm{~mL} / 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad \text { or } \quad \mathbf{M}_{\mathbf{m}}{ }^{\mathbf{L}}=\left(\begin{array}{cccc}
\mathrm{mL} / 3 & 0 & \mathrm{~mL} / 6 & 0 \\
0 & 0 & 0 & 0 \\
\mathrm{~mL} / 6 & 0 & \mathrm{~mL} / 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

The member matrices formed in the local axes system by Eq. (5.1) can be transformed into the global axes system by considering the angles they make with the horizontal.

$$
\mathbf{M}_{\mathrm{m}}{ }^{\mathbf{G}}=(\mathrm{mL} / 2)\left(\begin{array}{ll}
\vartheta & \mathbf{0} \tag{5.2}\\
\mathbf{0} & \vartheta
\end{array}\right) \quad \text { or } \quad \mathbf{M}_{\mathrm{m}}{ }^{\mathbf{G}}=(\mathrm{mL} / 3)\left(\begin{array}{ll}
\vartheta & \vartheta / 2 \\
\vartheta / 2 & \vartheta
\end{array}\right)
$$

where ϑ is a (2×2) matrix of coefficients given by

$$
\vartheta=\left(\begin{array}{ll}
\mathrm{C}^{2} & \mathrm{CS} \tag{5.3}\\
\mathrm{CS} & \mathrm{~S}^{2}
\end{array}\right)
$$

The mass and stiffness matrices (from previous formulations) and load vector of the whole structure can be assembled from the member matrices and vector $\left(\mathbf{M}_{m}{ }^{\mathbf{G}}, \mathbf{K}_{\mathrm{m}}{ }^{\mathbf{G}}\right.$ and $\left.\mathbf{f}_{\mathrm{m}}{ }^{\mathbf{G}}\right)$. They are obtained in their final forms only after applying appropriate boundary conditions.

Two-dimensional Frames

The matrices formed for flexural members and already used for a cantilever beam can be used for the dynamic analysis of two-dimensional frames. The elements of the $\mathrm{i}^{\text {th }}$ row and $\mathrm{j}^{\text {th }}$ column of the mass and stiffness matrices are given by Eq. (4.12) in integral form and can be evaluated once the shape functions ψ_{i} and ψ_{j} are known or assumed [as shown in Example 4.2]. However, the axial displacements of joints ($\mathrm{u}_{1 \mathrm{~A}}$, $\left.u_{1 B}\right)$ are also considered for frames in addition to the transverse displacements ($u_{2 A}, u_{2 B}$) and rotations $\left(\theta_{3 A}\right.$, $\theta_{3 \mathrm{~B}}$) about the out-of-plane axis considered in forming the matrices for beams, so that the size of the matrices is (6×6) instead of the (4×4) matrices shown for beams.

If shape functions of Example 4.2 are assumed for frame members of uniform cross-section, the member mass and stiffness matrices take the following forms in the local axes system
$\mathbf{M}_{\mathbf{m}}{ }^{\mathbf{L}}=(\mathrm{mL} / 2)\left(\begin{array}{cccccc}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right) \quad \mathbf{M}_{\mathbf{m}}{ }^{\mathbf{L}}=(\mathrm{mL} / 420) \quad$ (Consistent) $\left(\begin{array}{cccccc}140 & 0 & 0 & 70 & 0 & 0 \\ 0 & 156 & 22 \mathrm{~L} & 0 & 54 & -13 \mathrm{~L} \\ 0 & 22 \mathrm{~L} & 4 \mathrm{~L}^{2} & 0 & 13 \mathrm{~L} & -3 \mathrm{~L}^{2} \\ 70 & 0 & 0 & 140 & 0 & 0 \\ 0 & 54 & 13 \mathrm{~L} & 0 & 156 & -22 \mathrm{~L} \\ 0 & -13 \mathrm{~L} & -3 \mathrm{~L}^{2} & 0 & -22 \mathrm{~L} & 4 \mathrm{~L}^{2}\end{array}\right)$

Denoting the global structural matrices by \mathbf{M} and \mathbf{K} respectively and assuming appropriate damping ratios, the damping matrix \mathbf{C} can be obtained as,

$$
\begin{equation*}
\mathbf{C}=\mathrm{a}_{0} \mathbf{M}+\mathrm{a}_{1} \mathbf{K} \tag{5.5}
\end{equation*}
$$

The dynamic analysis can be carried out once these matrices and vector are formed.

Example 5.1
For the plane truss shown below, modulus of elasticity $\mathrm{E}=30000 \mathrm{ksi}$, cross-sectional area $\mathrm{A}=2 \mathrm{in}^{2}$, mass per length $\mathrm{m}=1.5 \times 10^{-6} \mathrm{k}-\mathrm{sec}^{2} / \mathrm{in}^{2}$. Calculate its natural frequencies using consistent mass matrices.
Solution

The truss has 8 DOF. The displacements $u_{1} \sim u_{4}$ and u_{7}, u_{8} are restrained, so that only two DOF $\left(u_{5}, u_{6}\right)$ are non-zero. There are five members in the truss (including two zero-force members), all with the same crosssectional properties, but different lengths. The member mass and stiffness matrices can be obtained from

$$
\mathbf{M}_{\mathbf{m}}^{\mathbf{G}}=(\mathrm{mL} / 3)\left(\begin{array}{cccc}
\mathrm{C}^{2} & \mathrm{CS} & \mathrm{C}^{2} / 2 & \mathrm{CS} / 2 \\
\mathrm{CS} & \mathrm{~S}^{2} & \mathrm{CS} / 2 & \mathrm{~S}^{2} / 2 \\
\mathrm{C}^{2} / 2 & \mathrm{CS} / 2 & \mathrm{C}^{2} & \mathrm{CS} \\
\mathrm{CS} / 2 & \mathrm{~S}^{2} / 2 & \mathrm{CS} & \mathrm{~S}^{2}
\end{array}\right) \quad \mathbf{K}_{\mathbf{m}}^{\mathbf{G}}=(\mathrm{EA} / \mathrm{L})\left(\begin{array}{ccc}
\mathrm{C}^{2} & \mathrm{CS} & -\mathrm{C}^{2} \\
\mathrm{CS} & \mathrm{~S}^{2} & -\mathrm{CS} \\
-\mathrm{C}^{2} & -\mathrm{CS} & -\mathrm{S}^{2} \\
-\mathrm{CS} & -\mathrm{S}^{2} & \mathrm{CS} \\
\mathrm{CS} & \mathrm{~S}^{2}
\end{array}\right)
$$

For member $\mathrm{AB}, \mathrm{C}=1, \mathrm{~S}=0, \mathrm{~L}=15^{\prime}=180^{\prime \prime}, \therefore \mathrm{mL} / 3=9.0 \times 10^{-5} \mathrm{k}-\mathrm{sec}^{2} / \mathrm{in}, \mathrm{EA} / \mathrm{L}=333.33 \mathrm{k} / \mathrm{in}$

$$
\left.\begin{array}{rl}
\mathbf{M}_{\mathbf{A B}}{ }^{\mathbf{G}} & =9.0 \times 10^{-5}\left(\begin{array}{cccc}
1.0 & 0 & 0.5 & 0 \\
0 & 0 & 0 & 0 \\
0.5 & 0 & 1.0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad \mathbf{K}_{\mathbf{A B}}{ }^{\mathbf{G}}=333.33\left(\begin{array}{cccc}
1.0 & 0 & -1.0 & 0 \\
0 & 0 & 0 & 0 \\
-1.0 & 0 & 1.0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
\operatorname{DOF}\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]
\end{array}\right] \quad .
$$

The matrices for AB and CD are the same, but the latter connects displacements 5, 6, 7 and 8
For member AC, $\mathrm{C}=0.707, \mathrm{~S}=0.707, \mathrm{~L}=10.607^{\prime}=127.28^{\prime \prime}$
$\therefore \mathrm{mL} / 3=6.37 \times 10^{-5} \mathrm{k}-\mathrm{sec}^{2} / \mathrm{in}, \mathrm{EA} / \mathrm{L}=471.41 \mathrm{k} / \mathrm{in}$

$$
\mathbf{M}_{\mathbf{A C}} \mathbf{G}^{\mathbf{G}}=6.37 \times 10^{-5}\left(\begin{array}{llrr}
0.5 & 0.5 & 0.25 & 0.25 \\
0.5 & 0.5 & 0.25 & 0.25 \\
0.25 & 0.25 & 0.5 & 0.5 \\
0.25 & 0.25 & 0.5 & 0.5
\end{array}\right) \quad \mathbf{K}_{\mathbf{A C}} \mathbf{G}^{\mathbf{G}}=471.41\left(\begin{array}{rrrr}
0.5 & 0.5 & -0.5 & -0.5 \\
0.5 & 0.5 & -0.5 & -0.5 \\
-0.5 & -0.5 & 0.5 & 0.5 \\
-0.5 & -0.5 & 0.5 & 0.5
\end{array}\right)
$$

The matrices for AC and BD are the same, but the latter connects displacements $3,4,7$ and 8
For member $\mathrm{BC}, \mathrm{C}=-0.707, \mathrm{~S}=0.707, \mathrm{~L}=10.607^{\prime}=127.28^{\prime \prime}$
$\therefore \mathrm{mL} / 3=6.37 \times 10^{-5} \mathrm{k}-\mathrm{sec}^{2} / \mathrm{in}, \mathrm{EA} / \mathrm{L}=471.41 \mathrm{k} / \mathrm{in}$

$$
\mathbf{M}_{\mathbf{B C}} \mathbf{G}^{\mathbf{G}}=6.37 \times 10^{-5}\left(\begin{array}{cccc}
0.5 & -0.5 & 0.25 & -0.25 \\
-0.5 & 0.5 & -0.25 & 0.25 \\
0.25 & -0.25 & 0.5 & -0.5 \\
0.25 & -0.25 & -0.5 & 0.5
\end{array}\right) \quad \mathbf{K}_{\mathbf{B C}}{ }^{\mathbf{G}}=471.41\left(\begin{array}{rrrr}
0.5 & -0.5 & -0.5 & 0.5 \\
-0.5 & 0.5 & 0.5 & -0.5 \\
-0.5 & 0.5 & 0.5 & -0.5 \\
0.5 & 4 & 5 & 6
\end{array}\right)
$$

Applying boundary conditions, the mass and stiffness matrices for the whole truss can be assembled as

$$
\begin{aligned}
& \mathbf{M}=10^{-5}\left(\begin{array}{cc}
15.37 & 0 \\
0 & 6.37
\end{array}\right) \quad \mathbf{K}=\left(\begin{array}{cc}
804.74 & 0 \\
0 & 471.41
\end{array}\right) \\
& \therefore\left|\mathbf{K}-\omega_{\mathrm{n}}{ }^{2} \mathbf{M}\right|=0 \Rightarrow\left(804.74-\omega_{\mathrm{n}}{ }^{2} 0.0001537\right)\left(471.41-\omega_{\mathrm{n}}{ }^{2} 0.0000637\right)=0 \\
& \Rightarrow \omega_{\mathrm{n}}=2288 \mathrm{rad} / \mathrm{sec}, 2720 \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

Practice Problems on Structural Dynamics

1. A SDOF system with $\mathrm{k}=10 \mathrm{k} / \mathrm{ft}, \mathrm{m}=1 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}, \mathrm{c}=0.5 \mathrm{k}-\mathrm{sec} / \mathrm{ft}$ is subjected to a force (in kip) given by (i) $p(t)=50$, (ii) $p(t)=100 t$, (iii) $p(t)=50 \cos (3 t)$. In each case, use the CAA method to calculate the displacement of the system at time $t=0.10$ seconds, if the initial displacement and velocity are both zero.
2. For a ($20^{\prime} \times 20^{\prime} \times 20^{\prime}$) overhead water tank supported by a $\left(25^{\prime \prime} \times 25^{\prime \prime}\right)$ square column, use the CAA method $(c=0)$ to calculate the displacement at time $t=0.20$ seconds, when subjected to
(i) a sustained wind pressure of 40 psf , (ii) a harmonic wind pressure of $40 \cos (2 \mathrm{t}) \mathrm{psf}$ [use $\mathrm{k}=3 \mathrm{EI} / \mathrm{L}^{3}$]. Assume the total weight of the system to be concentrated in the tank, and initial displacement and velocity are both zero [Given: E of concrete $=400 \times 10^{3} \mathrm{k} / \mathrm{ft}^{2}$, Unit weight of water $=62.5 \mathrm{lb} / \mathrm{ft}^{3}$].
3. For beam AB loaded as shown below, use the CAA method to calculate rotation at A at time $\mathrm{t}=0.10 \mathrm{sec}$ (starting with zero initial displacement and velocity) [Given: $\mathrm{EI}=40 \times 10^{3} \mathrm{k}-\mathrm{ft}^{2}, \mathrm{~m}=0.0045 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}^{2}$].

4. Calculate the natural frequencies and periods of the structures shown below (in axial/transverse vibration)
(i)

$\mathrm{m}_{1}=\mathrm{m}_{2}=1 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}$
$\mathrm{k}_{1}=\mathrm{k}_{2}=10 \mathrm{k} / \mathrm{ft}$
(ii) A 10-ft long simply supported beam with $\mathrm{EI}=40 \times 10^{3} \mathrm{k}-\mathrm{ft}^{2}, \mathrm{~m}=0.005 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}^{2}$.
(iii) Given: $\mathrm{EA}_{\mathrm{AB}}=400 \times 10^{3} \mathrm{k}, \mathrm{EA}_{\mathrm{BC}}=800 \times 10^{3} \mathrm{k}$; $\mathrm{EI}_{\mathrm{AB}}=40 \times 10^{3} \mathrm{k}-\mathrm{ft}^{2}, \mathrm{EI}_{\mathrm{BC}}=80 \times 10^{3} \mathrm{k}-\mathrm{ft}^{2}$; $\mathrm{m}_{\mathrm{AB}}=0.005 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}^{2}, \mathrm{~m}_{\mathrm{BC}}=0.010 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}^{2}$.

 $\mathrm{m}_{\mathrm{AB}}=0.005 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}^{2}, \mathrm{~m}_{\mathrm{BC}}=0.010 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}^{2}$.

Structures on Flexible Foundations

Rather than idealized support conditions (i.e., roller, hinged or fixed), it is more rational to assume structures to be supported on flexible supports. In addition to real springs, foundations on flexible supports (e.g., columns) or soils can also be modeled by springs for horizontal, vertical displacements, as well as bending and torsional rotations.

For example, if $\mathrm{EI}=80 \times 10^{3} \mathrm{k}-\mathrm{ft}^{2}$, the Stiffness Matrix for the beam in Fig. 1.1 is $\mathrm{S}_{3}=16 \times 10^{3} \mathrm{k}-\mathrm{ft} / \mathrm{rad}$ \therefore The stiffness formulation is, $S_{3} \theta_{A}=-P_{0} L / 8 \Rightarrow 16 \times 10^{3} \theta_{A}=-25 \Rightarrow \theta_{A}=-1.56 \times 10^{-3} \mathrm{rad}$

Fig. 1.1

Fig. 1.2

If springs of stiffness K_{h}, K_{v} and K_{θ} replace the 'fixed' support (Fig. 1.2), the stiffness formulation becomes

$$
\left\{\begin{array}{cccc}
\mathrm{S}_{3} & 0 & -\mathrm{S}_{2} & \mathrm{~S}_{4} \tag{1.1}\\
0 & \mathrm{~S}_{\mathrm{x}}+\mathrm{K}_{\mathrm{h}} & 0 & 0 \\
-\mathrm{S}_{2} & 0 & \mathrm{~S}_{1}+\mathrm{K}_{\mathrm{v}} & -\mathrm{S}_{2} \\
\mathrm{~S}_{4} & 0 & -\mathrm{S}_{2} & \mathrm{~S}_{3}+\mathrm{K}_{\theta}
\end{array}\right)\left\{\begin{array}{c}
\theta_{A} \\
\mathrm{u}_{\mathrm{B}} \\
\mathrm{v}_{\mathrm{B}} \\
\theta_{\mathrm{B}}
\end{array}\right\}=-\left\{\begin{array}{c}
\mathrm{P}_{0} \mathrm{~L} / 8 \\
0 \\
\mathrm{P}_{0} / 2 \\
-\mathrm{P}_{0} \mathrm{~L} / 8
\end{array}\right\}
$$

Stiffness of Circular Foundations and Long Pile Foundations

Motion	$\mathbf{K}_{\text {Halspace }}$	$\mathbf{K}_{\text {Embed }}$	$\mathbf{K}_{\text {Pile }}$
h	$8 \mathrm{GR} /(2-v)$	$4 \mathrm{G}^{\prime} \mathrm{E}$	$4 \mathrm{G}^{0.75}\left(\mathrm{E}_{\mathrm{p}} \mathrm{I}_{\mathrm{p}}\right)^{0.25}$
v	$4 \mathrm{GR} /(1-v)$	$2.75 \mathrm{G}^{\prime} \mathrm{E}$	$1.5 \mathrm{G}^{0.5}\left(\mathrm{E}_{\mathrm{p}} \mathrm{A}_{\mathrm{p}}\right)^{0.5}$
θ	$8 \mathrm{GR}^{3} /(3-3 v)$	$\left[8+4(\mathrm{E} / \mathrm{R})^{2}\right] \mathrm{G}^{\prime} \mathrm{ER}^{2} / 3$	$2 \mathrm{G}^{0.25}\left(\mathrm{E}_{\mathrm{p}} \mathrm{I}_{\mathrm{p}}\right)^{0.75}$
t	$16 \mathrm{GR}^{3} / 3$	$12 \mathrm{G}^{\prime} \mathrm{ER}^{2}$	$3 \mathrm{R} \mathrm{G}^{0.5}\left(\mathrm{E}_{\mathrm{p}} \mathrm{J}_{\mathrm{p}}\right)^{0.5}$

[h for horizontal, v for vertical, θ for bending and t for torsional motion]
If $E A=800 \times 10^{3} \mathrm{k}, \mathrm{S}_{\mathrm{x}}=40 \times 10^{3} \mathrm{k} / \mathrm{ft}, \mathrm{S}_{1}=120 \mathrm{k} / \mathrm{ft}, \mathrm{S}_{2}=1200 \mathrm{k}-\mathrm{ft} / \mathrm{ft}, \mathrm{S}_{4}=8 \times 10^{3} \mathrm{k}-\mathrm{ft} / \mathrm{rad}$ $\mathrm{G}=$ Shear modulus of sub-soil, $\mathrm{R}=$ Radius of circular foundation, $v=$ Poisson's ratio $\mathrm{K}_{\mathrm{h}}=8 \mathrm{GR} /(2-v), \mathrm{K}_{\mathrm{v}}=4 \mathrm{GR} /(1-v), \mathrm{K}_{\theta}=8 \mathrm{GR}^{3} /(3-3 v)$
Assuming shear-wave velocity $\mathrm{v}_{\mathrm{s}}=1000 \mathrm{ft} / \mathrm{s}, \mathrm{G}=\rho_{\mathrm{s}} \mathrm{v}_{\mathrm{s}}{ }^{2}=(0.12 / 32.2) \times(1000)^{2}=3.73 \times 10^{3} \mathrm{k} / \mathrm{ft}^{2}$

$$
\begin{aligned}
\therefore \mathrm{R}=2 \mathrm{ft}, v=0.30 \Rightarrow & \mathrm{~K}_{\mathrm{h}}=8 \mathrm{GR} /(2-v)=35.08 \times 10^{3} \mathrm{k} / \mathrm{ft}, \mathrm{~K}_{\mathrm{v}}=4 \mathrm{GR} /(1-v)=42.59 \times 10^{3} \mathrm{k} / \mathrm{ft}, \\
& \mathrm{~K}_{\theta}=8 \mathrm{GR}^{3} /(3-3 v)=113.58 \times 10^{3} \mathrm{k}-\mathrm{ft} / \mathrm{rad}
\end{aligned}
$$

$$
\left.10^{3}\left(\begin{array}{cccc}
16.0 & 0 & -1.2 & 8.0 \\
0 & 75.07 & 0 & 0 \\
-1.2 & 0 & 42.71 & -1.2 \\
8.0 & 0 & -1.2 & 129.58
\end{array}\right)\left\{\begin{array}{c}
\theta_{A} \\
\mathrm{u}_{\mathrm{B}} \\
\mathrm{v}_{\mathrm{B}} \\
\theta_{\mathrm{B}}
\end{array}\right\}=-\left\{\begin{array}{c}
25 \\
0 \\
5 \\
-25
\end{array}\right\} \Rightarrow \begin{array}{l}
\theta_{A}=-1.721 \times 10^{-3} \mathrm{rad} \\
\mathrm{u}_{\mathrm{B}}=0 \\
\mathrm{v}_{\mathrm{B}}=-0.133 \times 10^{-3} \mathrm{ft} \\
\theta_{\mathrm{B}}=0.298 \times 10^{-3} \mathrm{rad}
\end{array}\right\}
$$

These values may vary significantly with the stiffness(es) of foundation, which are directly proportional to the value of G (shear modulus of sub-soil), which in turn depends on the shear-wave velocity v_{s} of sub-soil. Table below shows the variation of θ_{A}, v_{B} and θ_{B} with v_{s}.

$\mathrm{v}_{\mathrm{S}}(\mathrm{ft} / \mathrm{s})$	$\theta_{\mathrm{A}}\left(10^{-3} \mathrm{rad}\right)$	$\mathrm{V}_{\mathrm{B}}\left(10^{-3} \mathrm{ft}\right)$	$\theta_{\mathrm{B}}\left(10^{-3} \mathrm{rad}\right)$
\propto	1.563	0	0
1000	1.721	-0.133	0.298
300	2.476	-1.138	1.657
100	3.372	-7.325	2.520

The effect of foundation flexibility on the dynamic properties of a structural system can be illustrated by a simple analysis of a 2-DOF system with the equations of motion in matrix form

Fig. 1.3: 'Fixed-based' and 'Flexible-based' foundation-structure systems

$$
\left(\begin{array}{ll}
\mathrm{m}_{1} & 0 \tag{1.2}\\
0 & m_{2}
\end{array}\right)\left\{\begin{array}{l}
\mathrm{d}^{2} u_{1} / \mathrm{dt}^{2} \\
\mathrm{~d}^{2} u_{2} / \mathrm{dt}^{2}
\end{array}\right\}+\left(\begin{array}{cc}
\mathrm{c}_{1}+\mathrm{c}_{2} & -\mathrm{c}_{2} \\
-\mathrm{c}_{2} & \mathrm{c}_{2}
\end{array}\right)\left\{\begin{array}{l}
\mathrm{d} u_{1} / \mathrm{dt} \\
d u_{2} / \mathrm{dt}
\end{array}\right\}+\left(\begin{array}{ll}
\mathrm{k}_{1}+\mathrm{k}_{2} & -\mathrm{k}_{2} \\
-\mathrm{k}_{2} & \mathrm{k}_{2}
\end{array}\right)\left\{\begin{array}{l}
\mathrm{u}_{1} \\
\mathrm{u}_{2}
\end{array}\right\}=\left\{\begin{array}{l}
\mathrm{f}_{1}(\mathrm{t}) \\
\mathrm{f}_{2}(\mathrm{t})
\end{array}\right\}
$$

If u_{1} and u_{2} are the horizontal displacements at the foundation and $1^{\text {st }}$ floor level and the foundation is assumed massless (i.e., $\mathrm{m}_{1}=0$) but to consist of a spring k_{1} and dashpot c_{1} [Fig. 1.3], Eq. (1.2) reduces to

$$
\left(\begin{array}{cc}
0 & 0 \tag{1.3}\\
0 & m_{2}
\end{array}\right)\left\{\begin{array}{l}
\mathrm{d}^{2} u_{1} / \mathrm{dt}^{2} \\
\mathrm{~d}^{2} u_{2} / \mathrm{dt}^{2}
\end{array}\right\}+\left(\begin{array}{cc}
\mathrm{c}_{1}+\mathrm{c}_{2} & -\mathrm{c}_{2} \\
-\mathrm{c}_{2} & \mathrm{c}_{2}
\end{array}\right)\left\{\begin{array}{l}
\mathrm{du}_{1} / d t \\
d u_{2} / \mathrm{dt}
\end{array}\right\}+\left(\begin{array}{cc}
\mathrm{k}_{1}+\mathrm{k}_{2} & -\mathrm{k}_{2} \\
-\mathrm{k}_{2} & \mathrm{k}_{2}
\end{array}\right)\left\{\begin{array}{l}
\mathrm{u}_{1} \\
\mathrm{u}_{2}
\end{array}\right\}=\left\{\begin{array}{l}
\mathrm{f}_{1}(\mathrm{t}) \\
\mathrm{f}_{2}(\mathrm{t})
\end{array}\right\}
$$

Therefore, the natural frequencies of the system can be calculated from $\left(k_{1}+k_{2}-0\right)\left(k_{2}-\omega_{n}{ }^{2} m_{2}\right)-\left(-k_{2}\right)^{2}=0$

$$
\begin{equation*}
\Rightarrow \omega_{\mathrm{n}}=\sqrt{ }\left\{\mathrm{k}_{1} \mathrm{k}_{2} /\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right) / \mathrm{m}_{2}\right\}=\sqrt{ }\left\{\mathrm{k}_{2} / \mathrm{m}_{2} /\left(1+\mathrm{k}_{2} / \mathrm{k}_{1}\right)\right\} \tag{1.4}
\end{equation*}
$$

Since there is only one mass in the system, the foundation-structure system reduces to a SDOF system. The natural frequency given by Eq. (1.4) is less than the 'fixed-based' frequency $\left[\omega_{\mathrm{n}}=\sqrt{ }\left(\mathrm{k}_{2} / \mathrm{m}_{2}\right)\right]$ of the system.

Moreover, instead of the 'fixed-based' damping ratio $\xi=\mathrm{c}_{2} / 2 \sqrt{ }\left(\mathrm{k}_{2} \mathrm{~m}_{2}\right)$, the damping ratio now

$$
\begin{equation*}
\xi=c_{2} / 2 \sqrt{ }\left\{\mathrm{k}_{2} \mathrm{~m}_{2}\left(1+\mathrm{k}_{2} / \mathrm{k}_{1}\right)^{3}\right\}+\mathrm{c}_{1} / 2 \sqrt{ }\left\{\mathrm{k}_{1} \mathrm{~m}_{2}\left(1+\mathrm{k}_{1} / \mathrm{k}_{2}\right)^{3}\right\} \tag{1.5}
\end{equation*}
$$

This simple illustration shows some important features of foundation flexibility
(i) Natural frequency of the structure is reduced.
(ii) The damping ratio of the structure may increase or decrease.
(iii) Whether it is beneficial or harmful to the structure depends on the frequency of applied loads.

For example, if $\mathrm{k}_{1}=\mathrm{k}_{2}=10 \mathrm{k} / \mathrm{ft}, \mathrm{m}_{1}=0, \mathrm{~m}_{2}=1 \mathrm{k}-\mathrm{sec}^{2} / \mathrm{ft}, \mathrm{c}_{1}=\mathrm{c}_{2}=0.316 \mathrm{k}-\mathrm{sec} / \mathrm{ft}$
ω_{n} for 'fixed-based' system $=\sqrt{ }\left\{\mathrm{k}_{2} / \mathrm{m}_{2}\right\}=3.16 \mathrm{rad} / \mathrm{sec}$
ω_{n} for 'flexible-based' system $=\sqrt{ }\left\{\mathrm{k}_{1} \mathrm{k}_{2} /\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right) / \mathrm{m}_{2}\right\}=2.24 \mathrm{rad} / \mathrm{sec}$
ξ for 'fixed-based' system $=c_{2} / 2 \sqrt{ }\left(\mathrm{k}_{2} \mathrm{~m}_{2}\right)=0.05$
ξ for 'flexible-based' system $=0.316 / 2 \sqrt{ }(80)+0.316 / 2 \sqrt{ }(80)=0.035$

Short Questions and Explanations

Stiffness Method for 3D Trusses vs. 3D Frames

1. Unknowns: Deflections only vs. Deflections + Rotations
2. No. of Unknowns: $d o k i=3 \mathrm{j}$ vs. $d o k i=6 \mathrm{j}$
3. Member Stiffness Matrix: (6×6) vs. (12×12)
4. Member Properties: E, A vs. G, E, A, J, $\mathrm{I}_{\mathrm{y}}, \mathrm{I}_{z}$
5. Forces Calculated: Member Axial Forces vs. Member Axial, Shear Forces, Torsions, BM's

Stiffness Method for

- 2D Trusses vs. 2D Frames
- 2D Trusses vs. 3D Trusses
- 2D Frames vs. 3D Frames
- Linear vs. Nonlinear Analysis
- Analysis for Geometric vs. Material Nonlinearity

Briefly explain

- axial deformations are sometimes neglected for the structural analysis of frames but not trusses
- joint rotations are considered in calculating the doki of frames, but not trusses
- stiffness matrix of a 3D truss member is (6×6) while that of a 3D frame member is (12×12)
- the matrices \mathbf{K} and \mathbf{G} used for the nonlinear analysis of frames are only approximate
- the formulation of the geometric stiffness matrix \mathbf{G} is a nonlinear problem
- a structure becomes unstable at buckling load (explain in terms of stiffness matrix)
- the terms material nonlinearity, plastic moment and collapse mechanism
- frames can be approximately modeled by lumped-mass systems
- the effect of foundation flexibility can be beneficial or harmful to the structure

1. Pattern Loading for Multi-storied Frames
(a) Beam Moments

Live Loading Pattern for Maximum $\mathrm{M}_{\mathrm{A}}(+\mathrm{ve})$
(b) Column Moment and Axial Force

Live Loading Pattern for Maximum $\mathrm{M}_{\mathrm{C} 1}$ and $\mathrm{M}_{\mathrm{C} 2}$

Live Loading Pattern for Maximum M_{B} (- ve)

Live Loading Pattern for Maximum $\mathrm{P}_{\mathrm{C} 2}$
2. Qualitative Influence Lines for Truss Reactions and Member Forces

Quantitative Influence Lines using Shape Functions

Quantitative Influence Lines can also be drawn using the shape functions
(1)

(2)

(3)

The deflected shape is $u(x)=u_{1} f_{1}(x)+u_{2} f_{2}(x)+u_{3} f_{3}(x)+u_{4} f_{4}(x)$, once $u_{1}, u_{2}, u_{3}, u_{4}$ are known.

$$
\begin{aligned}
& {\left[\mathrm{u}_{1}=1\right] 6 / \mathrm{L}^{2}} \\
& \left(\mathrm{u}_{2}=-1.5 / \mathrm{L}\right) \\
& \\
& \quad \begin{aligned}
\therefore \mathrm{u}(\mathrm{x}) & =(1) \mathrm{L}_{1}(\mathrm{x})-(1.5 / \mathrm{L}) \mathrm{f}_{2}(\mathrm{x}) \\
& =1-1.5(\mathrm{x} / \mathrm{L})+0.5(\mathrm{x} / \mathrm{L})^{3}
\end{aligned}
\end{aligned}
$$

Quantitative Influence Lines for Three-Span Continuous Beam

Assume $\mathrm{EI}=1, \mathrm{~L}=1$ for each span

2. Quantitative IL for R_{B} using Moment Distribution

3. Once the reactions R_{A} and R_{B} [Fig. 1] are known
(i) Shear Forces $\mathrm{V}_{\mathrm{E}}, \mathrm{V}_{\mathrm{B}}{ }^{(-)}, \mathrm{V}_{\mathrm{B}}{ }^{(+)}$[Fig. 2] and
(ii) Bending Moments $\mathrm{M}_{\mathrm{E}}, \mathrm{M}_{\mathrm{B}}, \mathrm{M}_{\mathrm{F}}$ [Fig. 3] can be calculated from Statics.
[e.g., $\mathrm{M}_{\mathrm{F}}=\mathrm{R}_{\mathrm{A}} \times 1.5+\mathrm{R}_{\mathrm{B}} \times 0.5-1 \times<1.5-\mathrm{x} / \mathrm{L}>$]

Fig. 1: IL for Reactions

Fig. 2: IL for Shear Forces

Fig. 3: IL for Bending Moments

1. Declare parameters and arrays (e.g., x, y, E, A)
2. Read
(i) number of nodes (Nnod)
(ii) number of members (Nmem)
3. Read the nodal coordinates (x, y) (for Nnod nodes)
4. Read for (Nmem members)
(i) member properties (E, A)
(ii) member nodal numbers (ni, nj)
5. Size of the stiffness matrix, $\mathrm{Ndf}=2$ Nnod
6. Assemble structural stiffness matrix SK
i.e., formulate member stiffness matrix and assign them to appropriate locations of SK
$\mathrm{L}=\sqrt{ }\left\{(\Delta \mathrm{x})^{2}+(\Delta \mathrm{y})^{2}\right\}$
$\mathrm{S}_{\mathrm{x}}=\mathrm{EA} / \mathrm{L}$
$C=(\Delta x) / L, S=(\Delta y) / L$
$\mathrm{i} 2=2(\mathrm{ni}-1)$
$\mathrm{j} 2=2(\mathrm{nj}-1)$
$\mathrm{SK}(\mathrm{i} 2+1, \mathrm{i} 2+1)=\mathrm{SK}(\mathrm{i} 2+1, \mathrm{i} 2+1)+\mathrm{S}_{\mathrm{x}} \mathrm{C}^{2}$
$\mathrm{SK}(\mathrm{i} 2+1, \mathrm{i} 2+2)=\mathrm{SK}(\mathrm{i} 2+1, \mathrm{i} 2+2)+\mathrm{S}_{\mathrm{x}} \mathrm{CS}$
$\mathrm{SK}(\mathrm{i} 2+2, \mathrm{i} 2+1)=\mathrm{SK}(\mathrm{i} 2+2, \mathrm{i} 2+1)+\mathrm{S}_{\mathrm{x}} \mathrm{CS}$
$\mathrm{SK}(\mathrm{i} 2+2, \mathrm{i} 2+2)=\mathrm{SK}(\mathrm{i} 2+2, \mathrm{i} 2+2)+\mathrm{S}_{\mathrm{x}} \mathrm{S}^{2}$, etc.
7. Read the number of loads (Nload) and formulate the load vector p [Actually p is denoted by u in the program]
8. Apply boundary conditions
(i) Read the number and known values of the known displacements
(ii) Modify the corresponding rows and load vector elements
9. Solve the matrix equations $\mathrm{SKu}=\mathrm{p}$ (using Gauss Elimination), to obtain displacement vector u [Actually the equations are solved in this program so that the new u replaces the old u]
10. Calculate the member forces using

$$
\mathrm{P}_{\mathrm{AB}}=\mathrm{S}_{\mathrm{x}}\left\{\mathrm{C}\left(\mathrm{u}_{\mathrm{B}}-\mathrm{u}_{\mathrm{A}}\right)+\mathrm{S}\left(\mathrm{v}_{\mathrm{B}}-\mathrm{v}_{\mathrm{A}}\right)\right\}
$$

Computer Program (in Fortran 90) for the Linear Static Analysis of 2D Trusses

```
    PROGRAM TRUSS2
    IMPLICIT REAL*8(A-H,O-Z)
    DIMENSION X(800),Y(800)
    DIMENSION ELAS (600),AREA(600),NI (600),NJ(600)
    DIMENSION DX(600),DY(600),P(600)
    DIMENSION IKNOW(50),DKNOW(50)
    COMMON/SOLVER/STK(990,990),U(990),NDF
    CHARACTER*16 FILOUT
    PRINT*,' ENTER OUTPUT FILENAME'
    READ*, FILOUT
    OPEN(1,FILE='TRUSS2.IN',STATUS='OLD')
    OPEN(2,FILE=FILOUT,STATUS='OLD')
C*******NUMBER OF NODES, NUMBER OF MEMBERS************************
    READ (1,* ) NNOD, NMEM
C*******NODAL PROPERTIES******************************************
    READ (1,*)(X (I),Y(I),I=1,NNOD)
C*******MEMBER PROPERTIES******************************************
        DO 11 I=1,NMEM
        READ(1,*) ELAS (I) , AREA (I) ,NI (I) ,NJ (I)
        NII=NI(I)
        NJI=NJ(I)
        DX(I) = X (NJI) - X (NII)
        DY(I) =Y (NJI) -Y (NII)
    11 CONTINUE
C*******ASSEMBLING STIFFNESS MATRIX*******************************
    NDF=2*NNOD
    DO 30 I=1,NDF
        U (I) =0.
        DO 30 J=1,NDF
            STK (I,J) = 0.
    30 CONTINUE
DO 12 I=1,NMEM
TLEN=SQRT(DX(I) *DX(I) +DY(I) *DY(I))
STX=ELAS (I)*AREA(I)/TLEN
    I2=(NI (I) -1)*2
    J2=(NJ (I) -1)*2
    C=DX(I)/TLEN
    S=DY(I)/TLEN
    CC=C*C
    CS=C*S
    SS=S*S
    STK}(I2+1,I2+1)=STK(I2+1,I2+1) +STX*CC
    STK}(I2+1,I2+2)=STK (I2+1,I2+2) +STX* CS
    STK (I2+1, J2+1) =STK (I2+1,J2+1) -STX*CC
    STK (I2+1,J2+2)=STK(I2+1,J2+2) -STX*CS
        STK (I2+2,I2+1)=STK(I2+2,I2+1) +STX*CS
        STK (I2+2,I2+2)=STK (I2+2,I2+2) +STX*SS
        STK (I2+2,J2+1) =STK(I2+2,J2+1) -STX*CS
        STK (I2+2,J2+2)=STK (I2+2,J2+2) -STX*SS
        STK (J2+1,I2+1)=STK(J2+1,I2+1) -STX*CC
        STK (J2+1,I2+2)=STK (J2+1,I2+2) -STX*CS
        STK (J2+1, J2+1) =STK (J2+1,J2+1) +STX*CC
        STK}(J2+1,J2+2)=STK (J2+1,J2+2) +STX*C
```

```
STK (J2+2,I2+1)=STK (J2+2,I2+1) -STX*CS
STK (J2+2,I2+2) =STK (J2+2,I2+2) -STX*SS
STK (J2+2,J2+1)=STK (J2+2,J2+1) +STX*CS
STK (J2+2,J2+2) =STK (J2+2,J2+2) +STX*SS
12 CONTINUE
```

```
C WRITE(2, 8)(STK(I,I),I=1,NDF)
```

C WRITE(2, 8)(STK(I,I),I=1,NDF)
C*******LOADS CORRESPONDING TO DEGREES OF FREEDOM***********************
READ (1,*) NLOAD
IF (NLOAD.GT.0) READ (1, *) (J,U (J) , I=1,NLOAD)
C*******RESTRAINTS***
READ (1,*) NKND
READ (1, *) (IKNOW (I) , DKNOW (I) ,I=1,NKND)
DO 15 I=1,NKND
IKND=IKNOW (I)
DKN=DKNOW (I)
DO 16 J=1,NDF
U(J)=U(J) -STK (J,IKND) *DKN
16 CONTINUE
DO 15 J=1,NDF
IF (J.NE.IKND) THEN
STK (J,IKND)=0.
STK (IKND,J) =0.
ENDIF
U(IKND)=DKN*STK (IKND,IKND)
15 CONTINUE
CALL GAUSS
C*******DISPLACEMENTS**
6 FORMAT (10 (1X,F8.2))
7 FORMAT (1X,I4,10(1X,F10.6))
8 FORMAT (1X,I4,10(1X,F10.4))
WRITE (2,*)'DISPLACEMENTS ARE'
DO 17 I=1,NDF
WRITE (2,7) I,U(I)
17 CONTINUE
C*******MEMBER FORCES**
WRITE (2,*)
WRITE (2,*)'MEMBER FORCES ARE'
DO 18 I=1,NMEM
TLEN=SQRT(DX(I) *DX(I) +DY(I) *DY(I))
STX=ELAS (I)*AREA (I)/TLEN
I2=(NI (I) - 1)*2
J2=(NJ (I) -1)*2
C=DX(I)/TLEN
S=DY (I)/TLEN
AXDIS=(U(J2+1) -U (I2+1))*C+(U(J2+2) -U (I2+2))*S
P(I) =STX*AXDIS
WRITE (2, 8) I, P (I)
18 CONTINUE
END

```
```

C********GAUSS ELIMINATION
SUBROUTINE GAUSS
IMPLICIT REAL*8(A-H,O-Z)
COMMON/SOLVER/A(990,990),B(990),N
NHBW=N
N1=N-1
DO 10 K=1,N1
K1=K+1
KH=K+NHBW
C=1./A (K,K)
DO 11 I=K1,KH
IF(I.LE.N) D=A(I,K) *C
DO 12 J=K1,KH
12 IF(J.LE.N)A(I,J) =A (I,J) -D*A (K,J)
11 IF(I.LE.N)B(I) =B (I) -D*B(K)
10 CONTINUE
B(N)=B(N)/A (N,N)
DO 13 I=N1,1,-1
I1=I+1
SUM=0.
DO 14 K=I1,N
14 SUM=SUM+A(I,K)*B(K)
13 B(I)=(B(I)-SUM)/A(I,I)
END

```

\section*{Structural Analysis using Energy Formulation}

\section*{Method of Virtual Work}

Another way of representing Newton's equation of equilibrium is by energy methods, which is based on the law of conservation of energy. According to the principle of virtual work, if a system in equilibrium is subjected to virtual displacements \(\delta \mathrm{u}\), the virtual work done by the external forces \(\left(\delta \mathrm{W}_{\mathrm{E}}\right)\) is equal to the virtual work done by the internal forces \(\left(\delta \mathrm{W}_{\mathrm{I}}\right)\)
\[
\begin{equation*}
\delta \mathrm{W}_{\mathrm{I}}=\delta \mathrm{W}_{\mathrm{E}} \tag{1}
\end{equation*}
\]
where the symbol \(\delta\) is used to indicate 'virtual'. This term is used to indicate hypothetical increments of displacements and works that are assumed to happen in order to formulate the problem.

\section*{Axially Loaded Bar on Elastic Foundation}

For a structural member loaded axially by \(\mathrm{p}(\mathrm{x})\) per unit length, the external virtual work due to virtual deformation \(\delta u\) is \(\quad \delta W_{E}=\int p(x) d x \delta u\)
while the internal virtual work due to virtual axial strain \(d(\delta u) / d x=\delta u^{\prime}\) and virtual deformation \(\delta u\) of the elastic foundation is \(\quad \delta W_{I}=\int u^{\prime} E A \delta u^{\prime} d x+\int u k_{f} \delta u d x\)
where \(\delta u^{\prime}\) stands for differentiation of \(\delta u\) with respect to \(x\) (in general the symbol ' stands for differentiation with respect to x ), \(\mathrm{E}=\) modulus of elasticity and \(\mathrm{A}=\) cross-sectional area of the axial member, \(\mathrm{k}_{\mathrm{f}}=\) stiffness of elastic foundation. \(\mathrm{E}, \mathrm{A}\) and \(\mathrm{k}_{\mathrm{f}}\) can vary with x .
\[
\begin{equation*}
\therefore \delta \mathrm{W}_{\mathrm{I}}=\delta \mathrm{W}_{\mathrm{E}} \Rightarrow \int \mathrm{u}^{\prime} \mathrm{EA} \delta \mathrm{u}^{\prime} \mathrm{dx}+\int \mathrm{u}_{\mathrm{f}} \delta \mathrm{udx}=\int \mathrm{p}(\mathrm{x}) \mathrm{dx} \delta \mathrm{u} \tag{4}
\end{equation*}
\]

If the displacements are assumed to be function of a single displacement \(u_{1}\), so that
\[
\begin{align*}
& u(x)=u_{1} \phi(x) \Rightarrow u^{\prime}=u_{1} \phi^{\prime}(x)  \tag{5}\\
& \delta u=\delta u_{1} \phi(x) \Rightarrow \delta u^{\prime}=\delta u_{1} \phi^{\prime}(x) \tag{7}
\end{align*}
\]
\(\therefore\) Eq. (4) \(\Rightarrow \int \mathrm{u}_{1} \phi^{\prime}(\mathrm{x})\) EA \(\delta \mathrm{u}_{1} \phi^{\prime}(\mathrm{x}) \mathrm{dx}+\int \mathrm{u}_{1} \phi(\mathrm{x}) \mathrm{k}_{\mathrm{f}} \delta \mathrm{u}_{1} \phi(\mathrm{x}) \mathrm{dx}=\int \mathrm{p}(\mathrm{x}) \mathrm{dx} \delta \mathrm{u}_{1} \phi(\mathrm{x})\)
\[
\begin{equation*}
\Rightarrow\left\{\int E A\left[\phi^{\prime}(x)\right]^{2} d x+\int \mathrm{k}_{\mathrm{f}}[\phi(\mathrm{x})]^{2} \mathrm{dx}\right\} \mathrm{u}_{1}=\int \mathrm{p}(\mathrm{x}) \phi(\mathrm{x}) \mathrm{dx} \tag{9}
\end{equation*}
\]
\(\therefore\) If the integrations are carried out after knowing \(\phi(\mathrm{x})\), Eq. (9) can be rewritten as,
\[
\begin{equation*}
\mathrm{k}^{*} \mathrm{u}_{1}=\mathrm{f}^{*} \tag{10}
\end{equation*}
\]
where \(\mathrm{k}^{*}, \mathrm{f}^{*}\) are the 'effective' stiffness and force of the system.

\section*{Transversely Loaded Beam on Elastic Foundation}

For a structural member loaded transversely by \(\mathrm{q}(\mathrm{x})\) per unit length, the external virtual work due to virtual deformation \(\delta v\) is \(\quad \delta W_{E}=\int q(x) d x \delta v\)
while the internal virtual work due to virtual curvature \(\mathrm{d}\left(\delta \mathrm{v}^{\prime}\right) / \mathrm{dx}=\delta \mathrm{v}^{\prime \prime}\) and virtual deformation \(\delta \mathrm{v}\) of the elastic foundation is \(\quad \delta \mathrm{W}_{\mathrm{I}}=\int \mathrm{v}^{\prime \prime} \mathrm{E} \mathrm{I} \delta \mathrm{v}^{\prime \prime} \mathrm{dx}+\int \mathrm{v}_{\mathrm{f}} \delta \mathrm{v} \mathrm{dx}\)
where \(\delta \mathrm{v}^{\prime \prime}\) stands for double differentiation of \(\delta \mathrm{v}\) with respect to \(\mathrm{x}, \mathrm{E}=\) modulus of elasticity and \(\mathrm{I}=\) moment of inertia of the cross-sectional area of the flexural member. \(\mathrm{E}, \mathrm{I}\) and \(\mathrm{k}_{\mathrm{f}}\) can vary with x .
\[
\begin{equation*}
\therefore \delta \mathrm{W}_{\mathrm{I}}=\delta \mathrm{W}_{\mathrm{E}} \Rightarrow \int \mathrm{v}^{\prime \prime} \mathrm{E} \mathrm{I} \delta \mathrm{v}^{\prime \prime} \mathrm{dx}+\int \mathrm{v}_{\mathrm{f}} \delta \mathrm{vdx}=\int \mathrm{q}(\mathrm{x}) \mathrm{dx} \delta \mathrm{v} \tag{13}
\end{equation*}
\]

If the displacements are assumed to be function of a single displacement \(\mathrm{u}_{2}\), so that
\[
\begin{align*}
& v(x)=u_{2} \psi(x) \Rightarrow v^{\prime \prime}=u_{2} \psi^{\prime \prime}(x)  \tag{14}\\
& \delta v=\delta u_{2} \psi(x) \Rightarrow \delta v=\delta u_{2} \psi(x) \tag{16}
\end{align*}
\]
\(\therefore\) Inserting these values in Eq. (13) \(\Rightarrow\)
\[
\int u_{2} \psi^{\prime \prime}(x) E I \delta u_{2} \psi^{\prime \prime}(x) d x+\int u_{2} \psi(x) k_{f} \delta u_{2} \psi(x) d x=\int q(x) d x \delta u_{2} \psi(x)
\]
\[
\begin{equation*}
\Rightarrow\left\{\int \mathrm{EI}\left[\psi^{\prime \prime}(\mathrm{x})\right]^{2} \mathrm{dx}+\int \mathrm{k}_{\mathrm{f}}[\psi(\mathrm{x})]^{2} \mathrm{dx}\right\} \mathrm{u}_{2}=\int \mathrm{q}(\mathrm{x}) \psi(\mathrm{x}) \mathrm{dx} \tag{18}
\end{equation*}
\]
\(\therefore\) If the integrations are carried out after knowing (or assuming) \(\psi(x)\), Eq. (18) can be rewritten as,
\[
\begin{equation*}
\mathrm{k}^{*} \mathrm{u}_{2}=\mathrm{f}^{*} \tag{19}
\end{equation*}
\]
where \(\mathrm{k}^{*}, \mathrm{f}^{*}\) are the 'effective' stiffness and force of the system.
Once \(\mathrm{k}^{*}\) and \(\mathrm{f}^{*}\) are calculated, Eq. (10) or (19) can be solved to obtain the deflection \(\mathrm{u}_{1}\) or \(\mathrm{u}_{2}\), from which the deflection \(u(x)\) or \(v(x)\) at any point can be calculated using Eq. (5) or (14). The accuracy of Eq. (10) or (19) depends on the accuracy of the shape functions \(\phi(x)\) or \(\psi(x)\). If the shape functions are not defined exactly, the solutions can only be approximate. These functions must be defined satisfying the natural boundary conditions; i.e., those involving displacements for axial deformation and displacements as well as rotations for flexural deformations. This method of analysis using energy principles is called the RayleighRitz method.

\section*{Example 1}

For a cantilever rod, modulus of elasticity \(\mathrm{E}=45 \times 10^{4} \mathrm{ksf}\), cross-sectional area \(\mathrm{A}=1 \mathrm{ft}^{2}\), moment of inertia \(\mathrm{I}=0.08 \mathrm{ft}^{4}\), length \(\mathrm{L}=10 \mathrm{ft}\). Calculate the approximate axial and flexural deflections of the system for axial and transverse loads of \(1 \mathrm{k} / \mathrm{ft}\) respectively.

\section*{Solution}

Assuming shape functions (satisfying natural boundary conditions)
\[
\phi(x)=x / L, \psi(x)=(x / L)^{2}
\]
[Note that: \(\phi(0)=0, \psi(0)=0, \psi^{\prime}(0)=0\) ]


For axial deformations,
Effective stiffness \(\mathrm{k}^{*}=\int \mathrm{EA}\left[\phi^{\prime}(\mathrm{x})\right]^{2} \mathrm{dx}=\mathrm{EA} / \mathrm{L}=45000 \mathrm{k} / \mathrm{ft}\)
Effective force \(\mathrm{f}^{*}=\int \mathrm{p}(\mathrm{x}) \phi(\mathrm{x}) \mathrm{dx}=\mathrm{pL} / 2=5 \mathrm{kips}\)
\(\therefore\) Equation for axial deformation is, \(45000 \mathrm{u}_{1}=5\)
\(\Rightarrow \mathrm{u}_{1}=1.11 \times 10^{-4} \mathrm{ft}\), which is the exact result
\(\Rightarrow \mathrm{u}(\mathrm{x})=1.11 \times 10^{-4}(\mathrm{x} / \mathrm{L})\), which is also the exact deformed shape of the bar
For flexural deformations,
Effective stiffness \(\mathrm{k}^{*}=\int \mathrm{EI}\left[\psi^{\prime \prime}(\mathrm{x})\right]^{2} \mathrm{dx}=4 \mathrm{EI} / \mathrm{L}^{3}=144 \mathrm{k} / \mathrm{ft}\)
Effective force \(\mathrm{f}^{*}=\int \mathrm{q}(\mathrm{x}) \psi(\mathrm{x}) \mathrm{dx}=\mathrm{qL} / 3=3.33\) kips
\(\therefore\) Equation for flexural deformation is, \(144 \mathrm{u}_{2}=3.33\)
\(\Rightarrow \mathrm{u}_{2}=0.02315 \mathrm{ft}\), the exact result being \([=\mathrm{qL} /(8 \mathrm{EI})]=0.03472 \mathrm{ft}\)
\(\Rightarrow \mathrm{u}(\mathrm{x})=0.02315(\mathrm{x} / \mathrm{L})^{2}\)

\section*{Example 2}

For the member properties mentioned in Example 1, calculate the approximate flexural deflections of
(i) a cantilever beam, assuming \(\psi(x)=1-\cos (\pi x / 2 L)\),
(ii) a simply supported beam, assuming \(\psi(x)=\sin (\pi x / L)\), for transverse loads of \(1 \mathrm{k} / \mathrm{ft}\).

\section*{Solution}

Both these shape functions satisfy the natural boundary conditions for the problems mentioned.
[i.e., (i) \(\psi(0)=0, \psi^{\prime}(0)=0\), (ii) \(\psi(0)=0, \psi(\mathrm{~L})=0\) ]
(i) For the cantilever beam,

Effective stiffness \(\mathrm{k}^{*}=\int \mathrm{EI}\left[\psi^{\prime \prime}(\mathrm{x})\right]^{2} \mathrm{dx}=3.044 \mathrm{EI} / \mathrm{L}^{3}=109.59 \mathrm{k} / \mathrm{ft}\)
Effective force \(\mathrm{f}^{*}=\int \mathrm{q}(\mathrm{x}) \psi(\mathrm{x}) \mathrm{dx}=\mathrm{qL}(1-2 / \pi)=3.63 \mathrm{kips}\)
\(\therefore\) Equation for flexural deformation is, \(109.59 \mathrm{u}_{2}=3.63\)
\(\Rightarrow \mathrm{u}_{2}=0.03316 \mathrm{ft}\), which is much better estimate of the exact result \(\Rightarrow \mathrm{u}(\mathrm{x})=0.03316[1-\cos (\pi \mathrm{x} / 2 \mathrm{~L})]\)
(ii) For the simply supported beam,

Effective stiffness \(\mathrm{k}^{*}=\int \mathrm{EI}\left[\psi^{\prime \prime}(\mathrm{x})\right]^{2} \mathrm{dx}=(\pi / \mathrm{L})^{4} \mathrm{EIL} / 2=1753.36 \mathrm{k} / \mathrm{ft}\)
Effective force \(\mathrm{f}^{*}=\int \mathrm{q}(\mathrm{x}) \psi(\mathrm{x}) \mathrm{dx}=2 \mathrm{qL} / \pi=6.367 \mathrm{kips}\)
\(\therefore\) Equation for flexural deformation is, \(1753.36 \mathrm{u}_{2}=6.367\)
\(\Rightarrow \mathrm{u}_{2}=36.31 \times 10^{-4} \mathrm{ft}\), which is very close to exact result \(\left[=5 \mathrm{qL}{ }^{4} /(384 \mathrm{EI})\right]=36.17 \times 10^{-4} \mathrm{ft}\)
\(\Rightarrow \mathrm{u}(\mathrm{x})=36.31 \times 10^{-4} \sin (\pi \mathrm{x} / \mathrm{L})\)
These results show that the accuracy of the Rayleigh-Ritz method depends on the accuracy of the assumed shape function. Based on the shape function, this method can model the structure to be too stiff (i.e., overestimate the 'effective' stiffness and 'effective' force) or can reproduce the exact solution.
1. For the beams loaded as shown below [Given: \(\mathrm{EI}=40 \times 10^{6}{\mathrm{lb}-\mathrm{ft}^{2} \text { ] }}^{\text {[ }}\)
(a) choose an appropriate shape function (satisfying the essential boundary conditions) among
(i) \(\psi(x)=\cos (\pi x / 2 L)\), (ii) \(\psi(x)=[1+\cos (\pi x / L)] / 2\) and (iii) \(\psi(x)=\sin (\pi x / L)\)
(b) use the chosen shape function to calculate the deflections at A if
(i) \(\mathrm{P}_{0}=10 \mathrm{kips}, \mathrm{w}_{0}=0\), (ii) \(\mathrm{P}_{0}=0, \mathrm{w}_{0}=1 \mathrm{kip} / \mathrm{ft}\)
(c) compare the results found in (b) with the exact results.

2. For the structures loaded as shown below [Given: \(\mathrm{EI}=36 \times 10^{3} \mathrm{k}-\mathrm{ft}^{2}, \mathrm{EA}=450 \times 10^{3} \mathrm{k}\) ]
(a) justify the choice of shape functions
\(\operatorname{Bar} 1: \phi(\mathrm{x})=1-(\mathrm{x} / \mathrm{L})\)
Area increases linearly from A to 2 A


Bar1

Beam1: \(\psi(x)=2-3(x / L)+(x / L)^{3}\)

Beam1

\(\operatorname{Bar} 2: ~ \phi(\mathrm{x})=1-(\mathrm{x} / 2 \mathrm{~L})\)


Bar2

Beam2: \(\psi(x)=\sin (\pi x / 2 L)\)
\[
\psi(x)=\sin ^{2}(\pi x / 2 L)
\]


Beam2
(b) calculate the corresponding elongations/deflections at ' \(a\) '
1. (a) \(\operatorname{For} \psi(x)=\cos (\pi x / 2 L), \psi(0)=\cos (0)=1\)
\[
\psi(\mathrm{L})=\cos (\pi / 2)=0
\]

For \(\psi(x)=[1+\cos (\pi x / L)] / 2, \psi(0)=[1+1] / 2=1\)
\[
\psi(\mathrm{L})=[1-1] / 2=0
\]

For \(\psi(x)=\sin (\pi x / L), \psi(0)=\sin (0)=0\)
\[
\psi(\mathrm{L})=\sin (\pi)=0
\]
\(\psi^{\prime}(0)=-(\pi / 2 \mathrm{~L}) \sin (0)=0\)
\(\psi^{\prime}(\mathrm{L})=-(\pi / 2 \mathrm{~L}) \sin (\pi / 2)=-(\pi / 2 \mathrm{~L})\)
\(\psi^{\prime}(0)=-(\pi / \mathrm{L}) \sin (0)=0\)
\(\psi^{\prime}(\mathrm{L})=-(\pi / \mathrm{L}) \sin (\pi)=0\)
\(\psi^{\prime}(0)=(\pi / \mathrm{L}) \cos (0)=\pi / \mathrm{L}\)
\(\psi^{\prime}(\mathrm{L})=(\pi / \mathrm{L}) \cos (\pi)=-\pi / \mathrm{L}\)


For the first beam
\(\psi(0) \neq 0, \psi^{\prime}(0)=0, \psi(\mathrm{~L})=0, \psi^{\prime}(\mathrm{L}) \neq 0 ; \therefore\) Choose \(\psi(\mathrm{x})=\cos (\pi \mathrm{x} / 2 \mathrm{~L})\)
For the second beam
\(\psi(0) \neq 0, \psi^{\prime}(0)=0, \psi(\mathrm{~L})=0, \psi^{\prime}(\mathrm{L})=0 ; \therefore\) Choose \(\psi(\mathrm{x})=[1+\cos (\pi \mathrm{x} / \mathrm{L})] / 2\)
Since \(\psi(0)=1\) for both these functions, the deflection \(u_{2}\) indicates \(u_{A}\) here
(b) For the first beam, \(\psi(x)=\cos (\pi x / 2 L) \Rightarrow \psi^{\prime \prime}(x)=-(\pi / 2 L)^{2} \cos (\pi x / 2 L)\)

Effective stiffness \(\mathrm{k}^{*}=\int \mathrm{EI}\left[\psi^{\prime \prime}(\mathrm{x})\right]^{2} \mathrm{dx}=(\pi / 2 \mathrm{~L})^{4} \mathrm{EIL} / 2=121.76 \mathrm{k} / \mathrm{ft}\)
For \(\mathrm{P}_{0}=10 \mathrm{kips}\), Effective force \(\mathrm{f}^{*}=\int \mathrm{q}(\mathrm{x}) \psi(\mathrm{x}) \mathrm{dx}=(-10) \psi(0)=-10 \mathrm{kips}\)
\(\therefore \mathrm{u}_{2}=-10 / 121.76=-0.0821 \mathrm{ft}=-0.986\) in
For \(\mathrm{w}_{0}=1 \mathrm{kip} / \mathrm{ft}\), Effective force \(\mathrm{f}^{*}=\int \mathrm{q}(\mathrm{x}) \psi(\mathrm{x}) \mathrm{dx}=(1)(2 \times 10 / \pi)(1)=6.366 \mathrm{kips}\)
\(\therefore \mathrm{u}_{2}=6.366 / 121.76=0.0523 \mathrm{ft}=0.627 \mathrm{in}\)
For the second beam, \(\psi(x)=[1+\cos (\pi x / L)] / 2 \Rightarrow \psi^{\prime \prime}(x)=-(\pi / L)^{2} \cos (\pi x / L) / 2\)
Effective stiffness \(\mathrm{k}^{*}=\int \mathrm{EI}\left[\psi^{\prime \prime}(\mathrm{x})\right]^{2} \mathrm{dx}=\left[(\pi / \mathrm{L})^{4} / 4\right] \mathrm{EI} \mathrm{L} / 2=60.88 \mathrm{k} / \mathrm{ft}\)
For \(\mathrm{P}_{0}=10 \mathrm{kips}\), Effective force \(\mathrm{f}^{*}=\int \mathrm{q}(\mathrm{x}) \psi(\mathrm{x}) \mathrm{dx}=(-10) \psi(0)=-10 \mathrm{kips}\)
\(\therefore \mathrm{u}_{2}=-10 / 60.88=-0.164 \mathrm{ft}=-1.971\) in
For \(\mathrm{w}_{0}=1 \mathrm{kip} / \mathrm{ft}\), Effective force \(\mathrm{f}^{*}=\int \mathrm{q}(\mathrm{x}) \psi(\mathrm{x}) \mathrm{dx}=(1)(20) / 2=10 \mathrm{kips}\)
\(\therefore \mathrm{u}_{2}=10 / 60.88=0.164 \mathrm{ft}=1.971 \mathrm{in}\)
(c) The exact results are (using Stiffness Method)

For the first beam, \(\mathrm{u}_{2}=-1.0\) in and 0.625 in
For the second beam, \(\mathrm{u}_{2}=-2.0\) in and 2.0 in
2. (a) For Bar1, \(\phi(0) \neq 0, \phi(\mathrm{~L})=0\)
\(\phi(\mathrm{x})=1-(\mathrm{x} / \mathrm{L}) \Rightarrow \phi(0)=1 \neq 0, \phi(\mathrm{~L})=0 \Rightarrow \mathrm{OK}\)
For Bar2, \(\phi(0) \neq 0, \phi(\mathrm{~L}) \neq 0, \phi(2 \mathrm{~L})=0\)
\(\phi(\mathrm{x})=1-(\mathrm{x} / 2 \mathrm{~L}) \Rightarrow \phi(0)=1 \neq 0, \phi(\mathrm{~L})=0.5 \neq 0, \phi(2 \mathrm{~L})=0 \Rightarrow \mathrm{OK}\)
For Beam1, \(\psi(0) \neq 0, \psi^{\prime}(0) \neq 0, \psi(\mathrm{~L})=0, \psi^{\prime}(\mathrm{L})=0\)
\(\psi(x)=2-3(x / L)+(x / L)^{3}, \psi^{\prime}(x)=-3 / L+3 x^{2} / L^{3}\)
\(\Rightarrow \psi(0)=2, \psi^{\prime}(0)=-3 / \mathrm{L} \neq 0, \psi(\mathrm{~L})=2-3+1=0, \psi^{\prime}(\mathrm{L})=-3 / \mathrm{L}+3 \mathrm{~L}^{2} / \mathrm{L}^{3}=0 \Rightarrow \mathrm{OK}\)
For Beam2, \(\psi(0)=0, \psi^{\prime}(0)=0, \psi(2 \mathrm{~L})=0, \psi^{\prime}(2 \mathrm{~L})=0\)
\(\psi(\mathrm{x})=\sin (\pi \mathrm{x} / 2 \mathrm{~L}), \psi^{\prime}(\mathrm{x})=(\pi / 2 \mathrm{~L}) \cos (\pi \mathrm{x} / 2 \mathrm{~L})\)
\(\Rightarrow \psi(0)=0, \psi^{\prime}(0)=\pi / 2 \mathrm{~L}, \psi(2 \mathrm{~L})=\sin (\pi)=0, \psi^{\prime}(2 \mathrm{~L})=(\pi / 2 \mathrm{~L}) \cos (\pi)=-(\pi / 2 \mathrm{~L}) \Rightarrow\) Not OK
\(\psi(\mathrm{x})=\sin ^{2}(\pi \mathrm{x} / 2 \mathrm{~L})=[1-\cos (\pi \mathrm{x} / \mathrm{L})] / 2, \psi^{\prime}(\mathrm{x})=(\pi / 2 \mathrm{~L}) \sin (\pi \mathrm{x} / \mathrm{L})\)
\(\Rightarrow \psi(0)=0, \psi^{\prime}(0)=\pi / 2 \mathrm{~L} \sin (0)=0, \psi(2 \mathrm{~L})=\sin ^{2}(\pi)=0, \psi^{\prime}(2 \mathrm{~L})=(\pi / 2 \mathrm{~L}) \sin (2 \pi)=0 \Rightarrow \mathrm{OK}\)


Bar1


Beam1


Bar2


Beam2
(b) For Bar1, \(\mathrm{A}(\mathrm{x})=\mathrm{A}(1+\mathrm{x} / \mathrm{L}), \phi^{\prime}(\mathrm{x})=-1 / \mathrm{L}\)

Effective stiffness \(\mathrm{k}^{*}=\int \mathrm{EA}\left[\phi^{\prime}(\mathrm{x})\right]^{2} \mathrm{dx}=\mathrm{EA}\left(\mathrm{L}+\mathrm{L}^{2} / 2 \mathrm{~L}\right) / \mathrm{L}^{2}=33.75 \times 10^{3} \mathrm{k} / \mathrm{ft}\)
Effective force \(\mathrm{f}^{*}=\int \mathrm{p}(\mathrm{x}) \phi(\mathrm{x}) \mathrm{dx}=(100) \phi(0)=100 \mathrm{kips}\)
\(\therefore \mathrm{u}_{1}=100 /\left(33.75 \times 10^{3}\right)=2.96 \times 10^{-3} \mathrm{ft}=0.0356\) in \(\Rightarrow \mathrm{u}_{\mathrm{a}}=\mathrm{u}_{1} \psi(0)=0.0356\) in
For Bar2, \(\mathrm{A}_{1}=2 \mathrm{~A}, \mathrm{~A}_{2}=\mathrm{A}, \phi^{\prime}(\mathrm{x})=-1 / 2 \mathrm{~L}\)
Effective stiffness \(\mathrm{k}^{*}=\int \mathrm{EA}\left[\phi^{\prime}(\mathrm{x})\right]^{2} \mathrm{dx}=\left(\mathrm{E} / 4 \mathrm{~L}^{2}\right)(2 \mathrm{AL}+\mathrm{AL})=3 \mathrm{EA} / 4 \mathrm{~L}=33.75 \times 10^{3} \mathrm{k} / \mathrm{ft}\)
Effective force \(\mathrm{f}^{*}=\int \mathrm{p}(\mathrm{x}) \phi(\mathrm{x}) \mathrm{dx}=(-10) \phi(0)+(-10) \phi(\mathrm{L})=(-10)(1)+(-10)(0.5)=-15 \mathrm{kips}\)
\(\therefore \mathrm{u}_{1}=-15 /\left(33.75 \times 10^{3}\right)=-4.44 \times 10^{-4} \mathrm{ft}=-5.33 \times 10^{-3} \mathrm{in} \Rightarrow \mathrm{u}_{\mathrm{a}}=\mathrm{u}_{1} \psi(0)=-5.33 \times 10^{-3} \mathrm{in}\)
For Beam1, \(\psi(x)=2-3(x / L)+(x / L)^{3}, \psi^{\prime}(x)=-3 / L+3 x^{2} / L^{3}, \psi^{\prime \prime}(x)=6 x / L^{3}\)
Effective stiffness \(\mathrm{k}^{*}=\int \mathrm{EI}\left[\psi^{\prime \prime}(\mathrm{x})\right]^{2} \mathrm{dx}=\mathrm{EI} \int 36 \mathrm{x}^{2} / \mathrm{L}^{6} \mathrm{dx}=12 \mathrm{EI} / \mathrm{L}^{3}=432 \mathrm{k} / \mathrm{ft}\)
Effective force \(\mathrm{f}^{*}=\int \mathrm{q}(\mathrm{x}) \psi(\mathrm{x}) \mathrm{dx}=(-10) \psi(0)=(-10)(2)=-20 \mathrm{kips}\)
\(\therefore \mathrm{u}_{2}=-20 / 432=-0.0463 \mathrm{ft}=-0.556 \mathrm{in} \Rightarrow \mathrm{u}_{\mathrm{a}}=\mathrm{u}_{2} \psi(0)=-0.556 \times 2=-1.111 \mathrm{in}\)
For Beam2, \(\psi(x)=[1-\cos (\pi \mathrm{x} / \mathrm{L})] / 2, \psi^{\prime}(\mathrm{x})=(\pi / 2 \mathrm{~L}) \sin (\pi \mathrm{x} / \mathrm{L}), \psi^{\prime \prime}(\mathrm{x})=\left[(\pi / \mathrm{L})^{2} \cos (\pi \mathrm{x} / \mathrm{L})\right] / 2\)
Effective stiffness \(\mathrm{k}^{*}=\int \mathrm{EI}\left[\psi^{\prime \prime}(\mathrm{x})\right]^{2} \mathrm{dx}=\mathrm{EI}(\pi / \mathrm{L})^{4} \int\left[\cos ^{2}(\pi \mathrm{x} / \mathrm{L})\right] / 4 \mathrm{dx}=\pi^{4} \mathrm{EI} /\left(4 \mathrm{~L}^{3}\right)=876.68 \mathrm{k} / \mathrm{ft}\)
Effective force \(\mathrm{f}^{*}=\int \mathrm{q}(\mathrm{x}) \psi(\mathrm{x}) \mathrm{dx}=\int(1)[1-\cos (\pi \mathrm{x} / \mathrm{L})] / 2 \mathrm{dx}=10 \mathrm{kips}\)
\(\therefore \mathrm{u}_{2}=10 / 876.68=0.0114 \mathrm{ft}=0.137 \mathrm{in} \Rightarrow \mathrm{u}_{\mathrm{a}}=\mathrm{u}_{2} \psi(\mathrm{~L})=0.137 \times 1=0.137 \mathrm{in}\)

\section*{Stiffness Matrices of Axial and Flexural Members}

The Rayleigh-Ritz method can handle variations in member properties and loads over the members. But its accuracy depends on the shape function chosen for the analysis, for which there is no automatic way of choosing. Moreover the choice of the function depends on the boundary conditions, thus needing a different formulation even if the structure remains the same otherwise. The Stiffnes Method, on the other hand, has the advantage of a methodical formulation and versatility in applying the boundary conditions for a large variety of linear and nonlinear problems. Like the Rayleigh-Ritz method, the formulation of Stiffness Method can also be based on energy principles, which makes its formulation more versatile. But rather than defining the displacement of the entire structure/structural member by a single function, it divides the member into a number of small elements and defines the displacements at any point in the member by interpolating between the displacements/rotations of the nodes at the ends of the member.

\section*{Axially Loaded Bar}

Applying the method of virtual work to members subjected to axial load of \(p(x)\) per unit length,
\[
\begin{equation*}
\delta \mathrm{W}_{\mathrm{I}}=\delta \mathrm{W}_{\mathrm{E}} \Rightarrow \int \mathrm{u}^{\prime} \mathrm{EA} \delta \mathrm{u}^{\prime} \mathrm{dx}=\int \mathrm{p}(\mathrm{x}) \mathrm{dx} \delta \mathrm{u} \tag{4}
\end{equation*}
\]


If the displacements of a member AB (shown above) are assumed to be interpolating functions \(\left[\phi_{1}(x)\right.\) and \(\phi_{2}(x)\) ] of two nodal displacements \(u_{1 A}\) and \(u_{1 B}\),
\[
\begin{align*}
& \mathrm{u}=\mathrm{u}_{1 \mathrm{~A}} \phi_{1}+\mathrm{u}_{1 \mathrm{~B}} \phi_{2} \Rightarrow \mathrm{u}^{\prime}=\mathrm{u}_{1 \mathrm{~A}} \phi_{1}^{\prime}+\mathrm{u}_{1 \mathrm{~B}} \phi_{2}^{\prime}  \tag{21}\\
& \delta \mathrm{u}=\delta \mathrm{u}_{1 \mathrm{~A}} \phi_{1}+\delta \mathrm{u}_{1 \mathrm{~B}} \phi_{2} \Rightarrow \delta \mathrm{u}^{\prime}=\delta \mathrm{u}_{1 \mathrm{~A}} \phi_{1}^{\prime}+\delta \mathrm{u}_{1 \mathrm{~B}} \phi_{2}^{\prime} \tag{23}
\end{align*}
\]
\(\therefore\) Eq. (4) can be written in matrix form as,
\[
\left(\begin{array}{lr}
\int E A \phi_{1}{ }^{\prime} \phi_{1}{ }^{\prime} \mathrm{dx} & \int E A \phi_{1}{ }^{\prime} \phi_{2}{ }^{\prime} \mathrm{dx}  \tag{24}\\
\int E A \phi_{2}{ }^{\prime} \phi_{1}{ }^{\prime} \mathrm{dx} & \int E A \phi_{2}{ }^{\prime} \phi_{2}{ }^{\prime} \mathrm{dx}
\end{array}\right)\left\{\begin{array}{l}
\mathrm{u}_{1 \mathrm{~A}} \\
\\
\mathrm{u}_{1 \mathrm{~B}}
\end{array}\right\}=\left\{\begin{array}{r}
\int \mathrm{p}(\mathrm{x}) \phi_{1} \mathrm{dx} \\
\int \mathrm{p}(\mathrm{x}) \phi_{2} \mathrm{dx}
\end{array}\right\} \ldots .
\]

For concentrated loads, \(p(x)\) is a delta function of \(x\). If loads \(X_{A}\) and \(X_{B}\) are applied at joints \(A\) and \(B\), they can be added to the right side of Eq. (24). Eq. (24) can be rewritten as,
\[
\begin{equation*}
\mathbf{K}_{\mathrm{m}} \mathbf{u}_{\mathrm{m}}=\mathbf{f}_{\mathbf{m}} \tag{25}
\end{equation*}
\]
where \(\mathbf{K}_{\mathbf{m}}\) is the stiffness matrix of the member, while \(\mathbf{u}_{\mathbf{m}}\) and \(\mathbf{f}_{\mathbf{m}}\) are the member displacement and load vectors. They can be formed once the shape functions \(\phi_{1}\) and \(\phi_{2}\) are known or assumed. One-dimensional two-noded elements with linear interpolation functions are typically chosen in such cases, so that the shape functions \(\phi_{1}\) and \(\phi_{2}\) for axially loaded members are
\[
\begin{equation*}
\phi_{1}(x)=1-x / L, \text { and } \phi_{2}(x)=x / L \tag{26}
\end{equation*}
\]

Therefore, elements of the member stiffness matrices are \(K_{m i j}=\int E A \phi_{i}{ }^{\prime} \phi_{j}{ }^{\prime} d x\)


Shape functions \(\phi_{1}(\mathrm{x})\) and \(\phi_{2}(\mathrm{x})\)

\section*{Transversely Loaded Beam}

Applying the method of virtual work to beams subjected to flexural load of \(\mathrm{q}(\mathrm{x})\) per unit length
\[
\begin{equation*}
\Rightarrow \int u^{\prime \prime} \mathrm{E} I \delta u^{\prime \prime} d x=\int q(x) d x \delta u \tag{13}
\end{equation*}
\]

Following the same type of formulation as for axial members, the member equations for flexural members subjected to transverse load of \(\mathrm{q}(\mathrm{x})\) per unit length (shown below) can be written in matrix form like Eq. (24), but the member matrices are different here.


Transversely Loaded Member
Two-noded elements with cubic interpolation functions for \(\mathrm{u}_{2 \mathrm{~A}}, \theta_{3 \mathrm{~A}}, \mathrm{u}_{2 \mathrm{~B}}\) and \(\theta_{3 \mathrm{~B}}\) are typically chosen in such cases, so that
\[
\begin{align*}
\mathrm{u}(\mathrm{x}) & =\mathrm{u}_{2 \mathrm{~A}} \psi_{1}+\theta_{3 \mathrm{~A}} \psi_{2}+\mathrm{u}_{2 \mathrm{~B}} \psi_{3}+\theta_{3 \mathrm{~B}} \psi_{4} \\
\text { where } \psi_{1}(\mathrm{x}) & =1-3(\mathrm{x} / \mathrm{L})^{2}+2(\mathrm{x} / \mathrm{L})^{3}, \psi_{2}(\mathrm{x})=\mathrm{x}\{1-(\mathrm{x} / \mathrm{L})\}^{2} \\
\psi_{3}(\mathrm{x}) & =3(\mathrm{x} / \mathrm{L})^{2}-2(\mathrm{x} / \mathrm{L})^{3}, \psi_{4}(\mathrm{x})=(\mathrm{x}-\mathrm{L})(\mathrm{x} / \mathrm{L})^{2} \tag{29}
\end{align*}
\]
\(\mathrm{u}_{2 \mathrm{~A}}=1 \xrightarrow{\cdots \cdots \ldots, \varphi_{1}(\mathrm{x})=1-3(\mathrm{x} / \mathrm{L})^{2}+2(\mathrm{x} / \mathrm{L})^{3}}\)
\[
\begin{gathered}
\psi_{2}(\mathrm{x})=\mathrm{L}\left\{\mathrm{x} / \mathrm{L}-2(\mathrm{x} / \mathrm{L})^{2}+(\mathrm{x} / \mathrm{L})^{3}\right\} \\
0 . \mathrm{O}_{3 \mathrm{~A}}=1
\end{gathered}
\]


\[
\text { Shape functions } \psi_{1}(\mathrm{x}), \psi_{2}(\mathrm{x}), \psi_{3}(\mathrm{x}) \text { and } \psi_{4}(\mathrm{x})
\]

The size of the stiffness matrix is \((4 \times 4)\) here, due to transverse joint displacements \(\left(u_{2 A}, u_{2 B}\right)\) joint rotations \(\left(\theta_{3 \mathrm{~A}}, \theta_{3 \mathrm{~B}}\right)\) and its elements are given by
\[
\begin{equation*}
\mathrm{K}_{\mathrm{mij}}=\int E I \psi_{\mathrm{i}}^{\prime \prime} \psi_{\mathrm{j}}^{\prime \prime} \mathrm{dx} \tag{30}
\end{equation*}
\]

The equations of the stiffness matrix for axial members [Eq. (27)] as well as flexural members [Eq. (30)] guarantee that for linear problems
(i) The stiffness matrices are symmetric [i.e., element \((i, j)=\) element \((j, i)]\),
(ii) The diagonal elements of the matrices are positive [as element (i,i) involves square].

\[
\mathrm{EI}=40,000 \mathrm{k}-\mathrm{ft}^{2}
\]
For BA, \(S_{1}=480 \mathrm{k} / \mathrm{ft}, \mathrm{S}_{2}=2400 \mathrm{k} / \mathrm{rad}\)
\(\therefore\) For AC, \(\mathrm{K}_{1}=60 \mathrm{k} / \mathrm{ft}, \mathrm{K}_{2}=600 \mathrm{k} / \mathrm{rad}\) \(\mathrm{K}_{3}=8,000 \mathrm{k}-\mathrm{ft} / \mathrm{rad}, \mathrm{K}_{4}=4,000 \mathrm{k}-\mathrm{ft} / \mathrm{rad}\)


Case \(1\left(u_{1}=1\right)\)
\(\sum \mathrm{M}_{\mathrm{z}(\mathrm{A})}=0 \Rightarrow 33.33+\mathrm{S}_{3} \mathrm{u}_{1}+\mathrm{K}_{3} \mathrm{u}_{1}=0 \Rightarrow 24 \times 10^{3} \mathrm{u}_{1}=-33.33 \Rightarrow \mathrm{u}_{1}=-1.389 \times 10^{-3} \mathrm{rad}\) \(\mathrm{BM}_{(\mathrm{B})}=0+\mathrm{S}_{4} \mathrm{u}_{1}=-11.11 \mathrm{k}^{\prime}, \mathrm{BM}_{(\mathrm{A}) / \mathrm{BA}}=0+\mathrm{S}_{3} \mathrm{u}_{1}=-22.22 \mathrm{k}^{\prime}\),
\(\mathrm{BM}_{(\mathrm{A}) / \mathrm{AC}}=33.33+\mathrm{K}_{3} \mathrm{u}_{1}=22.22 \mathrm{k}^{\prime}, \mathrm{BM}_{(\mathrm{C})}=-33.33+\mathrm{K}_{4} \mathrm{u}_{1}=-38.89 \mathrm{k}^{\prime}\)
2. The only difference from Problem 1 is the additional FER due to support settlement.

For BA, \(6 \mathrm{EI} \Delta / \mathrm{L}^{2}=6 \times 40,000 \times 0.05 / 10^{2}=120 \mathrm{k}-\mathrm{ft}\)

\(12 \mathrm{EI} \Delta \mathrm{L}^{3}=12 \times 40,000 \times 0.05 / 10^{3}=24 \mathrm{k}\)
For \(\mathrm{AC}, 6 \mathrm{EI} \Delta / \mathrm{L}^{2}=6 \times 40,000 \times 0.05 / 20^{2}=30 \mathrm{k}-\mathrm{ft}\)
\(12 \mathrm{EI} \Delta / \mathrm{L}^{3}=12 \times 40,000 \times 0.05 / 20^{3}=3 \mathrm{k}\)
\[
\begin{aligned}
& \sum M_{z(A)}=0 \Rightarrow 33.33+120-30+S_{3} u_{1}+K_{3} u_{1}=0 \Rightarrow 24 \times 10^{3} \mathrm{u}_{1}=-123.33 \Rightarrow \mathrm{u}_{1}=-5.138 \times 10^{-3} \mathrm{rad} \\
& \mathrm{BM}_{(\mathrm{B})}=120+\mathrm{S}_{4} \mathrm{u}_{1}=78.89 \mathrm{k}^{\prime}, \mathrm{BM}_{(\mathrm{A}) / \mathrm{BA}}=120+\mathrm{S}_{3} \mathrm{u}_{1}=37.78 \mathrm{k}^{\prime}, \\
& \mathrm{BM}_{(\mathrm{A}) / \mathrm{AC}}=33.33-30+\mathrm{K}_{3} \mathrm{u}_{1}=-37.78 \mathrm{k}^{\prime}, \mathrm{BM}_{(\mathrm{C})}=-33.33-30+\mathrm{K}_{4} \mathrm{u}_{1}=-83.89 \mathrm{k}^{\prime}
\end{aligned}
\]
3.



Case \(1\left(u_{1}=1\right)\)
\[
\begin{aligned}
& \sum \mathrm{M}_{\mathrm{z}(\mathrm{~A})}=0 \Rightarrow-50+33.33+\mathrm{K}_{3} \mathrm{u}_{1}=0 \Rightarrow 8 \times 10^{3} \mathrm{u}_{1}=16.67 \Rightarrow \mathrm{u}_{1}=2.083 \times 10^{-3} \mathrm{rad} \\
& \mathrm{BM}_{(\mathrm{B})}=0+0=0, \mathrm{BM}_{(\mathrm{A}) / \mathrm{BA}}=-50+0=-50 \mathrm{k}^{\prime}, \\
& \mathrm{BM}_{(\mathrm{A}) / \mathrm{AC}}=33.33+\mathrm{K}_{3} \mathrm{u}_{1}=50 \mathrm{k}^{\prime}, \mathrm{BM}_{(\mathrm{C})}=-33.33+\mathrm{K}_{4} \mathrm{u}_{1}=-16.67 \mathrm{k}^{\prime}
\end{aligned}
\]
4. The only difference from Problem 3 is the additional FER due to support settlement.

5. Both members have the same stiffness (e.g., \(S_{3}=16,000 \mathrm{k}-\mathrm{ft} / \mathrm{rad}\) ), and d.o.k.i. \(=1\)

\(\sum \mathrm{M}_{\mathrm{z}(\mathrm{B})}=0 \Rightarrow 12.5+\mathrm{S}_{3} \mathrm{u}_{1}+\mathrm{S}_{3} \mathrm{u}_{1}=100 \Rightarrow 32 \times 10^{3} \mathrm{u}_{1}=87.5 \Rightarrow \mathrm{u}_{1}=2.734 \times 10^{-3} \mathrm{rad}\)
\(\mathrm{BM}_{(\mathrm{A})}=0+\mathrm{S}_{4} \mathrm{u}_{1}=21.88 \mathrm{k}^{\prime}, \mathrm{BM}_{(\mathrm{B}) / \mathrm{AB}}=0+\mathrm{S}_{3} \mathrm{u}_{1}=43.75 \mathrm{k}^{\prime}\),
\(\mathrm{BM}_{(\mathrm{B}) / \mathrm{BC}}=12.5+\mathrm{S}_{3} \mathrm{u}_{1}=56.25 \mathrm{k}^{\prime}, \mathrm{BM}_{(\mathrm{C})}=-12.5+\mathrm{S}_{4} \mathrm{u}_{1}=9.38 \mathrm{k}^{\prime}\)
6. The only difference from Problem 5 is the additional FER due to support settlement.

7. Here d.o.k.i. \(=2(\) rotations at \(B, C)\); for both members \(S_{3}=16,000 \mathrm{k}-\mathrm{ft} / \mathrm{rad}, \mathrm{S}_{4}=8,000 \mathrm{k}-\mathrm{ft} / \mathrm{rad}\)

\(\sum \mathrm{M}_{\mathrm{z}(\mathrm{B})}=0 \Rightarrow 12.5+2 \mathrm{~S}_{3} \mathrm{u}_{1}+\mathrm{S}_{4} \mathrm{u}_{2}=100 \Rightarrow 2 \mathrm{~S}_{3} \mathrm{u}_{1}+\mathrm{S}_{4} \mathrm{u}_{2}=87.5\)
\(\sum \mathrm{M}_{\mathrm{z}(\mathrm{C})}=0 \Rightarrow-12.5+\mathrm{S}_{4} \mathrm{u}_{1}+\mathrm{S}_{3} \mathrm{u}_{2}=0 \Rightarrow \mathrm{~S}_{4} \mathrm{u}_{1}+\mathrm{S}_{3} \mathrm{u}_{2}=12.5\)
\(\Rightarrow \mathrm{u}_{1}=2.902 \times 10^{-3} \mathrm{rad}, \mathrm{u}_{2}=-0.670 \times 10^{-3} \mathrm{rad}\)
\(\mathrm{BM}_{(\mathrm{A})}=0+\mathrm{S}_{4} \mathrm{u}_{1}+0=23.21 \mathrm{k}^{\prime}, \mathrm{BM}_{(\mathrm{B}) / \mathrm{AB}}=0+\mathrm{S}_{3} \mathrm{u}_{1}=46.43 \mathrm{k}^{\prime}\),
\(\mathrm{BM}_{(\mathrm{B}) / \mathrm{BC}}=12.5+\mathrm{S}_{3} \mathrm{u}_{1}+\mathrm{S}_{4} \mathrm{u}_{2}=53.57 \mathrm{k}^{\prime}, \mathrm{BM}_{(\mathrm{C})}=-12.5+\mathrm{S}_{4} \mathrm{u}_{1}+\mathrm{S}_{3} \mathrm{u}_{2}=0\)
11.

\(\mathrm{EI}=40,000 \mathrm{k}-\mathrm{ft}^{2}\)
For AB, \(\mathrm{S}_{1}=480 \mathrm{k} / \mathrm{ft}, \mathrm{S}_{2}=2400 \mathrm{k} / \mathrm{rad}\) \(\mathrm{S}_{3}=16,000 \mathrm{k}-\mathrm{ft} / \mathrm{rad}, \mathrm{S}_{4}=8,000 \mathrm{k}-\mathrm{ft} / \mathrm{rad}\)
\(\therefore\) For BC, \(\mathrm{K}_{1}=60 \mathrm{k} / \mathrm{ft}, \mathrm{K}_{2}=600 \mathrm{k} / \mathrm{rad}\)
\(\mathrm{K}_{3}=8,000 \mathrm{k}-\mathrm{ft} / \mathrm{rad}, \mathrm{K}_{4}=4,000 \mathrm{k}-\mathrm{ft} / \mathrm{rad}\)
d.o.k.i. \(=2\left(\mathrm{u}_{1}\right.\) is deflection at \(\mathrm{A}, \mathrm{u}_{2}\) is rotation at B\()\)

\(\sum \mathrm{F}_{\mathrm{y}(\mathrm{A})}=0 \Rightarrow 0+\mathrm{S}_{1} \mathrm{u}_{1}+\mathrm{S}_{2} \mathrm{u}_{2}=5 \Rightarrow 480 \mathrm{u}_{1}+2400 \mathrm{u}_{2}=5\)
\(\sum \mathrm{M}_{\mathrm{z}(\mathrm{B})}=0 \Rightarrow 33.33+\mathrm{S}_{2} \mathrm{u}_{1}+\mathrm{S}_{3} \mathrm{u}_{2}+\mathrm{K}_{3} \mathrm{u}_{2}=0 \Rightarrow 2400 \mathrm{u}_{1}+24000 \mathrm{u}_{2}=-33.33\)
\(\Rightarrow \mathrm{u}_{1}=34.72 \times 10^{-3} \mathrm{ft}, \mathrm{u}_{2}=-4.861 \times 10^{-3} \mathrm{rad}\)
\(\mathrm{BM}_{(\mathrm{A})}=0+\mathrm{S}_{2} \mathrm{u}_{1}+\mathrm{S}_{4} \mathrm{u}_{2}=44.44 \mathrm{k}^{\prime}, \mathrm{BM}_{(\mathrm{B}) / \mathrm{AB}}=0+\mathrm{S}_{2} \mathrm{u}_{1}+\mathrm{S}_{3} \mathrm{u}_{2}=5.56 \mathrm{k}^{\prime}\),
\(\mathrm{BM}_{(\mathrm{B}) / \mathrm{BC}}=33.33+\mathrm{K}_{3} \mathrm{u}_{2}=-5.56 \mathrm{k}^{\prime}, \mathrm{BM}_{(\mathrm{C})}=-33.33+\mathrm{K}_{4} \mathrm{u}_{2}=-52.78 \mathrm{k}^{\prime}\)
12. The only difference from Problem 11 is the presence of another rotation at \(\mathrm{A} \Rightarrow\) d.o.k.i. \(=3\)

\(\sum F_{y(A)}=0 \Rightarrow 0+S_{1} u_{1}+S_{2} u_{2}+S_{2} u_{3}=5 \Rightarrow 480 u_{1}+2400 u_{2}+2400 u_{3}=5\)
\(\sum M_{z(B)}=0 \Rightarrow 33.33+S_{2} u_{1}+S_{3} u_{2}+K_{3} u_{2}+S_{4} u_{3}=0 \Rightarrow 2400 u_{1}+24000 u_{2}+8000 u_{2}=-33.33\)
\(\sum M_{z(A)}=0 \Rightarrow 0+S_{2} u_{1}+S_{4} u_{2}+S_{3} u_{3}=50 \Rightarrow 2400 u_{1}+8000 u_{2}+16000 u_{3}=50\)
\(\Rightarrow \mathrm{u}_{1}=20.83 \times 10^{-3} \mathrm{ft}, \mathrm{u}_{2}=-4.167 \times 10^{-3} \mathrm{rad}, \mathrm{u}_{3}=2.083 \times 10^{-3} \mathrm{rad}\)
\(\mathrm{BM}_{(\mathrm{A})}=\mathrm{S}_{2} \mathrm{u}_{1}+\mathrm{S}_{3} \mathrm{u}_{2}+\mathrm{S}_{4} \mathrm{u}_{3}=50 \mathrm{k}^{\prime}, \mathrm{BM}_{(\mathrm{B}) / \mathrm{AB}}=0+\mathrm{S}_{2} \mathrm{u}_{1}+\mathrm{S}_{3} \mathrm{u}_{2}+\mathrm{S}_{4} \mathrm{u}_{3}=0\),
\(\mathrm{BM}_{(\mathrm{B}) / \mathrm{BC}}=33.33+\mathrm{K}_{3} \mathrm{u}_{2}=0, \mathrm{BM}_{(\mathrm{C})}=-33.33+\mathrm{K}_{4} \mathrm{u}_{2}=-50 \mathrm{k}^{\prime}\)


Here, \(S_{1}=12 \times 40 \times 10^{3} / 5^{3}=3840 \mathrm{k} / \mathrm{ft}, \mathrm{S}_{2}=6 \times 40 \times 10^{3} / 5^{2}=9600 \mathrm{k} / \mathrm{rad}\),
\(\mathrm{S}_{3}=4 \times 40 \times 10^{3} / 5=32000 \mathrm{k}-\mathrm{ft} / \mathrm{rad}, \mathrm{S}_{4}=2 \times 40 \times 10^{3} / 5=16000 \mathrm{k}-\mathrm{ft} / \mathrm{rad}\)
\(\mathrm{K}_{1}=12 \times 40 \times 10^{3} / 10^{3}=480 \mathrm{k} / \mathrm{ft}, \mathrm{K}_{2}=6 \times 40 \times 10^{3} / 10^{2}=2400 \mathrm{k} / \mathrm{rad}\),
\(\mathrm{K}_{3}=4 \times 40 \times 10^{3} / 10=16000 \mathrm{k}-\mathrm{ft} / \mathrm{rad}, \mathrm{K}_{4}=2 \times 40 \times 10^{3} / 10=8000 \mathrm{k}-\mathrm{ft} / \mathrm{rad}\)
\(\mathrm{T}_{1}=30 \times 10^{3} / 5=6000 \mathrm{k}-\mathrm{ft} / \mathrm{rad}, \mathrm{T}_{2}=30 \times 10^{3} / 10=3000 \mathrm{k}-\mathrm{ft} / \mathrm{rad}\)
\(\sum \mathrm{F}_{\mathrm{y}(\mathrm{B})}=0 \Rightarrow 5+\left(2 \mathrm{~S}_{1}+\mathrm{K}_{1}\right) \mathrm{u}_{1}+\mathrm{K}_{2} \mathrm{u}_{2}+\left(\mathrm{S}_{2}-\mathrm{S}_{2}\right) \mathrm{u}_{3}=-10 \Rightarrow 8160 \mathrm{u}_{1}+2400 \mathrm{u}_{2}+0=-15\)
\(\sum \mathrm{M}_{\mathrm{x}(\mathrm{B})}=0 \Rightarrow 12.5+\mathrm{K}_{2} \mathrm{u}_{1}+\left(\mathrm{K}_{3}+2 \mathrm{~T}_{1}\right) \mathrm{u}_{2}+0=0 \Rightarrow 2400 \mathrm{u}_{1}+28000 \mathrm{u}_{2}+0=-12.5\)
\(\sum M_{z(B)}=0 \Rightarrow 0+\left(S_{2}-S_{2}\right) u_{1}+0+\left(2 S_{3}+T_{2}\right) u_{3}=0 \Rightarrow 0+0+67000 u_{3}=0\)
\(\Rightarrow \mathrm{u}_{1}=-1.751 \times 10^{-3} \mathrm{ft}, \mathrm{u}_{2}=-0.296 \times 10^{-3} \mathrm{rad}, \mathrm{u}_{3}=0\)
\(\mathrm{SF}_{(\mathrm{A})}=0-\mathrm{S}_{1} \mathrm{u}_{1}+0+\mathrm{S}_{2} \mathrm{u}_{3}=6.72 \mathrm{k}, \mathrm{SF}_{(\mathrm{B}) / \mathrm{AB}}=0+\mathrm{S}_{1} \mathrm{u}_{1}+0-\mathrm{S}_{2} \mathrm{u}_{3}=-6.72 \mathrm{k}\),
\(\mathrm{SF}_{(\mathrm{B}) / \mathrm{BC}}=0+\mathrm{S}_{1} \mathrm{u}_{1}+0+\mathrm{S}_{2} \mathrm{u}_{3}=-6.72 \mathrm{k}, \mathrm{SF}_{(\mathrm{C})}=0-\mathrm{S}_{1} \mathrm{u}_{1}+0-\mathrm{S}_{2} \mathrm{u}_{3}=6.72 \mathrm{k}\),
\(\mathrm{SF}_{(\mathrm{B}) / \mathrm{BE}}=5+\mathrm{K}_{1} \mathrm{u}_{1}+\mathrm{K}_{2} \mathrm{u}_{2}+0=3.44 \mathrm{k}, \mathrm{SF}_{(\mathrm{E}) / \mathrm{BE}}=5-\mathrm{K}_{1} \mathrm{u}_{1}-\mathrm{K}_{2} \mathrm{u}_{2}+0=6.55 \mathrm{k}\)
\(\mathrm{BM}_{(\mathrm{A})}=0-\mathrm{S}_{2} \mathrm{u}_{1}+0+\mathrm{S}_{4} \mathrm{u}_{3}=16.81 \mathrm{k}^{\prime}, \mathrm{BM}_{(\mathrm{B}) / \mathrm{AB}}=0-\mathrm{S}_{2} \mathrm{u}_{1}+0+\mathrm{S}_{3} \mathrm{u}_{3}=16.81 \mathrm{k}^{\prime}\),
\(\mathrm{BM}_{(\mathrm{B}) / \mathrm{BC}}=0+\mathrm{S}_{2} \mathrm{u}_{1}+0+\mathrm{S}_{3} \mathrm{u}_{3}=-16.81 \mathrm{k}^{\prime}, \mathrm{BM}_{(\mathrm{C})}=0+\mathrm{S}_{2} \mathrm{u}_{1}+0+\mathrm{S}_{4} \mathrm{u}_{3}=-16.81 \mathrm{k}^{\prime}\),
\(\mathrm{BM}_{(\mathrm{B}) / \mathrm{BE}}=12.5+\mathrm{K}_{2} \mathrm{u}_{1}+\mathrm{K}_{3} \mathrm{u}_{2}+0=3.56 \mathrm{k}^{\prime}, \mathrm{BM}_{(\mathrm{E}) / \mathrm{BE}}=-12.5+\mathrm{K}_{2} \mathrm{u}_{1}+\mathrm{K}_{4} \mathrm{u}_{2}+0=-19.07 \mathrm{k}^{\prime}\)
\(\mathrm{T}_{(\mathrm{A})}=0+0-\mathrm{T}_{1} \mathrm{u}_{2}+0=1.78 \mathrm{k}^{\prime}, \mathrm{T}_{(\mathrm{B}) / \mathrm{AB}}=0+0+\mathrm{T}_{1} \mathrm{u}_{2}+0=-1.78 \mathrm{k}^{\prime}\),
\(\mathrm{T}_{(\mathrm{B}) / \mathrm{BC}}=0+0+\mathrm{T}_{1} \mathrm{u}_{2}+0=-1.78 \mathrm{k}^{\prime}, \mathrm{T}_{(\mathrm{C})}=0+0-\mathrm{T}_{1} \mathrm{u}_{2}+0=1.78 \mathrm{k}^{\prime}\),
\(\mathrm{T}_{(\mathrm{B}) / \mathrm{BE}}=0+0+0+\mathrm{T}_{2} \mathrm{u}_{3}=0, \mathrm{~T}_{(\mathrm{E}) / \mathrm{BE}}=0+0+0-\mathrm{T}_{2} \mathrm{u}_{3}=0\)

\section*{Problems on Stiffness Method for Grids}

Given: \(\mathrm{EI}=40 \times 10^{3} \mathrm{k}-\mathrm{ft}^{2}, \mathrm{GJ}=30 \times 10^{3} \mathrm{k}-\mathrm{ft}^{2}\) for all the problems.
1,2. Use the Stiffness Method to calculate the rotations at joint C for the grids shown below.


Problem 1

3. Using the Stiffness Method, calculate the deflection and rotation at joint C for the grid shown in the figure below.


4,5 . Formulate the stiffness matrix and load vector for the grids shown in the figures below.


Problem 4


Problem 5```

