Approximate Lateral Load Analysis by Portal Method

Portal Frame

Portal frames, used in several Civil Engineering structures like buildings, factories, bridges have the primary purpose of transferring horizontal loads applied at their tops to their foundations. Structural requirements usually necessitate the use of statically indeterminate layout for portal frames, and approximate solutions are often used in their analyses.

Portal Frame Structures

Assumptions for the Approximate Solution

In order to analyze a structure using the equations of statics only, the number of independent force components must be equal to the number of independent equations of statics.

If there are n more independent force components in the structure than there are independent equations of statics, the structure is statically indeterminate to the $n^{\text {th }}$ degree. Therefore to obtain an approximate solution of the structure based on statics only, it will be necessary to make n additional independent assumptions. A solution based on statics will not be possible by making fewer than n assumptions, while more than n assumptions will not in general be consistent.

Thus, the first step in the approximate analysis of structures is to find its degree of statical indeterminacy (dosi) and then to make appropriate number of assumptions.

For example, the dosi of portal frames shown in (i), (ii), (iii) and (iv) are 1, 3, 2 and 1 respectively. Based on the type of frame, the following assumptions can be made for portal structures with a vertical axis of symmetry that are loaded horizontally at the top

1. The horizontal support reactions are equal
2. There is a point of inflection at the center of the unsupported height of each fixed based column

Assumption 1 is used if dosi is an odd number (i.e., $=1$ or 3) and Assumption 2 is used if dosi >1.
Some additional assumptions can be made in order to solve the structure approximately for different loading and support conditions.
3. Horizontal body forces not applied at the top of a column can be divided into two forces (i.e., applied at the top and bottom of the column) based on simple supports
4. For hinged and fixed supports, the horizontal reactions for fixed supports can be assumed to be four times the horizontal reactions for hinged supports

Example

Draw the axial force, shear force and bending moment diagrams of the frames loaded as shown below.

Solution
(i) For this frame, dosi $=3 \times 3+4-3 \times 4=1$; i.e., Assumption $1 \Rightarrow H_{A}=H_{D}=10 / 2=5 k$
$\therefore \sum \mathrm{M}_{\mathrm{A}}=0 \Rightarrow 10 \times 10-\mathrm{V}_{\mathrm{D}} \times 15=0 \Rightarrow \mathrm{~V}_{\mathrm{D}}=6.67 \mathrm{k}$
$\therefore \sum \mathrm{F}_{\mathrm{y}}=0 \Rightarrow \mathrm{~V}_{\mathrm{A}}+\mathrm{V}_{\mathrm{D}}=0 \Rightarrow \mathrm{~V}_{\mathrm{A}}=-6.67 \mathrm{k}$

Reactions

AFD (k)

SFD (k)

BMD (k-ft)
(ii) dosi $=3 \times 3+6-3 \times 4=3$

Assumption $1 \Rightarrow \mathrm{H}_{\mathrm{A}}=\mathrm{H}_{\mathrm{D}}=10 / 2=5 \mathrm{k}$, Assumption $2 \Rightarrow \mathrm{BM}_{\mathrm{E}}=\mathrm{BM}_{\mathrm{F}}=0$
$\therefore \mathrm{BM}_{\mathrm{F}}=0 \Rightarrow \mathrm{H}_{\mathrm{A}} \times 5+\mathrm{M}_{\mathrm{A}}=0 \Rightarrow \mathrm{M}_{\mathrm{A}}=-25 \mathrm{k}-\mathrm{ft}$; Similarly $\mathrm{BM}_{\mathrm{E}}=0 \Rightarrow \mathrm{M}_{\mathrm{D}}=-25 \mathrm{k}-\mathrm{ft}$
$\therefore \sum \mathrm{M}_{\mathrm{A}}=0 \Rightarrow-25-25+10 \times 10-\mathrm{V}_{\mathrm{D}} \times 15=0 \Rightarrow \mathrm{~V}_{\mathrm{D}}=3.33 \mathrm{k}$
$\therefore \sum \mathrm{F}_{\mathrm{y}}=0 \Rightarrow \mathrm{~V}_{\mathrm{A}}+\mathrm{V}_{\mathrm{D}}=0 \Rightarrow \mathrm{~V}_{\mathrm{A}}=-3.33 \mathrm{k}$

(iii)

dosi $=3 \times 4+6-3 \times 5-1=2 ; \therefore$ Assumption 1 and $2 \Rightarrow \mathrm{BM}_{\mathrm{E}}=\mathrm{BM}_{\mathrm{F}}=0$
$\therefore \mathrm{BM}_{\mathrm{E}}=0$ (bottom) $\Rightarrow-\mathrm{H}_{\mathrm{A}} \times 5+\mathrm{M}_{\mathrm{A}}=0 \Rightarrow \mathrm{M}_{\mathrm{A}}=5 \mathrm{H}_{\mathrm{A}}$; Similarly $\mathrm{BM}_{\mathrm{F}}=0 \Rightarrow \mathrm{M}_{\mathrm{D}}=5 \mathrm{H}_{\mathrm{D}}$
Also $\mathrm{BM}_{\mathrm{E}}=0$ (free body of EBCF) $\Rightarrow 10 \times 5-\mathrm{V}_{\mathrm{D}} \times 15=0 \Rightarrow \mathrm{~V}_{\mathrm{D}}=3.33 \mathrm{k}$
$\therefore \sum \mathrm{F}_{\mathrm{y}}=0 \Rightarrow \mathrm{~V}_{\mathrm{A}}+\mathrm{V}_{\mathrm{D}}=0 \Rightarrow \mathrm{~V}_{\mathrm{A}}=-\mathrm{V}_{\mathrm{D}}=-3.33 \mathrm{k}$
$\mathrm{BM}_{\mathrm{G}}=0$ (between E and G) $\Rightarrow \mathrm{V}_{\mathrm{A}} \times 7.5-\mathrm{H}_{\mathrm{A}} \times 5=0 \Rightarrow \mathrm{H}_{\mathrm{A}}=-5 \mathrm{k} \Rightarrow \mathrm{M}_{\mathrm{A}}=5 \mathrm{H}_{\mathrm{A}}=-25 \mathrm{k}-\mathrm{ft}$
$\sum F_{x}=0$ (entire structure) $\Rightarrow H_{A}+H_{D}+10=0 \Rightarrow-5+H_{D}+10=0 \Rightarrow H_{D}=-5 k \Rightarrow M_{D}=5 H_{D}=-25 \mathrm{k}-\mathrm{ft}$

(iv) dosi $=3 \times 5+9-3 \times 6=6 \Rightarrow 6$ Assumptions needed to solve the structure

Assumption 1 and $2 \Rightarrow \mathrm{H}_{\mathrm{A}}: \mathrm{H}_{\mathrm{B}}: \mathrm{H}_{\mathrm{C}}=1: 2: 1 \Rightarrow \mathrm{H}_{\mathrm{A}}=10 / 4=2.5 \mathrm{k}, \mathrm{H}_{\mathrm{B}}=5 \mathrm{k}, \mathrm{H}_{\mathrm{C}}=2.5 \mathrm{k}$
$\therefore \mathrm{M}_{\mathrm{A}}=\mathrm{M}_{\mathrm{C}}=2.5 \times 5=12.5 \mathrm{k}-\mathrm{ft}, \mathrm{M}_{\mathrm{B}}=5 \times 5=25 \mathrm{k}-\mathrm{ft}$
The other 4 assumptions are the assumed internal hinge locations at midpoints of columns and one beam

SFD (k)

AFD (k)

Analysis of Multi-storied Structures by Portal Method

Approximate methods of analyzing multi-storied structures are important because such structures are statically highly indeterminate. The number of assumptions that must be made to permit an analysis by statics alone is equal to the degree of statical indeterminacy of the structure.

Assumptions

The assumptions used in the approximate analysis of portal frames can be extended for the lateral load analysis of multi-storied structures. The Portal Method thus formulated is based on three assumptions

1. The shear force in an interior column is twice the shear force in an exterior column.
2. There is a point of inflection at the center of each column.
3. There is a point of inflection at the center of each beam.

Assumption 1 is based on assuming the interior columns to be formed by columns of two adjacent bays or portals. Assumption 2 and 3 are based on observing the deflected shape of the structure.

Example

Use the Portal Method to draw the axial force, shear force and bending moment diagrams of the three-storied frame structure loaded as shown below.

Column shear forces are at the ratio of 1:2:2:1.
\therefore Shear force in (V) columns IM, JN, KO, LP are
$[18 \times 1 /(1+2+2+1)=] 3^{\mathrm{k}},[18 \times 2 /(1+2+2+1)=] 6^{\mathrm{k}}$,
$6^{\mathrm{k}}, 3^{\mathrm{k}}$ respectively. Similarly,
$\mathrm{V}_{\mathrm{EI}}=30 \times 1 /(6)=5^{\mathrm{k}}, \mathrm{V}_{\mathrm{FJ}}=10^{\mathrm{k}}, \mathrm{V}_{\mathrm{GK}}=10^{\mathrm{k}}, \mathrm{V}_{\mathrm{HL}}=5^{\mathrm{k}}$; and
$\mathrm{V}_{\mathrm{AE}}=36 \times 1 /(6)=6^{\mathrm{k}}, \mathrm{V}_{\mathrm{BF}}=12^{\mathrm{k}}, \mathrm{V}_{\mathrm{CG}}=12^{\mathrm{k}}, \mathrm{V}_{\mathrm{DH}}=6^{\mathrm{k}}$
Bending moments are
$\mathrm{M}_{\mathrm{IM}}=3 \times 10 / 2=15^{\mathrm{k}^{\prime}}, \mathrm{M}_{\mathrm{JN}}=30^{\mathrm{k}^{\prime}}, \mathrm{M}_{\mathrm{KO}}=30^{\mathrm{k}^{\prime}}, \mathrm{M}_{\mathrm{LP}}=15^{\mathrm{k}^{\prime}}$
$\mathrm{M}_{\mathrm{EI}}=5 \times 10 / 2=25^{\mathrm{k}^{\prime}}, \mathrm{M}_{\mathrm{FJ}}=50^{\mathrm{k}^{\prime}}, \mathrm{M}_{\mathrm{GK}}=50^{\mathrm{k}^{\prime}}, \mathrm{M}_{\mathrm{HL}}=25^{\mathrm{k}^{\prime}}$
$M_{A E}=6 \times 10 / 2=30^{k^{\prime}}, M_{\mathrm{FJ}}=60^{\mathrm{k}^{\prime}}, M_{\mathrm{GK}}=60^{\mathrm{k}^{\prime}}, \mathrm{M}_{\mathrm{HL}}=30^{\mathrm{k}^{\prime}}$
The rest of the calculations follow from the free-body diagrams

Column SFD (k)

Column BMD (k-ft)

Beam AFD (k)

Beam BMD (k-ft)

Beam SFD (k)

Column AFD (k)

Problems on Lateral Load Analysis by Portal Method

1. The figure below shows the shear forces (kips) in the interior columns of a two-storied frame. Use the Portal Method to calculate the corresponding
(i) applied loads P_{1} and P_{2}, (ii) column bending moments, (iii) beam axial forces.

2. The figure below shows the applied loads $\left(\mathrm{F}_{1}, \mathrm{~F}_{2}\right)$ and shear force $\left(\mathrm{V}_{\mathrm{EF}}\right)$ in column EF of a two-storied frame. If $\mathrm{F}_{2}=10 \mathrm{k}$, and $\mathrm{V}_{\mathrm{EF}}=5 \mathrm{k}$, use the Portal Method to calculate the
(i) applied load F_{1}, (ii) maximum column bending moments.

3. For the structure shown in Question 2, use the Portal Method to calculate the lateral loads $\mathrm{F}_{1}, \mathrm{~F}_{2}$ if the axial forces in beams AD and BE are 10 kips and 15 kips respectively.
4. For the structure shown below, use the Portal Method to
(i) draw the bending moment diagrams of the top floor beams AB and BC
(i) calculate the applied load F_{1} if the maximum bending moment in column EH is $30 \mathrm{k}-\mathrm{ft}$.

5. The figure below shows the exterior column shear forces (kips) in a four-storied fame. Calculate (i) the applied loads, (ii) beam shear forces.

Analysis of Multi-storied Structures by Cantilever Method

Although the results using the Portal Method are reasonable in most cases, the method suffers due to the lack of consideration given to the variation of structural response due to the difference between sectional properties of various members. The Cantilever Method attempts to rectify this limitation by considering the cross-sectional areas of columns in distributing the axial forces in various columns of a story.

Assumptions

The Cantilever Method is based on three assumptions

1. The axial force in each column of a storey is proportional to its horizontal distance from the centroidal axis of all the columns of the storey.
2. There is a point of inflection at the center of each column.
3. There is a point of inflection at the center of each beam.

Assumption 1 is based on assuming that the axial stresses can be obtained by a method analogous to that used for determining the distribution of normal stresses on a transverse section of a cantilever beam. Assumption 2 and 3 are based on observing the deflected shape of the structure.

Example

Use the Cantilever Method to draw the axial force, shear force and bending moment diagrams of the three storied frame structure loaded as shown below.

The dotted line is the column centerline (at all floors)
\therefore Column axial forces are at the ratio of 20: 5: -5 : -20 .
\therefore Axial force in (P) columns IM, JN, KO, LP are
$\left[18 \times 5 \times 20 /\left\{20^{2}+5^{2}+(-5)^{2}+(-20)^{2}\right\}=\right] 2.12^{\mathrm{k}},[18 \times 5$
$\left.\times 5 /\left(20^{2}+5^{2}+(-5)^{2}+(-20)^{2}\right\}=\right] 0.53^{\mathrm{k}},-0.53^{\mathrm{k}},-2.12^{\mathrm{k}}$
respectively.
Similarly, $\mathrm{P}_{\mathrm{EI}}=330 \times 20 /(850)=7.76^{\mathrm{k}}, \mathrm{P}_{\mathrm{FJ}}=1.94^{\mathrm{k}}, \mathrm{P}_{\mathrm{GK}}=$ $-1.94^{\mathrm{k}}, \mathrm{P}_{\mathrm{HL}}=-7.76^{\mathrm{k}}$; and
$\mathrm{P}_{\mathrm{AE}}=696 \times 20 /(850)=16.38^{\mathrm{k}}, \mathrm{P}_{\mathrm{BF}}=4.09^{\mathrm{k}}, \mathrm{P}_{\mathrm{CG}}=-4.09^{\mathrm{k}}$,
$\mathrm{P}_{\mathrm{DH}}=16.38^{\mathrm{k}}$
The rest of the calculations follow from the free-body diagrams

Results from 'Exact' Structural Analysis

All members have equal cross-sections

Column BMD (k-ft)
Interior columns have twice the area of exterior columns

$\begin{array}{lllll}19.4 & -16.3 & 18.4 & 16.2 & -19.3\end{array}$

Problems on Lateral Load Analysis by Cantilever Method

1. The figure below shows the axial forces (kips) in the exterior columns of a two-storied frame.

If the cross-sectional area of column ABC is twice the area of the other columns, use the Cantilever Method to calculate the corresponding applied loads P_{1} and P_{2}.

2. For the structure shown below, use the Cantilever Method to calculate the lateral loads $\mathrm{F}_{1}, \mathrm{~F}_{2}$ if the shear forces in beams AB and DE are 10 kips and 15 kips respectively. Assume all the columns have the same cross-sectional area.

3. Use the Cantilever Method to draw the axial force, shear force and bending moment diagrams of the three-storied structure loaded as shown below.

4. Figure (a) below shows the exterior column axial forces (kips) in a three-storied fame.

Use the Cantilever Method to calculate (i) the applied loads, (ii) beam bending moments, (iii) column bending moments. Assume all the columns to have equal cross-sectional areas.

Fig. (a)

Fig. (b)
5. Figure (b) above shows the column shear forces (kips) in a three-storied fame.

Calculate the column BM, beam BM, beam SF and column AF.
Also check if they satisfy the conditions for Cantilever Method (for equal column areas).

Approximate Vertical Load Analysis

Approximation based on the Location of Hinges

If a beam AB is subjected to a uniformly distributed vertical load of w per unit length [Fig. (a)], both the joints A and B will rotate as shown in Fig. (b), because although the joints A and B are partly restrained against rotation, the restraint is not complete. Had the joints A and B been completely fixed against rotation [Fig. (c)] the points of inflection would be located at a distance 0.21 L from each end. If, on the other hand, the joints A and B are hinged [Fig. (d)], the points of zero moment would be at the end of the beam. For the actual case of partial fixity, the points of inflection can be assumed to be somewhere between 0.21 L and 0 from the end of the beam. For approximate analysis, they are often assumed to be located at one-tenth (0.1 L) of the span length from each end joint.

(a)

(b)

(c)

(d)

Depending on the support conditions (i.e., hinge ended, fixed ended or continuous), a beam in general can be statically indeterminate up to a degree of three. Therefore, to make it statically determinate, the following three assumptions are often made in the vertical load analysis of a beam

1. The axial force in the beam is zero
2. Points of inflection occur at the distance 0.1 L measured along the span from the left and right support.

Bending Moment and Shear Force from Approximate Analysis
Based on the approximations mentioned (i.e., points of inflection at a distance 0.1 L from the ends), the maximum positive bending moment in the beam is calculated to be
$\mathrm{M}_{(+)}=\mathrm{w}(0.8 \mathrm{~L})^{2} / 8=0.08 \mathrm{wL}^{2}$, at the midspan of the beam
\therefore The maximum negative bending moment is

$$
\mathrm{M}_{(-)}=\mathrm{wL}^{2} / 8-0.08 \mathrm{wL}^{2}=0.045 \mathrm{wL}^{2}, \text { at the joints } \mathrm{A} \text { and } \mathrm{B} \text { of the beam }
$$

The shear forces are maximum (positive or negative) at the joints A and B and are calculated to be

$$
\mathrm{V}_{\mathrm{A}}=\mathrm{wL} / 2, \text { and } \mathrm{V}_{\mathrm{B}}=-\mathrm{wL} / 2
$$

Moment and Shear Values using ACI Coefficients

Maximum allowable LL/DL $=3$, maximum allowable adjacent span difference $=20 \%$

1. Positive Moments
(i) For End Spans
(a) If discontinuous end is unrestrained, $\mathbf{M}_{(+)}=\mathrm{wL}^{2} / 11$
(b) If discontinuous end is restrained, $\mathbf{M}_{(+)}=\mathrm{wL}^{2} / 14$
(ii) For Interior Spans, $M_{(+)}=w L^{2} / 16$
2. Negative Moments
(i) At the exterior face of first interior supports
(a) Two spans, $\mathrm{M}_{(-)}=\mathrm{wL}^{2} / 9$
(b) More than two spans, $\mathrm{M}_{(-)}=\mathrm{wL}^{2} / 10$
(ii) At the other faces of interior supports, $\mathrm{M}_{(-)}=\mathrm{wL}^{2} / 11$
(iii) For spans not exceeding 10^{\prime}, of where columns are much stiffer than beams, $\mathrm{M}_{(-)}=\mathrm{wL}^{2} / 12$
(iv) At the interior faces of exterior supports
(a) If the support is a beam, $\mathrm{M}_{(-)}=\mathrm{wL}^{2} / 24$
(b) If the support is a column, $\mathrm{M}_{(-)}=\mathrm{wL}^{2} / 16$
3. Shear Forces
(i) In end members at first interior support, $\mathrm{V}=1.15 \mathrm{wL} / 2$
(ii) At all other supports, $\mathrm{V}=\mathrm{wL} / 2$
[where $\mathrm{L}=$ clear span for $\mathrm{M}_{(+)}$and V , and average of two adjacent clear spans for $\mathrm{M}_{(-)}$]

Example

Analyze the three-storied frame structure loaded as shown below using the approximate location of hinges to draw the axial force, shear force and bending moment diagrams of the beams and columns.

The maximum positive and negative beam moments and shear forces are as follows.
For the 15^{\prime} beam, $\mathrm{M}_{(+)}=0.08 \times 1 \times 15^{2}=18 \mathrm{k}-\mathrm{ft}$

$$
\begin{aligned}
& \mathrm{M}_{(-)}=0.045 \times 1 \times 15^{2}=10.13 \mathrm{k}-\mathrm{ft} \\
& \mathrm{~V}_{(\pm)}=1 \times 15 / 2=7.5 \mathrm{k}
\end{aligned}
$$

For the 10^{\prime} beam, $\mathbf{M}_{(+)}=0.08 \times 1 \times 10^{2}=8 \mathrm{k}-\mathrm{ft}$

$$
\begin{aligned}
& \mathrm{M}_{(-)}=0.045 \times 1 \times 10^{2}=4.5 \mathrm{k}-\mathrm{ft} \\
& \mathrm{~V}_{(\pm)}=1 \times 10 / 2=5 \mathrm{k}
\end{aligned}
$$

Axial Force P in all the beams $=0$

The rest of the calculations follow from the free-body diagrams

Column BMD (k-ft)

Column SFD (k)

Beam AFD (k)

Using the ACI coefficients (for pattern loading)

Approximate Analysis of Bridge Portal and Mill Bent

Bridge Portals and Mill Bents

Portals for bridges or bents for mill buildings are often arranged in a manner to include a truss between two flexural members. In such structures, the flexural members are continuous from the foundation to the top and are designed to carry bending moment, shear force as well as axial force. The other members that constitute the truss at the top of the structure are considered pin-connected and to carry axial force only.

Bridge Portal

Mill Bent

Such a structure can be statically indeterminate to the first or third degree, depending on whether the supports are assumed hinged of fixed. Therefore, the same three assumptions made earlier for portal frames can be made for the approximate analysis of these structures also; i.e., for a load applied at the top

1. The horizontal support reactions are equal
2. There is a point of inflection at the center of the unsupported height of each fixed based column

Example

In the bridge portal loaded as shown below, draw the bending moment diagrams of columns AB and CD .

Assuming the total load to be applied equally (i.e., $25 / 2=$ 12.5 k and 12.5 k) at A and B, the horizontal reactions are $\mathrm{H}_{\mathrm{A}}=12.5+12.5 / 2=18.75 \mathrm{k}, \mathrm{H}_{\mathrm{B}}=12.5 / 2=6.25 \mathrm{k}$
Also, $\mathrm{BM}=0$ at the midpoint of the free height; i.e., at $15 / 2$ $=7.5^{\prime}$ from the bottom.
$\therefore-\mathrm{M}_{\mathrm{A}}+18.75 \times 7.5-7.5 \times 7.5 / 2=0 \Rightarrow \mathrm{M}_{\mathrm{A}}=112.5 \mathrm{k}-\mathrm{ft}$
$-M_{D}+6.25 \times 7.5=0 \Rightarrow M_{D}=46.88 \mathrm{k}-\mathrm{ft}$
$\therefore \Sigma \mathrm{M}_{\mathrm{A}}=0 \Rightarrow-112.5-46.88+25 \times 12.5-\mathrm{V}_{\mathrm{D}} \times 20=0$
$\Rightarrow \mathrm{V}_{\mathrm{D}}=7.66 \mathrm{k}$
$\therefore \Sigma \mathrm{F}_{\mathrm{y}}=0 \Rightarrow \mathrm{~V}_{\mathrm{A}}+\mathrm{V}_{\mathrm{D}}=0 \Rightarrow \mathrm{~V}_{\mathrm{A}}=-7.66 \mathrm{k}$

BMD (k-ft) of AB

BMD (k-ft) of CD

Approximate Analysis of Statically Indeterminate Trusses

Two approximate methods are commonly used for the analysis of statically indeterminate trusses. The methods are based on two basic assumptions

Method 1: Diagonal members take equal share of the sectional shear force
Method 2: Diagonal members can take tension only (i.e., they cannot take any compression)

Example

Calculate member forces $\mathrm{GC}, \mathrm{BH}, \mathrm{GH}, \mathrm{BC}$ of the statically indeterminate truss shown below assuming
(i) Diagonal members take equal share of the sectional shear force,
(ii) Diagonal members can take tension only.

$\sum \mathrm{F}_{\mathrm{x}}=0 \Rightarrow \mathrm{E}_{\mathrm{x}}+20=0 \Rightarrow \mathrm{E}_{\mathrm{x}}=-20$
$\sum \mathrm{M}_{\mathrm{E}}=0 \Rightarrow 20 \times 15+(5+10+10+10+5) \times 40+\mathrm{A}_{\mathrm{y}} \times 80=0 \Rightarrow \mathrm{~A}_{\mathrm{y}}=-23.75 \mathrm{k}$
$\sum \mathrm{F}_{\mathrm{y}}=0 \Rightarrow \mathrm{~A}_{\mathrm{y}}+\mathrm{E}_{\mathrm{y}}+5+10+10+10+5=0 \Rightarrow \mathrm{E}_{\mathrm{y}}=-16.25 \mathrm{k}$
(i) At section $x-x$,
$\sum \mathrm{F}_{\mathrm{x}}=0 \Rightarrow \mathrm{~F}_{\mathrm{GH}}+\mathrm{F}_{\mathrm{BC}}+\mathrm{F}_{\mathrm{BH}} \cos 36.9^{\circ}+\mathrm{F}_{\mathrm{GC}} \cos 36.9^{\circ}+20=0$
$\Rightarrow \mathrm{F}_{\mathrm{GH}}+\mathrm{F}_{\mathrm{BC}}+0.8 \mathrm{~F}_{\mathrm{BH}}+0.8 \mathrm{~F}_{\mathrm{GC}}+20=0$
$\sum \mathrm{F}_{\mathrm{y}}=0 \Rightarrow \mathrm{~F}_{\mathrm{BH}} \sin 36.9^{\circ}-\mathrm{F}_{\mathrm{GC}} \sin 36.9^{\circ}+5+10-23.75=0$
$\Rightarrow 0.6 \mathrm{~F}_{\mathrm{BH}}-0.6 \mathrm{~F}_{\mathrm{GC}}=8.75$
Assuming diagonal members to take equal share of the sectional shear force
$\Rightarrow 0.6 \mathrm{~F}_{\mathrm{BH}}=-0.6 \mathrm{~F}_{\mathrm{GC}}=8.75 / 2=4.375 \Rightarrow \mathrm{~F}_{\mathrm{BH}}=7.29 \mathrm{k}, \mathrm{F}_{\mathrm{GC}}=-7.29 \mathrm{k}$
$\sum \mathrm{M}_{\mathrm{B}}=0 \Rightarrow-23.75 \times 20+5 \times 20+20 \times 15-0.8 \times 7.29 \times 15+\mathrm{F}_{\mathrm{GH}} \times 15=0 \Rightarrow \mathrm{~F}_{\mathrm{GH}}=10.83 \mathrm{k}$
$\therefore \sum \mathrm{F}_{\mathrm{x}}=0 \Rightarrow \mathrm{~F}_{\mathrm{GH}}+\mathrm{F}_{\mathrm{BC}}+0.8 \mathrm{~F}_{\mathrm{BH}}+0.8 \mathrm{~F}_{\mathrm{GC}}+20=0 \Rightarrow \mathrm{~F}_{\mathrm{BC}}=-30.83 \mathrm{k}$
(ii) Assuming the diagonal member GC to fail in compression (i.e., to be non-existent)

At section $\mathrm{x}-\mathrm{x}$,
$\sum \mathrm{F}_{\mathrm{x}}=0 \Rightarrow \mathrm{~F}_{\mathrm{GH}}+\mathrm{F}_{\mathrm{BC}}+\mathrm{F}_{\mathrm{BH}} \cos 36.9^{\circ}+20=0 \Rightarrow \mathrm{~F}_{\mathrm{GH}}+\mathrm{F}_{\mathrm{BC}}+0.8 \mathrm{~F}_{\mathrm{BH}}+20=0$
$\sum \mathrm{F}_{\mathrm{y}}=0 \Rightarrow \mathrm{~F}_{\mathrm{BH}} \sin 36.9^{\circ}+5+10-23.75=0 \Rightarrow \mathrm{~F}_{\mathrm{BH}}=14.58 \mathrm{k}$
$\sum \mathrm{M}_{\mathrm{B}}=0 \Rightarrow-23.75 \times 20+5 \times 20+20 \times 15+\mathrm{F}_{\mathrm{GH}} \times 15=0 \Rightarrow \mathrm{~F}_{\mathrm{GH}}=5 \mathrm{k}$
$\therefore \sum \mathrm{F}_{\mathrm{x}}=0 \Rightarrow \mathrm{~F}_{\mathrm{GH}}+\mathrm{F}_{\mathrm{BC}}+0.8 \mathrm{~F}_{\mathrm{BH}}+20=0 \Rightarrow \mathrm{~F}_{\mathrm{BC}}=-36.67 \mathrm{k}$
Note: The actual values from GRASP (assuming identical member sections) are

$$
\mathrm{F}_{\mathrm{BH}}=4.88 \mathrm{k}, \mathrm{~F}_{\mathrm{GC}}=-9.71 \mathrm{k}, \mathrm{~F}_{\mathrm{GH}}=12.77 \mathrm{k}, \mathrm{~F}_{\mathrm{BC}}=-28.90 \mathrm{k}
$$

Problems on Approximate Analysis of Bridge Portal, Mill Bent and Truss

1. In the mill bent shown below, use the portal method to calculate the axial forces in members BG and EH and draw the shear force and bending moment diagrams of ABC and DEF.

2. In the mill bent shown below,
(i) Use the Portal Method to draw the bending moment diagram of the member KLM.
(ii) Calculate the forces in EG and FH , assuming them to take equal share of the sectional shear.

3. In the bridge portal shown below, compression in member DG is 10 kips. Use the Portal Method to
(i) calculate the load w per unit length, assuming the diagonal members to share the sectional shear force equally.
(ii) draw the BMD and SFD of the member FGH for the value of w calculated in (i).

4. In the structure shown below,
(i) Use the Portal Method to calculate the reactions at support A, G and draw the BMD of ABC.
(ii) Calculate the forces in members $\mathrm{CD}, \mathrm{BE}, \mathrm{CF}$, assuming diagonal members to take tension only.

5. In the bridge portal shown below,
(i) Use the Portal Method to calculate the reactions at support A and force in member BE.
(ii) Calculate the forces in members GI and FH , assuming diagonal members to take tension only.

Deflection Calculation by the Method of Virtual Work

Method of Virtual Work

Another way of representing the equilibrium equations is by energy methods, which is based on the law of conservation of energy. According to the principle of virtual work, if a system in equilibrium is subjected to virtual displacements, the virtual work done by the external forces $\left(\delta \mathrm{W}_{\mathrm{E}}\right)$ is equal to the virtual work done by the internal forces $\left(\delta \mathrm{W}_{\mathrm{I}}\right)$

$$
\begin{equation*}
\delta \mathrm{W}_{\mathrm{E}}=\delta \mathrm{W}_{\mathrm{I}} \tag{1}
\end{equation*}
$$

where the symbol δ is used to indicate 'virtual'. This term is used to indicate hypothetical increments of displacements and works that are assumed to happen in order to formulate the problem.

Consider the body loaded as shown in Fig. 1. Under the given loading conditions, the point A deflects an amount Δ in the direction shown in the Figure. Moreover the same load causes the element B within the body to extend an amount dL in the direction shown.
If a virtual unit load (i.e., a load of magnitude 1), when applied in the direction of Δ, causes a virtual internal force u in the element B in the direction of dL, the virtual work done by the external forces

$$
\begin{equation*}
\delta \mathrm{W}_{\mathrm{E}}=1 . \Delta \tag{2}
\end{equation*}
$$

Fig. 1
while the virtual work done by the virtual internal force (u) on B is $=u$. dL
\therefore The total internal virtual work done is $\delta \mathrm{W}_{\mathrm{I}}=\Sigma u$. dL
where the symbol Σ indicates the summation over the lengths of all the elements within the body. In this formulation, the terms in italic indicate virtual loads or internal forces.
\therefore The principle of virtual work [Eq. (1)] $\Rightarrow 1 . \Delta=\Sigma u . \mathrm{dL} \Rightarrow \Delta=\Sigma u$. dL
It is to be noted here that the term Δ above can indicate the deflection or rotation of the body, depending on which the virtual load (1) can be a unit force or a unit moment applied in the direction of Δ.

Deflection of Truss due to External Loads
The above principle can be applied to calculate the deflection of a truss due to axial deformation of its members. This axial deformation can be caused be caused by external loads on the truss, temperature change or misfit of member length. The axial deformation due to external loads is caused by the internal forces within the truss members, the resulting extension of a truss member being

$$
\begin{equation*}
\mathrm{dL}=\mathrm{N}_{0} \mathrm{~L} / \mathrm{EA} \tag{6}
\end{equation*}
$$

where $\mathrm{N}_{0}, \mathrm{~L}, \mathrm{E}$ and A stand for the axial force (due to external loads), length, modulus of elasticity and cross-sectional area of a truss member. The internal force u due to the unit virtual load is often expressed by N_{l}, from which the equation for truss deflection [Eq. (5)] becomes $\Delta=\Sigma N_{l} . \mathrm{N}_{0} \mathrm{~L} / \mathrm{EA}$

Example

Calculate the vertical deflection of the point B of the truss ABCDEF due to the external loads applied [Given: EA/L $=500 \mathrm{kip} / \mathrm{ft}$, for all the truss members].

Using member forces N_{0} and N_{l} from the above analyses, $\Delta=\Sigma \mathrm{N}_{0} N_{l} \mathrm{~L} / \mathrm{EA}$
\therefore Ignoring zero force members,

$$
\begin{equation*}
\Delta_{\mathrm{B}, \mathrm{v}}=\{(7.07)(0.707)+(-7.07)(0.707)+(-5)(-0.5)+(-5)(-0.5)\} / 500=0.01 \mathrm{ft} \uparrow \tag{7}
\end{equation*}
$$

Deflection of Truss due to Temperature Change and Misfit

In addition to external loads, a truss joint may deflect due to change in member lengths (i.e., become longer or shorter than its original length) caused by change in temperature or geometrical misfit of any truss member (being longer or shorter than its specified length).
\therefore In Eq. (5); i.e., $\Delta=\Sigma u . \mathrm{dL}$
the tem dL (elongation of a truss member) can also be due to temperature change or fabrication defect of any truss member.

The change in length due to increase in the temperature $\Delta \mathrm{T}$ is $=\alpha \Delta \mathrm{T} L$
where $\alpha=$ Coefficient of thermal expansion; i.e., change of length of a member of unit length due to unit change of temperature, $\Delta \mathrm{T}=$ Change of temperature of a member of length L .

Adding to it a geometric misfit (due to fabrication defect) of $\Delta \mathrm{L}$, the total elongation of a truss member $\mathrm{dL}=\mathrm{N}_{0} \mathrm{~L} / \mathrm{EA}+\alpha \Delta \mathrm{T} \mathrm{L}+\Delta \mathrm{L}$
from which the equation for truss deflection [Eq. (5)] becomes

$$
\Delta=\sum N_{l} \mathrm{dL}=\Sigma N_{l}\left(\mathrm{~N}_{0} \mathrm{~L} / \mathrm{EA}+\alpha \Delta \mathrm{T} \mathrm{~L}+\Delta \mathrm{L}\right)
$$

Example

Calculate the vertical deflection of joint B of the truss ABCDEF shown below due to
(i) temperature rise of $30^{\circ} \mathrm{F}$ in the bottom cord members AB and BC ,
(ii) fabrication defects resulting in vertical members BF and CE to be made $0.25^{\prime \prime}$ shorter than specified
[Given: Coefficient of thermal expansion $\alpha=5.5 \times 10^{-6} /{ }^{\circ} \mathrm{F}$, for all the truss members].

(i) For members AB and $\mathrm{BC}, \alpha=5.5 \times 10^{-6} /{ }^{\circ} \mathrm{F}, \Delta \mathrm{T}=30^{\circ} \mathrm{F}, \mathrm{L}=20 \mathrm{ft}=240 \mathrm{in}$

$$
\therefore \mathrm{dL}=\alpha \Delta \mathrm{T} \mathrm{~L}=\left(5.5 \times 10^{-6}\right)(30)(240)=0.0396 \text { in }
$$

\therefore Ignoring zero force members, $\Delta_{\mathrm{B}, \mathrm{v}}=(0.0396)(-0.5)+(0.0396)(-0.5)=-0.0396$ in \downarrow
(ii) For members BF and $\mathrm{CE}, \mathrm{dL}=-0.25$ in
\therefore Ignoring zero force members, $\Delta_{\mathrm{B}, \mathrm{v}}=(-0.25)(-1)+(-0.25)(0)=0.25$ in \uparrow

Support Settlement

Settlement of supports due to consolidation or instability of the subsoil/foundation is a major reason of deflection of structures. There is a fundamental difference between the effect of support settlement on statically determinate and indeterminate structures. While it causes deflection due to geometrical changes only in statically determinate structures, it induces internal stresses in statically indeterminate structures (which may even be more significant than the forces due to external loads).

The effect of support settlement on statically indeterminate structures is dealt separately but the following figure shows the deflected shape of the truss $A B C D E F$ shown above due to settlement of support C.

Assume EA/L $=500 \mathrm{k} / \mathrm{ft}, \alpha=5.5 \times 10^{-6} /{ }^{\circ} \mathrm{F}$ for the following trusses.

1. Calculate $\Delta_{\mathrm{E}, \mathrm{h}}$ due to
(i) The external load
(ii) $\Delta \mathrm{T}=50^{\circ} \mathrm{F}$ for CD and CE .

2. Calculate $\Delta_{\mathrm{B} \text {-C(rel) }}$ due to
(i) The external loads
(ii) $\Delta \mathrm{L}=0.5^{\prime \prime}$ for CD and CE .

3. Calculate $\Delta_{\mathrm{A}-\mathrm{C}(\mathrm{rel})}$ due to
(i) The external loads
(ii) $\Delta \mathrm{T}=-50^{\circ} \mathrm{F}$ for AB and AD .

4. Calculate $\Delta_{\mathrm{C}, \mathrm{v}}$ and $\Delta_{\mathrm{C}, \mathrm{h}}$ due to the external loads.

5. Calculate $\Delta_{B, v}$ and $\Delta_{\mathrm{D} \text { (along AD) }}$ due to the external loads.

Deflection due to Flexural Deformations

Flexural deformation is the main source of deflection in many civil engineering structures, like beams, slabs and frames; i.e., those designed primarily against bending moment. It is often much more significant than other causes of deflection like axial, shear and torsional deformation. From Eq. (5) of the previous section, the principle of virtual work $\Rightarrow \Delta=\Sigma u$. dL
where the term Δ above can indicate the deflection or rotation of the body, u is the virtual internal force in an element within the body, which deforms by an amount dL in the direction of u.

Deflection of Beam/Frame due to External Loads

For flexural deformation, u is be the virtual internal moment m_{l} in the element while dL is the rotation $\mathrm{d} \theta$ caused by external forces; i.e., $\mathrm{dL}=\mathrm{d} \theta=$ curvature $\times \mathrm{ds}=\left(\mathrm{m}_{0} / \mathrm{EI}\right) \mathrm{ds}$.

$$
\begin{equation*}
\therefore \Delta=\int m_{l} \mathrm{~m}_{0} / \mathrm{EI} \mathrm{ds} \tag{11}
\end{equation*}
$$

where m_{0} is the bending moment caused by external forces and EI is called the flexural rigidity of the member. Here, the integration sign \int is used instead of summation Σ because the bending moments vary within the length of each member (unlike the trusses, where axial forces do not vary within the members).

Integration Table

In order to facilitate the integration shown in Eq. (11), the following table is used between functions f_{1} and f_{2}, both of which can be uniform or vary linearly or parabolically along the length (L) of a member.

Integration of Product of Functions $\left(I=\int f_{1} f_{\mathbf{2}} \mathbf{d S}\right)$

$\mathrm{f}_{2}>\mathrm{f}_{1}$	$\mathrm{A} \square$	$\sum_{\mathrm{L}} \mathrm{~B}$		$\underbrace{}_{L} B$	
a \square	AaL	BaL/2	AaL/2	$(\mathrm{A}+\mathrm{B}) \mathrm{aL} / 2$	$[\mathrm{A}+4 \mathrm{C}+\mathrm{B}] \mathrm{aL} / 6$
$\square b$	AbL/2	BbL/3	AbL/6	$[\mathrm{A}+2 \mathrm{~B}] \mathrm{bL} / 6$	[2C+B]bL/6
	AaL/2	BaL/6	AaL/3	$[2 \mathrm{~A}+\mathrm{B}] \mathrm{aL} / 6$	$[\mathrm{A}+2 \mathrm{C}] \mathrm{aL} / 6$
$a \underset{L}{a} b$	$\mathrm{A}(\mathrm{a}+\mathrm{b}) \mathrm{L} / 2$	B(a+2b)L/6	A(2a+b)L/6	$[\mathrm{A}(2 \mathrm{a}+\mathrm{b})+\mathrm{B}(\mathrm{a}+2 \mathrm{~b})] \mathrm{L} / 6$	$\begin{gathered} {[\mathrm{Aa}+\mathrm{Bb}+} \\ 2 \mathrm{C}(\mathrm{a}+\mathrm{b})] \mathrm{L} / 6 \end{gathered}$

Example: Calculate the tip rotation and deflection of the beam shown below [Given: $\mathrm{EI}=$ const].

Using the m_{0} diagram along with m_{1} for unit anticlockwise moment at A

Using the m_{0} diagram and m_{1} for unit upward load at A $\mathrm{v}_{\mathrm{A}}=(\mathrm{L})\left(-\mathrm{P}_{0} \mathrm{~L} / \mathrm{EI}\right) \mathrm{L} / 3=-\mathrm{P}_{0} \mathrm{~L}^{3} / 3 \mathrm{EI}$

For horizontal deflection at $\mathrm{C}\left(\Delta_{\mathrm{C}, \mathrm{h}}\right)$:

$$
\begin{aligned}
\Delta_{\mathrm{D}, \mathrm{v}} & =\int\left(\mathrm{x}_{1} \mathrm{x}_{0} / \mathrm{EA}\right) \mathrm{dS}+\int\left(\mathrm{v}_{1} \mathrm{v}_{0} / \mathrm{GA}^{\prime}\right) \mathrm{dS}+\int\left(\mathrm{m}_{1} \mathrm{~m}_{0} / \mathrm{EI}\right) \mathrm{dS} \\
& =10(-10)(1) /\left(400 \times 10^{3}\right)+10(-10)(1) /\left(125 \times 10^{3}\right)+10 / 3(100)(-10) /\left(40 \times 10^{3}\right)=(-0.25-0.80-83.33) \times 10^{-3} \\
& =-0.0844 \mathrm{ft} \longleftarrow
\end{aligned}
$$

For vertical deflection at D ($\Delta_{\mathrm{D}, \mathrm{v}}$):

Assume EA $=400 \times 10^{3} \mathrm{k}, \mathrm{GA}^{*}=125 \times 10^{3} \mathrm{k}, \mathrm{EI}=40 \times 10^{3} \mathrm{k}-\mathrm{ft}^{2}$

Beams

1.

2.

$\Delta_{\mathrm{B}}, \theta_{\mathrm{A}}$?

B is an Internal Hinge $\quad \Delta_{\mathrm{B}}, \theta_{\mathrm{B}(\mathrm{L})}, \theta_{\mathrm{B}(\mathrm{R})}$?

Frames

8.

Flexibility Method for 2-degree Indeterminate Trusses

$\mathrm{EA} / \mathrm{L}=$ constant $=1000 \mathrm{k} / \mathrm{ft}$
(Note: EA \neq constant)
dosi $=1 \times 6+4-2 \times 4=2$
The horizontal reaction H_{B} and member force $F_{B D}$ are taken as the two redundants.

$\Delta_{1,0}=\sum\left\{\mathrm{N}_{1} \mathrm{~N}_{0} /(\mathrm{EA} / \mathrm{L})\right\}=\{0 \times 0+0 \times 0+0 \times 14.14+0 \times(-10)+1 \times 0\} / 1000=0 \mathrm{ft}$
$\Delta_{2,0}=\sum\left\{\mathrm{N}_{2} \mathrm{~N}_{0} /(\mathrm{EA} / \mathrm{L})\right\}=\{14.14 \times 1+(-10) \times(-0.707)\} / 1000=21.21 \times 10^{-3} \mathrm{ft}$
$\Delta_{1,1}=\sum\left\{\mathrm{N}_{1} \mathrm{~N}_{1} /(\mathrm{EA} / \mathrm{L})\right\}=\left\{0^{2}+0^{2}+0^{2}+0^{2}+1^{2}\right\} / 1000=1 \times 10^{-3} \mathrm{ft} / \mathrm{k}$
$\Delta_{1,2}=\Delta_{2,1}=\sum\left\{\mathrm{N}_{1} \mathrm{~N}_{2} /(\mathrm{EA} / \mathrm{L})\right\}=\{1 \times(-0.707)\} / 1000=-0.707 \times 10^{-3} \mathrm{ft} / \mathrm{k}$
$\Delta_{2,2}=\sum\left\{\mathrm{N}_{2} \mathrm{~N}_{2} /(\mathrm{EA} / \mathrm{L})\right\}=\left\{4 \times(-0.707)^{2}+2 \times 1^{2}\right\} / 1000=4 \times 10^{-3} \mathrm{ft} / \mathrm{k}$
$\therefore\left(1 \times 10^{-3}\right) \mathrm{H}_{\mathrm{B}}+\left(-0.707 \times 10^{-3}\right) \mathrm{F}_{\mathrm{BD}}=0$
$\left(-0.707 \times 10^{-3}\right) \mathrm{H}_{\mathrm{B}}+\left(4 \times 10^{-3}\right) \mathrm{F}_{\mathrm{BD}}=-21.21 \times 10^{-3}$
$\Rightarrow H_{B}=-4.29 \mathrm{k}$, and $\mathrm{F}_{\mathrm{BD}}=-6.06 \mathrm{k}$
$\therefore \mathrm{N}=\mathrm{N}_{0}+\mathrm{N}_{1} \mathrm{H}_{\mathrm{B}}+\mathrm{N}_{2} \mathrm{~F}_{\mathrm{BD}}$
$\Rightarrow \mathrm{F}_{\mathrm{AB}}=0+1 \times(-4.29)+(-0.707) \times(-6.06)=0, \mathrm{~F}_{\mathrm{BC}}=-10+0+(-0.707) \times(-6.06)=-5.71 \mathrm{k}$
$\mathrm{F}_{\mathrm{CD}}=0+0+(-0.707) \times(-6.06)=4.29, \mathrm{~F}_{\mathrm{DA}}=0+0+(-0.707) \times(-6.06)=4.29 \mathrm{k}$
$\mathrm{F}_{\mathrm{AC}}=14.14+0+(1) \times(-6.06)=8.08 \mathrm{k}, \mathrm{F}_{\mathrm{BD}}=-6.06 \mathrm{k}$
1.

Also solve if C moves 0.10^{\prime} to right

2.

Also solve if B settles 0.10^{\prime}

3.

4.

5.

Also solve if C settles 0.10^{\prime}

6.

7.

8.

9.

Support A moves 0.10' rightwards
10.

1.

Also support C moves 0.10^{\prime} rightwards Assume EA/L $=$ Constant $=500 \mathrm{k} / \mathrm{ft}$ $\operatorname{dosi}=7+4-2 \times 5=1$

$\mathrm{N}_{0}(\mathrm{k})\left(\mathrm{X}_{\mathrm{C}}=0\right)$

$\mathrm{N}_{1}\left(\mathrm{X}_{\mathrm{C}}=1\right)$
$\Delta_{1,0}=\{(-5)(-1)+(-5)(-1)\} / 500=0.02^{\prime}, \Delta_{1,1}=\left\{(-1)^{2}+(-1)^{2}\right\} / 500=0.004$
$\therefore 0.004 \mathrm{X}_{\mathrm{C}}+0.02=0.10 \Rightarrow \mathrm{X}_{\mathrm{C}}=20 \mathrm{k}$
$\therefore \mathrm{N}=\mathrm{N}_{0}+\mathrm{X}_{\mathrm{C}} \mathrm{N}_{1} \Rightarrow \mathrm{P}_{\mathrm{AB}}=0, \mathrm{P}_{\mathrm{AC}}=0, \mathrm{P}_{\mathrm{BC}}=7.07 \mathrm{k}, \mathrm{P}_{\mathrm{BD}}=0, \mathrm{P}_{\mathrm{BE}}=-7.07 \mathrm{k}, \mathrm{P}_{\mathrm{CD}}=-25 \mathrm{k}, \mathrm{P}_{\mathrm{BE}}=-25 \mathrm{k}$
2.

Also support B settles 0.10^{\prime}
Assume EA/L = Constant $=500 \mathrm{k} / \mathrm{ft}$ $\operatorname{dosi}=5+4-2 \times 4=1$

$\mathrm{N}_{0}(\mathrm{k})\left(\mathrm{Y}_{\mathrm{B}}=0\right)$

$$
\mathrm{N}_{1}\left(\mathrm{Y}_{\mathrm{B}}=1\right)
$$

$\Delta_{1,0}=\{(5)(-0.5)+(5)(-0.5)+(7.07)(0.707)+(-7.07)(0.707)\} / 500=-0.01^{\prime}$
$\Delta_{1,1}=\left\{(-0.5)^{2}+(-0.5)^{2}+(0.707)^{2}+(-1)^{2}+(0.707)^{2}\right\} / 500=0.005$
$\therefore 0.005 \mathrm{Y}_{\mathrm{B}}-0.01=-0.10 \Rightarrow \mathrm{Y}_{\mathrm{B}}=-18 \mathrm{k}$
$\therefore \mathrm{N}=\mathrm{N}_{0}+\mathrm{Y}_{\mathrm{B}} \mathrm{N}_{1} \Rightarrow \mathrm{P}_{\mathrm{AB}}=14 \mathrm{k}, \mathrm{P}_{\mathrm{BC}}=14 \mathrm{k}, \mathrm{P}_{\mathrm{AD}}=-5.66 \mathrm{k}, \mathrm{P}_{\mathrm{BD}}=18 \mathrm{k}, \mathrm{P}_{\mathrm{CD}}=-19.80 \mathrm{k}$

$\mathrm{N}_{0}(\mathrm{k})\left(\mathrm{P}_{\mathrm{BC}}=0\right)$

$\mathrm{EA} / \mathrm{L}=$ Constant $=500 \mathrm{k} / \mathrm{ft}$, dosi $=8+3-2 \times 5=1$
$\Delta_{1,0}=\{(15)(-0.707)\} / 500=-0.0212^{\prime}, \Delta_{1,1}=\left\{4 \times(-0.707)^{2}+2 \times(1)^{2}\right\} / 500=0.008$
$\therefore 0.008 \mathrm{P}_{\mathrm{BC}}-0.0212=0 \Rightarrow \mathrm{P}_{\mathrm{BC}}=2.65 \mathrm{k}$
$\therefore \mathrm{N}=\mathrm{N}_{0}+\mathrm{P}_{\mathrm{BC}} \mathrm{N}_{1}$
$\Rightarrow \mathrm{P}_{\mathrm{AB}}=-1.87 \mathrm{k}, \mathrm{P}_{\mathrm{AC}}=-1.87 \mathrm{k}, \mathrm{P}_{\mathrm{CD}}=-1.87 \mathrm{k}, \mathrm{P}_{\mathrm{BD}}=15.13 \mathrm{k}, \mathrm{P}_{\mathrm{BC}}=2.65 \mathrm{k}, \mathrm{P}_{\mathrm{AD}}=2.65 \mathrm{k}$, $\mathrm{P}_{\mathrm{DE}}=0, \mathrm{P}_{\mathrm{BE}}=0$
4.

EA/L $=$ Constant $=1000 \mathrm{k} / \mathrm{ft}$ dosi $=6+3-2 \times 4=1$

$\Delta_{1,0}=\{(8.66)(-0.866)+(-5)(-0.5)+(2.5)(1)\} / 1000=-0.0025^{\prime}$
$\Delta_{1,1}=\left\{2 \times(-0.5)^{2}+2 \times(-0.866)^{2}+2 \times(1)^{2}\right\} / 1000=0.004$
$\therefore 0.004 \mathrm{P}_{\mathrm{AC}}-0.0025=0 \Rightarrow \mathrm{P}_{\mathrm{AC}}=0.63 \mathrm{k}$
$\therefore \mathrm{N}=\mathrm{N}_{0}+\mathrm{P}_{\mathrm{AC}} \mathrm{N}_{1}$
$\Rightarrow \mathrm{P}_{\mathrm{AB}}=-0.31 \mathrm{k}, \mathrm{P}_{\mathrm{BC}}=8.12 \mathrm{k}, \mathrm{P}_{\mathrm{CD}}=-5.31 \mathrm{k}, \mathrm{P}_{\mathrm{DA}}=-0.54 \mathrm{k}, \mathrm{P}_{\mathrm{AC}}=0.63 \mathrm{k}, \mathrm{P}_{\mathrm{BD}}=3.13 \mathrm{k}$
5.

$\Delta_{1,0}=0, \Delta_{2,0}=\{(-28.28)(-1.41)+(30)(2)\} / 500=0.20^{\prime}$
$\Delta_{1,1}=(1)^{2} / 500=0.002, \Delta_{1,2}=\Delta_{2,1}=(1) \times(1) / 500=0.002, \Delta_{2,2}=\left\{2 \times(-1.41)^{2}+(2)^{2}+2 \times(1)^{2}\right\} / 500=0.02$
$\therefore 0.002 \mathrm{X}_{\mathrm{B}}+0.002 \mathrm{Y}_{\mathrm{C}}+0=0$
$0.002 \mathrm{X}_{\mathrm{B}}+0.02 \mathrm{Y}_{\mathrm{C}}+0.20=-0.10$
$\therefore \mathrm{X}_{\mathrm{B}}=16.67 \mathrm{k}, \mathrm{Y}_{\mathrm{C}}=-16.67 \mathrm{k}$
$\therefore \mathrm{N}=\mathrm{N}_{0}+\mathrm{X}_{\mathrm{B}} \mathrm{N}_{1}+\mathrm{Y}_{\mathrm{C}} \mathrm{N}_{2}$
$\Rightarrow \mathrm{P}_{\mathrm{AB}}=0, \mathrm{P}_{\mathrm{BC}}=-16.67 \mathrm{k}, \mathrm{P}_{\mathrm{AD}}=-4.71 \mathrm{k}, \mathrm{P}_{\mathrm{BD}}=-3.33 \mathrm{k}, \mathrm{P}_{\mathrm{CD}}=23.57 \mathrm{k}$

Example 1

Example 2

$\mathrm{EI}=$ constant
dosi $=3 \times 1+4-3 \times 2=1$
Take R_{A} as the redundant
$\therefore \Delta_{1,0}+\mathrm{R}_{\mathrm{A}} \Delta_{1,1}=\Delta_{\mathrm{A}}=0$
$\Delta_{1,0}=(\mathrm{L} / 2) / 6 \times[2 \mathrm{~L}+\mathrm{L} / 2](-\mathrm{PL} / 2) / \mathrm{EI}=-5 \mathrm{PL}^{3} / 48 \mathrm{EI}$

$$
\begin{aligned}
\Delta_{1,1} & =\int \mathrm{m}_{1} \mathrm{~m}_{1} \mathrm{dS} / \mathrm{EI} \\
& =\mathrm{L} / 3(\mathrm{~L})(\mathrm{L}) / \mathrm{EI}=\mathrm{L}^{3} / 3 \mathrm{EI}
\end{aligned}
$$

\therefore (i) $\Rightarrow-5 \mathrm{PL}^{3} / 48 \mathrm{EI}+\mathrm{L}^{3} / 3 \mathrm{EI}=0 \Rightarrow \mathrm{R}_{\mathrm{A}}=5 \mathrm{P} / 16$

$$
\begin{aligned}
& \therefore M=m_{0}+R_{A} m_{1}=m_{0}+(5 P / 16) m_{1} \\
& M_{A}=0, M_{B}=5 P L / 32, M_{C}=-P L / 2+5 P L / 16=-3 P L / 16
\end{aligned}
$$

$$
\begin{aligned}
& E I=\text { constant } \\
& \operatorname{dosi}=3 \times 2+4-3 \times 3=1
\end{aligned}
$$

Take R_{B} as the redundant
$\therefore \Delta_{1,0}+\mathrm{R}_{\mathrm{B}} \Delta_{1,1}=\Delta_{\mathrm{B}}=0$
$\Delta_{1,0}=2 \times[2 \times 37.5+50](-5 \times 10 / 6) / \mathrm{EI}=-2083.33 / \mathrm{EI}$
$\Delta_{1,1}=\int \mathrm{m}_{1} \mathrm{~m}_{1} \mathrm{dS} / \mathrm{EI}$
$=2 \times 10 / 3(-5)(-5) / \mathrm{EI}=166.67 / \mathrm{EI}$
\therefore (i) $\Rightarrow-2083.33 / \mathrm{EI}+166.67 \mathrm{R}_{\mathrm{B}} / \mathrm{EI}=0$
$\Rightarrow \mathrm{R}_{\mathrm{B}}=12.5 \mathrm{k}$

$$
\begin{aligned}
& \therefore \mathrm{M}=\mathrm{m}_{0}+\mathrm{R}_{\mathrm{B}} \mathrm{~m}_{1}=\mathrm{m}_{0}+12.5 \mathrm{~m}_{1} \\
& \quad \mathrm{M}_{\mathrm{A}}=0, \mathrm{M}_{\mathrm{B}}=50-62.5=-12.5 \mathrm{k}^{\prime}, \mathrm{M}_{\mathrm{C}}=0
\end{aligned}
$$

Example 3

dosi $=3 \times 2+5-3 \times 3=2$

$$
\begin{align*}
& \Delta_{1,0}+\mathrm{R}_{\mathrm{A}} \Delta_{1,1}+\mathrm{R}_{\mathrm{C}} \Delta_{1,2}=\Delta_{\mathrm{A}}=0 \\
& \Delta_{2,0}+\mathrm{R}_{\mathrm{A}} \Delta_{2,1}+\mathrm{R}_{\mathrm{C}} \Delta_{2,2}=\Delta_{\mathrm{C}}=0 \tag{ii}
\end{align*}
$$

$\Delta_{1,0}=\int_{m_{1}} \mathrm{~m}_{0} \mathrm{dS} / \mathrm{EI}$
$=\{10 / 6(-100)(30+5)$
$+5 / 6[(-100)(30+20)+(-200)(40+15)]\} / E I$
$=-19166.67 / \mathrm{EI}$
$\Delta_{2,0}=\int \mathrm{m}_{2} \mathrm{~m}_{0} \mathrm{dS} / \mathrm{EI}$
$=\{5 / 6(5)(-200-50)$
$+5 / 6[(5)(-200-200)+(10)(-400-100)]\} / \mathrm{EI}=-6875 / \mathrm{EI}$
$\Delta_{1,1}=\int \mathrm{m}_{1} \mathrm{~m}_{1} \mathrm{dS} / \mathrm{EI}=20 / 3(20)(20) / \mathrm{EI}$
$=2666.67 / \mathrm{EI}$

$\Delta_{1,2}=\Delta_{2,1}=\int \mathrm{m}_{1} \mathrm{~m}_{2} \mathrm{dS} / \mathrm{EI}$
$=\{5 / 6(5)(30+10)$
$+5 / 6[(5)(30+20)+(10)(40+15)]\} / E I$
$=833.33 /$ EI
$\Delta_{2,2}=\int \mathrm{m}_{2} \mathrm{~m}_{2} \mathrm{dS} / \mathrm{EI}=10 / 3(10)(10) / \mathrm{EI}$
$=333.33 / \mathrm{EI}$
\therefore Avoiding the factors EI
(i) $\Rightarrow 2666.67 \mathrm{R}_{\mathrm{A}}+833.33 \mathrm{R}_{\mathrm{C}}=19166.67$
(ii) $\Rightarrow 833.33 \mathrm{R}_{\mathrm{A}}+333.33 \mathrm{R}_{\mathrm{C}}=6875$
$\Rightarrow \mathrm{R}_{\mathrm{A}}=[19166.67 \times 333.33-833.33 \times 6875] /\left[2666.67 \times 333.33-833.33^{2}\right]=3.39 \mathrm{k}$
and $R_{C}=[2666.67 \times 6875-833.33 \times 19166.67] /\left[2666.67 \times 333.33-833.33^{2}\right]=12.14 \mathrm{k}$
$\therefore \mathrm{M}=\mathrm{m}_{0}+\mathrm{R}_{\mathrm{A}} \mathrm{m}_{1}+\mathrm{R}_{\mathrm{C}} \mathrm{m}_{2}=\mathrm{m}_{0}+3.39 \mathrm{~m}_{1}+12.14 \mathrm{~m}_{2}$
$\mathrm{M}_{\mathrm{A}}=0, \mathrm{M}_{\mathrm{B}}=0+3.39 \times 5+0 \times 12.14=16.95 \mathrm{k}^{\prime}, \mathrm{M}_{\mathrm{C}}=-50+3.39 \times 10+0 \times 12.14=-16.10 \mathrm{k}^{\prime}$,
$\mathrm{M}_{\mathrm{D}}=-100+3.39 \times 15+5 \times 12.14=11.55 \mathrm{k}^{\prime}, \mathrm{M}_{\mathrm{E}}=-200+3.39 \times 20+10 \times 12.14=-10.80 \mathrm{k}^{\prime}$

Analysis for Support Settlement

Example 4

Example 5
Support C settles 0.10'

$$
\mathrm{EI}=40 \times 10^{3} \mathrm{k}-\mathrm{ft}^{2}
$$

$$
\operatorname{dosi}=2
$$

$\Delta_{1,0}+\mathrm{R}_{\mathrm{A}} \Delta_{1,1}+\mathrm{R}_{\mathrm{C}} \Delta_{1,2}=\Delta_{\mathrm{A}}=0$
$\Delta_{2,0}+\mathrm{R}_{\mathrm{A}} \Delta_{2,1}+\mathrm{R}_{\mathrm{C}} \Delta_{2,2}=\Delta_{\mathrm{C}}=-0.10$
$\Delta_{1,0}=0, \Delta_{2,0}=0$
$\Delta_{1,1}=\int \mathrm{m}_{1} \mathrm{~m}_{1} \mathrm{dS} / \mathrm{EI}=2666.67 / \mathrm{EI}, \Delta_{1,2}=\Delta_{2,1}=833.33 / \mathrm{EI}, \Delta_{2,2}=333.33 / \mathrm{EI}$
\therefore (i) $\Rightarrow(2666.67 / E I) \mathrm{R}_{\mathrm{A}}+(833.33 / \mathrm{EI}) \mathrm{R}_{\mathrm{C}}=0$
(ii) \Rightarrow (833.33/EI) $\mathrm{R}_{\mathrm{A}}+(333.33 / \mathrm{EI}) \mathrm{R}_{\mathrm{C}}=-0.10$
$\Rightarrow R_{\mathrm{A}}=17.14 \mathrm{k}$, and $\mathrm{R}_{\mathrm{C}}=-54.86 \mathrm{k}$
$\therefore \mathrm{M}=\mathrm{m}_{0}+\mathrm{R}_{\mathrm{A}} \mathrm{m}_{1}+\mathrm{R}_{\mathrm{C}} \mathrm{m}_{2}=17.14 \mathrm{~m}_{1}-54.86 \mathrm{~m}_{2}\left[\mathrm{in} \mathrm{k}^{\prime}\right]$
$M_{A}=0, M_{B}=17.14 \times 5-0 \times 54.86=85.70, M_{C}=17.14 \times 10-0 \times 54.86=171.40$,
$M_{D}=17.14 \times 15-5 \times 54.86=-17.20, M_{E}=17.14 \times 20-10 \times 54.86=-205.80$

Combined Flexural, Shear and Axial Deformations

$$
\begin{aligned}
& \mathrm{EA}=400 \times 10^{3} \mathrm{k}, \mathrm{GA}^{*}=125 \times 10^{3} \mathrm{k} \\
& \mathrm{EI}=40 \times 10^{3} \mathrm{k}-\mathrm{ft}^{2} \\
& \text { dosi }=3 \times 3+4-3 \times 4=1 \\
& \text { The vertical reaction at } \mathrm{D}\left(\mathrm{~V}_{\mathrm{D}}\right) \text { is taken } \\
& \text { as the redundant. }
\end{aligned}
$$

X_{1}

$\mathrm{v}_{0}(\mathrm{k})$

v_{1}

$\mathrm{m}_{1}\left({ }^{\prime}\right)$
$\Delta_{1,0}=\int\left(\mathrm{x}_{1} \mathrm{x}_{0} / E A\right) \mathrm{dS}+\int\left(\mathrm{v}_{1} \mathrm{v}_{0} / \mathrm{GA}^{*}\right) \mathrm{dS}+\int\left(\mathrm{m}_{1} \mathrm{~m}_{0} / \mathrm{EI}\right) \mathrm{dS}$
$=0+0+10 / 2(100)(10) /\left(40 \times 10^{3}\right)=0.125 \mathrm{ft}$
$\Delta_{1,1}=\int\left(\mathrm{x}_{1} \mathrm{x}_{1} / E A\right) \mathrm{dS}+\int\left(\mathrm{v}_{1} \mathrm{v}_{1} / \mathrm{GA}^{*}\right) \mathrm{dS}+\int\left(\mathrm{m}_{1} \mathrm{~m}_{1} / E I\right) \mathrm{dS}$
$=2 \times 10 \times(1 \times 1) /\left(400 \times 10^{3}\right)+10 \times(1 \times 1) /\left(125 \times 10^{3}\right)+[10 \times(10 \times 10)+10 \times(10 \times 10) / 3] /\left(40 \times 10^{3}\right)$
$=0.05 \times 10^{-3}+0.08 \times 10^{-3}+33.33 \times 10^{-3}=33.46 \times 10^{-3}$
$\therefore \mathrm{V}_{\mathrm{D}}=-0.125 / 33.46 \times 10^{-3}=-3.74 \mathrm{k}$

Assume EA $=400 \times 10^{3} \mathrm{k}, \mathrm{GA}^{*}=125 \times 10^{3} \mathrm{k}, \mathrm{EI}=40 \times 10^{3} \mathrm{k}-\mathrm{ft}^{2}$

Beams

4.

6.

8.

Frames

1. dosi $=3+4-6=1$; i.e., assume R_{A} as the redundant

$$
\begin{aligned}
& \Delta_{1,0}=\int\left(\mathrm{m}_{0} \mathrm{~m}_{1} / \mathrm{EI}\right) \mathrm{dS}=10 / 2(-100)(10) /\left(40 \times 10^{3}\right)=-0.125 \mathrm{ft} \\
& \Delta_{1,1}=\int\left(\mathrm{m}_{1} \mathrm{~m}_{1} / \mathrm{EI}\right) \mathrm{dS}=10 / 3(10 \times 10) /\left(40 \times 10^{3}\right)=8.33 \times 10^{-3} \mathrm{ft} / \mathrm{k} \\
& \therefore \mathrm{R}_{\mathrm{A}}=0.125 /\left(8.33 \times 10^{-3}\right)=15 \mathrm{k}
\end{aligned}
$$

2. dosi $=6+4-9=1$; i.e., assume R_{B} as the redundant

$\Delta_{1,0}=\int\left(\mathrm{m}_{0} \mathrm{~m}_{1} / \mathrm{EI}\right) \mathrm{dS}=2\{5 / 3(50)(-2.5)+5 / 2(50)(-2.5-5)\} /\left(40 \times 10^{3}\right)=-0.0573 \mathrm{ft}$
$\Delta_{1,1}=\int\left(\mathrm{m}_{1} \mathrm{~m}_{1} / \mathrm{EI}\right) \mathrm{dS}=2\{10 / 3(-5)(-5)\} /\left(40 \times 10^{3}\right)=4.17 \times 10^{-3} \mathrm{ft} / \mathrm{k}$
$\therefore \mathrm{R}_{\mathrm{B}}=0.0573 /\left(4.17 \times 10^{-3}\right)=13.75 \mathrm{k}$

3. dosi $=3+4-6=1$; i.e., assume M_{A} as the redundant

$\Delta_{1,0}=\int\left(\mathrm{m}_{0} \mathrm{~m}_{1} / \mathrm{EI}\right) \mathrm{dS}=\{10 / 2(100)(-1)+10(100)(-1)\} /\left(40 \times 10^{3}\right)=-0.0375 \mathrm{ft}$
$\Delta_{1,1}=\int\left(\mathrm{m}_{1} \mathrm{~m}_{1} / \mathrm{EI}\right) \mathrm{dS}=20(-1)(-1) /\left(40 \times 10^{3}\right)=0.5 \times 10^{-3} \mathrm{ft} / \mathrm{k}$
$\therefore \mathrm{M}_{\mathrm{A}}=0.0375 /\left(0.5 \times 10^{-3}\right)=75 \mathrm{k}-\mathrm{ft}$
4. $\operatorname{dosi}=6+4-9=1$; i.e., assume R_{B} as the redundant

$\Delta_{1,0}=\int\left(\mathrm{m}_{0} \mathrm{~m}_{1} / \mathrm{EI}\right) \mathrm{dS}=2\{10 / 6(2 \times 37.5+50)(-5)\} /\left(40 \times 10^{3}\right)=-0.0521 \mathrm{ft}$
$\Delta_{1,1}=4.17 \times 10^{-3} \mathrm{ft} / \mathrm{k}$ (as in Problem 2)
$\therefore \mathrm{R}_{\mathrm{B}}=0.0521 /\left(4.17 \times 10^{-3}\right)=12.5 \mathrm{k}$

5. dosi $=9+5-12-1=1$; i.e., assume R_{C} as the redundant

$\Delta_{1,0}=\int\left(\mathrm{m}_{0} \mathrm{~m}_{1} / \mathrm{EI}\right) \mathrm{dS}=10 / 6(-50-2 \times 100)(10) /\left(40 \times 10^{3}\right)=-0.1042 \mathrm{ft}$
$\Delta_{1,1}=\int\left(\mathrm{m}_{1} \mathrm{~m}_{1} / \mathrm{EI}\right) \mathrm{dS}=10 / 3(10) \times(10) /\left(40 \times 10^{3}\right)=8.33 \times 10^{-3} \mathrm{ft} / \mathrm{k}$
$\therefore \mathrm{R}_{\mathrm{B}}=0.1042 /\left(8.33 \times 10^{-3}\right)=12.5 \mathrm{k}$

6. dosi $=6+5-9=2$; i.e., assume R_{B} and M_{C} as the redundants

$\Delta_{1,0}=-0.0521 \mathrm{ft}, \Delta_{1,1}=4.17 \times 10^{-3} \mathrm{ft} / \mathrm{k} \quad$ (as in Problem 4)
$\Delta_{2,0}=\int\left(\mathrm{m}_{0} \mathrm{~m}_{2} / \mathrm{EI}\right) \mathrm{dS}=20 / 6(2 \times 50+0)(1) /\left(40 \times 10^{3}\right)=8.33 \times 10^{-3} \mathrm{rad}$
$\Delta_{1,2}=\Delta_{2,1}=\int\left(\mathrm{m}_{1} \mathrm{~m}_{2} / \mathrm{EI}\right) \mathrm{dS}=\{10 / 3(-5)(0.5)+10 / 6(-5)(1+2 \times 0.5)\} /\left(40 \times 10^{3}\right)=-0.625 \times 10^{-3} \mathrm{rad} / \mathrm{k}$ $\Delta_{2,2}=\int\left(\mathrm{m}_{2} \mathrm{~m}_{2} / \mathrm{EI}\right) \mathrm{dS}=20 / 3(1)(1) /\left(40 \times 10^{3}\right)=0.167 \times 10^{-3} \mathrm{rad} / \mathrm{k}-\mathrm{ft}$
$\therefore 4.17 \mathrm{R}_{\mathrm{B}}-0.625 \mathrm{M}_{\mathrm{C}}=52.1 ; \quad$ and $\quad-0.625 \mathrm{R}_{\mathrm{B}}+0.167 \mathrm{M}_{\mathrm{C}}=-8.33$
$\Rightarrow \mathrm{R}_{\mathrm{B}}=11.43 \mathrm{k}, \mathrm{M}_{\mathrm{C}}=-7.14 \mathrm{k}-\mathrm{ft}$

7. dosi $=6+5-9=2$; i.e., assume R_{B} and R_{C} as the redundants

$\Delta_{1,0}=\int\left(\mathrm{m}_{0} \mathrm{~m}_{1} / \mathrm{EI}\right) \mathrm{dS}$
$=-\{5 / 3(50)(3.33)+5 / 2(50)(3.33+6.67)+15 / 2(50)(6.67+1.67)+5 / 3(50)(1.67)\} /\left(40 \times 10^{3}\right)=-119.8 \times 10^{-3} \mathrm{ft}$
$\Delta_{1,1}=\int\left(\mathrm{m}_{1} \mathrm{~m}_{1} / \mathrm{EI}\right) \mathrm{dS}=\{10 / 3(-6.67)(-6.67)+20 / 3(-6.67)(-6.67)\} /\left(40 \times 10^{3}\right)=11.11 \times 10^{-3} \mathrm{ft} / \mathrm{k}$
$\Delta_{1,2}=\Delta_{2,1}=\int\left(\mathrm{m}_{1} \mathrm{~m}_{2} / \mathrm{EI}\right) \mathrm{dS}=[10 / 3(-6.67)(-3.33)+10 / 6\{(-6.67)(-2 \times 3.33-6.67)$
$+(-3.33)(-2 \times 6.67-3.33)\}+10 / 3(-6.67)(-3.33)] /\left(40 \times 10^{3}\right)=9.72 \times 10^{-3} \mathrm{ft} / \mathrm{k}$
$\Delta_{2,0}=\Delta_{1,0}=-119.8 \times 10^{-3} \mathrm{ft}, \Delta_{2,2}=\Delta_{1,1}=11.11 \times 10^{-3} \mathrm{ft} / \mathrm{k}$
$\therefore \mathrm{R}_{\mathrm{B}}=\mathrm{R}_{\mathrm{C}}=5.75 \mathrm{k}$ (i.e., upward)

8. dosi $=6+5-9=2$; i.e., assume R_{B} and R_{C} as the redundants
m_{0} is zero here, but m_{1} and m_{2} are same as in Problem 7.
$\Delta_{1,0}=\int\left(\mathrm{m}_{0} \mathrm{~m}_{1} / \mathrm{EI}\right) \mathrm{dS}=0, \Delta_{2,0}=\int\left(\mathrm{m}_{0} \mathrm{~m}_{2} / \mathrm{EI}\right) \mathrm{dS}=0$
$\Delta_{1,1}=11.11 \times 10^{-3} \mathrm{ft} / \mathrm{k}, \Delta_{1,2}=\Delta_{2,1}=9.72 \times 10^{-3} \mathrm{ft} / \mathrm{k}, \Delta_{2,2}=\Delta_{1,1}=11.11 \times 10^{-3} \mathrm{ft} / \mathrm{k}$
$\therefore 11.11 \times 10^{-3} \mathrm{R}_{\mathrm{B}}+9.72 \times 10^{-3} \mathrm{R}_{\mathrm{C}}=-0.10$
$9.72 \times 10^{-3} \mathrm{R}_{\mathrm{B}}+11.11 \times 10^{-3} \mathrm{R}_{\mathrm{C}}=0 \Rightarrow \mathrm{R}_{\mathrm{B}}=-38.4 \mathrm{k}$ (i.e., downward), $\mathrm{R}_{\mathrm{C}}=33.6 \mathrm{k}$ (i.e., upward)

9. dosi $=6+4-9=1$; i.e., assume R_{C} as the redundant

$\Delta_{1,0}=\int\left(\mathrm{x}_{0} \mathrm{x}_{1} / E A\right) \mathrm{dS}+\int\left(\mathrm{v}_{0} \mathrm{v}_{1} / \mathrm{GA}^{*}\right) \mathrm{dS}+\int\left(\mathrm{m}_{0} \mathrm{~m}_{1} / \mathrm{EI}\right) \mathrm{dS}$
$=20(-10)(1) /\left(400 \times 10^{3}\right)+10(10)(-1) /\left(125 \times 10^{3}\right)$
$-\{10 / 6(100)(2 \times 20+10)+20 / 6(100+4 \times 150+300)(20)\} /\left(40 \times 10^{3}\right)=(-0.5-0.8-1875) \times 10^{-3}=-1.876 \mathrm{ft}$
$\Delta_{1,1}=\int\left(\mathrm{x}_{1} \mathrm{x}_{1} / \mathrm{EA}\right) \mathrm{dS}+\int\left(\mathrm{v}_{1} \mathrm{v}_{1} / \mathrm{GA}^{*}\right) \mathrm{dS}+\int\left(\mathrm{m}_{1} \mathrm{~m}_{1} / \mathrm{EI}\right) \mathrm{dS}=20(1)(1) /\left(400 \times 10^{3}\right)+20(-1)(-1) /\left(125 \times 10^{3}\right)+$ $\{20 / 3(20)(20)+20(20)(20)\} /\left(40 \times 10^{3}\right)=(0.05+0.16+266.67) \times 10^{-3}=0.2669 \mathrm{ft} / \mathrm{k}$ $\therefore \mathrm{R}_{\mathrm{B}}=1.876 /(0.2669)=7.03 \mathrm{k}$

10. dosi $=6+4-9=1$; i.e., assume R_{A} as the redundant

$$
\begin{aligned}
& \Delta_{1,0}=\int\left(\mathrm{x}_{0} \mathrm{x}_{1} / \mathrm{EA}\right) \mathrm{dS}+\int\left(\mathrm{v}_{0} \mathrm{v}_{1} / \mathrm{GA}^{*}\right) \mathrm{dS}+\int\left(\mathrm{m}_{0} \mathrm{~m}_{1} / \mathrm{EI}\right) \mathrm{dS} \\
& =20(-5)(2) /\left(400 \times 10^{3}\right)+5\{(5)(-1)+(-5)(-1)\} /\left(125 \times 10^{3}\right)+\{5 / 6(25)(2 \times 5+10)+5 / 3(25)(5)\} /\left(40 \times 10^{3}\right) \\
& =(-0.5+0+15.63) \times 10^{-3}=15.13 \times 10^{-3} \mathrm{ft} \\
& \Delta_{1,1}=\int\left(\mathrm{x}_{1} \mathrm{x}_{1} / \mathrm{EA}\right) \mathrm{dS}+\int\left(\mathrm{v}_{1} \mathrm{v}_{1} / \mathrm{GA}^{*}\right) \mathrm{dS}+\int\left(\mathrm{m}_{1} \mathrm{~m}_{1} / \mathrm{EI}\right) \mathrm{dS} \\
& =20(2)(2) /\left(400 \times 10^{3}\right)+\{10(1)(1)+10(-1)(-1)\} /\left(125 \times 10^{3}\right)+2\{10 / 3(10)(10)\} /\left(40 \times 10^{3}\right) \\
& =(0.2+0.16+16.67) \times 10^{-3}=17.03 \times 10^{-3} \mathrm{ft} / \mathrm{k} \\
& \therefore \mathrm{R}_{\mathrm{A}}=-15.13 \times 10^{-3} /\left(17.03 \times 10^{-3}\right)=-0.889 \mathrm{k}
\end{aligned}
$$

The Moment Distribution Method

Fixed End Reactions for One-dimensional Prismatic Members under Typical Loadings

End Rotation and Rotational Stiffness of Fixed Ended Prismatic Members

$$
\longmapsto \text { L }
$$

Using the Moment Area Theorems between A and B

$$
\begin{align*}
& 1^{\text {st }} \text { Theorem } \Rightarrow\left(M_{A} / E I+M_{B} / E I\right) \times L / 2=-\theta \\
& \Rightarrow \mathrm{M}_{\mathrm{A}}+\mathrm{M}_{\mathrm{B}}=-2 \mathrm{EI} \theta / \mathrm{L} \tag{1}\\
& 2^{\text {nd }} \text { Theorem } \Rightarrow M_{A} / E I \times L / 2 \times L / 3+M_{B} / E I \times L / 2 \times 2 L / 3=0 \Rightarrow\left(M_{A} / 6+M_{B} / 3\right) L^{2}=0 \\
& \Rightarrow M_{B}=-M_{A} / 2 \tag{2}\\
& \therefore(1) \Rightarrow \mathrm{M}_{\mathrm{A}} / 2=-2 \mathrm{EI} \theta / \mathrm{L} \Rightarrow \mathrm{M}_{\mathrm{A}}=-4 \mathrm{EI} \theta / \mathrm{L} \tag{3}\\
& \text { and }(2) \Rightarrow \mathrm{M}_{\mathrm{B}}=2 \mathrm{EI} \theta / \mathrm{L} \tag{4}
\end{align*}
$$

The term 4EI/L is called the rotational stiffness and the ratio $\left(-M_{B} / M_{A} \equiv\right) 0.5$ the carry over factor of the member AB.

Taking $\sum \mathrm{M}_{\mathrm{B}}=0$ and $\sum \mathrm{M}_{\mathrm{A}}=0, \mathrm{~V}_{\mathrm{A}}$ and V_{B} can be derived to be $6 \mathrm{EI} / \mathrm{L}^{2}$ and $-6 \mathrm{EI} / \mathrm{L}^{2}$.

Note that for anti-clockwise rotation θ, the moments M_{A} and M_{B} are both anti-clockwise but have different signs in the BMD.

End Deflection and Shear Stiffness of Fixed Ended Prismatic Members

Using the Moment Area Theorems between A and B
$1^{\text {st }}$ Theorem $\Rightarrow\left(\mathrm{M}_{\mathrm{A}} / E I+\mathrm{M}_{\mathrm{B}} / E I\right) \times \mathrm{L} / 2=0 \Rightarrow \mathrm{M}_{\mathrm{B}}=-\mathrm{M}_{\mathrm{A}}$
$2^{\text {nd }}$ Theorem $\Rightarrow M_{A} / E I \times L / 2 \times L / 3+M_{B} / E I \times L / 2 \times 2 L / 3=\Delta \Rightarrow M_{A}+2 M_{B}=6 E I \Delta / L^{2}$
$\therefore(1),(2) \Rightarrow-M_{A}=6 E I \Delta / L^{2} \Rightarrow M_{A}=-6 E I \Delta / L^{2}$
and $(2) \Rightarrow M_{B}=6 E I \Delta / L^{2}$
Taking $\sum \mathrm{M}_{\mathrm{B}}=0$ and $\sum \mathrm{M}_{\mathrm{A}}=0, \mathrm{~V}_{\mathrm{A}}$ and V_{B} can be derived to be $12 \mathrm{EI} \Delta / \mathrm{L}^{3}$ and $-12 \mathrm{EI} \Delta / \mathrm{L}^{3}$.
The term $12 \mathrm{EI} / \mathrm{L}^{3}$ is called the shear stiffness of the member AB .
Note that M_{A} and M_{B} are both anti-clockwise here but have different signs in the BMD.

Flexural members $\mathrm{OA}, \mathrm{OB}, \mathrm{OC} . \ldots .$. are joined at joint O and have rotational stiffnesses of $\mathrm{K}_{\mathrm{OA}}, \mathrm{K}_{\mathrm{OB}}$, $\mathrm{K}_{\mathrm{OC}} \ldots \ldots$. respectively; i.e., for unit rotation of the joint O they require moments $\mathrm{K}_{\mathrm{OA}}, \mathrm{K}_{\mathrm{OB}}, \mathrm{K}_{\mathrm{OC}} \ldots \ldots$.... respectively to be applied at O.

If a moment M_{O} applied at joint O causes it to rotate by an angle θ, the following moments are needed to rotate members $\mathrm{OA}, \mathrm{OB}, \mathrm{OC}$.

$$
\begin{align*}
& \mathrm{M}_{\mathrm{OA}}=\mathrm{K}_{\mathrm{OA}} \theta \tag{1}\\
& \mathrm{M}_{\mathrm{OB}}=\mathrm{K}_{\mathrm{OB}} \theta \tag{2}\\
& \mathrm{M}_{\mathrm{OC}}=\mathrm{K}_{\mathrm{OC}} \theta \tag{3}
\end{align*}
$$

Adding (1), (2), (3) $\ldots \Rightarrow \mathrm{M}_{\mathrm{OA}}+\mathrm{M}_{\mathrm{OB}}+\mathrm{M}_{\mathrm{OC}}+$ \qquad $=\mathrm{K}_{\mathrm{OA}} \theta+\mathrm{K}_{\mathrm{OB}} \theta+\mathrm{K}_{\mathrm{OC}} \theta+$ \qquad
Since $M_{O}=M_{O A}+M_{O B}+M_{O C}+$

$$
\begin{array}{rlr}
& \mathrm{M}_{\mathrm{O}}=\left(\mathrm{K}_{\mathrm{OA}}+\mathrm{K}_{\mathrm{OB}}+\mathrm{K}_{\mathrm{OC}}+\ldots . .\right) \theta=\mathrm{K}_{\mathrm{O}} \theta & {\left[\mathrm{~K}_{\mathrm{O}}=\mathrm{K}_{\mathrm{OA}}+\mathrm{K}_{\mathrm{OB}}+\mathrm{K}_{\mathrm{OC}}+\ldots \ldots\right]} \tag{4}\\
\Rightarrow & \ldots \ldots \ldots .(5) \\
\therefore(1) \Rightarrow & \theta \mathrm{M}_{\mathrm{OA}}=\left[\mathrm{K}_{\mathrm{OA}} / \mathrm{K}_{\mathrm{O}}\right] \mathrm{M}_{\mathrm{O}} & \ldots \ldots \ldots . .(6) \\
(2) \Rightarrow & \mathrm{M}_{\mathrm{OB}}=\left[\mathrm{K}_{\mathrm{OB}} / \mathrm{K}_{\mathrm{O}}\right] \mathrm{M}_{\mathrm{O}} & \ldots \ldots \ldots . .(7) \\
(3) \Rightarrow M_{\mathrm{OC}}=\left[\mathrm{K}_{\mathrm{OC}} / \mathrm{K}_{\mathrm{O}}\right] \mathrm{M}_{\mathrm{O}} & \ldots \ldots \ldots .(8)
\end{array}
$$

The factors $\left[\mathrm{K}_{\mathrm{OA}} / \mathrm{K}_{\mathrm{O}}\right],\left[\mathrm{K}_{\mathrm{OB}} / \mathrm{K}_{\mathrm{O}}\right]$, $\left[\mathrm{K}_{\mathrm{OC}} / \mathrm{K}_{\mathrm{O}}\right]$. \qquad are the moment distribution factors (MDF) of members $\mathrm{OA}, \mathrm{OB}, \mathrm{OC} \ldots . . .$. respectively. Therefore the distributed moments in members are proportional to their respective MDFs.

Example

Problems on Moment Distribution

Assume EI $=$ constant $=40 \times 10^{3} \mathrm{k}-\mathrm{ft}^{2}$
Beams
1.
$1 \mathrm{k} /^{\prime} \quad$ Support A settles 0.05^{\prime}

2.

A and B are guided roller supports $E I_{A B}=2 \mathrm{EI}$
4.

5.

Frames

6.

8.

10.

1.

2.

3.

4.

Qualitative Influence Lines and Maximum Forces

1. For the beam shown below, draw the influence lines of $R_{A}, R_{B}, V_{B}{ }^{(L)}, V_{B}{ }^{(R)}, M_{A}, M_{B}$.

2. For the beam shown below, $\mathrm{DL}=1 \mathrm{k} /^{\prime}$, moving $\mathrm{LL}=0.5 \mathrm{k} /{ }^{\prime}$ (UDL), 5 k (concentrated).

Calculate the maximum values of $\mathrm{R}_{\mathrm{A}}, \mathrm{R}_{\mathrm{B}}, \mathrm{M}_{\mathrm{E}}, \mathrm{M}_{\mathrm{B}}$ and M_{F} [Each span is 10^{\prime} long].

Final end moments $\left\lvert\, \begin{array}{ll}0 & -16.25\end{array} 16.25\right.$
$\therefore \mathrm{M}_{\mathrm{F}(\max)}=-16.25+1.5 \times 10^{2} / 8+5 \times 10 / 4=15 \mathrm{k}^{\prime}$
3. For the beam shown below, draw the qualitative influence lines for
(i) Bending moments $M_{C}, M_{D}, M_{E}, M_{F}$
(ii) Support reactions $R_{B}, R_{D}, R_{E}, R_{F}$
(iii) Shear forces $V_{B}{ }^{(R)}, V_{D}{ }^{(L)}, V_{D}{ }^{(R)}, V_{E}{ }^{(L)}, V_{E}^{(R)}, V_{F}$

If the beam is subjected to a uniformly distributed $\mathrm{DL}=1.5 \mathrm{k} / \mathrm{ft}$ and moving $\mathrm{LL}=0.5 \mathrm{k} / \mathrm{ft}$ (uniformly distributed) and 5 k (concentrated), calculate the maximum values of
(i) positive M_{C}, (ii) positive R_{D} and (iii) positive $\mathrm{V}_{\mathrm{E}}{ }^{(R)}$ [Given: $\mathrm{EI}=$ constant].

IL of M_{C}

IL of R_{D}

IL of R_{F}

IL of $V_{E}{ }^{(\mathrm{R})}$

IL of $V_{D}{ }^{(L)}$
(i) Maximum positive value of M_{C} :

\therefore Maximum value of M_{C}
$=-18.75+2 \times 10^{2} / 8+5 \times 10 / 4=18.75 \mathrm{k}^{\prime}$
(ii) Maximum positive value of R_{D} :

$\mathrm{V}_{\mathrm{D}}{ }^{(\mathrm{L})}=-2 \times 10 / 2+(18.75-16.58) / 10=-9.78 \mathrm{k}$
$\mathrm{V}_{\mathrm{D}}{ }^{(\mathrm{R})}=2 \times 10 / 2+(16.58-14.88) / 10=10.17 \mathrm{k}$
\therefore Maximum $\mathrm{R}_{\mathrm{D}}=\mathrm{V}_{\mathrm{D}}{ }^{(\mathrm{R})}-\mathrm{V}_{\mathrm{D}}{ }^{(\mathrm{L})}+5=24.95 \mathrm{k}$

Quantitative Influence Lines for Indeterminate Structures

$$
\mathrm{EI}=\text { Constant = } 1 \text { (assume) }
$$

From Moment-Curvature Relationship, EI d ${ }^{2} v / \mathrm{dx}^{2}=M(x)=R_{A} x$
\therefore In this case, $\mathrm{d}^{2} \mathrm{v} / \mathrm{dx}^{2}=\mathrm{M}(\mathrm{x})=\mathrm{R}_{\mathrm{A}} \mathrm{x}$
$\Rightarrow \mathrm{dv} / \mathrm{dx}=\theta(\mathrm{x})=\mathrm{R}_{\mathrm{A}} \mathrm{x}^{2} / 2+\mathrm{C}_{1}$
$\Rightarrow \mathrm{v}(\mathrm{x})=\mathrm{R}_{\mathrm{A}} \mathrm{x}^{3} / 6+\mathrm{C}_{1} \mathrm{x}+\mathrm{C}_{2}$

There are three unknowns in these equations; i.e., $\mathrm{R}_{\mathrm{A}}, \mathrm{C}_{1}$ and C_{2}
For the given beam, there are three known boundary conditions from which these three unknowns can be calculated.

The boundary conditions are, $\mathrm{v}(0)=1, \mathrm{v}(\mathrm{L})=0$ and $\theta(\mathrm{L})=0$
Using $\mathrm{v}(0)=1$ in (3) $\Rightarrow 1=0+0+\mathrm{C}_{2} \Rightarrow \mathrm{C}_{2}=1$
\therefore Using $v(L)=0$ in (3) $\Rightarrow 0=\mathrm{R}_{\mathrm{A}} \mathrm{L}^{3} / 6+\mathrm{C}_{1} \mathrm{~L}+1 \Rightarrow \mathrm{R}_{\mathrm{A}} \mathrm{L}^{3} / 6+\mathrm{C}_{1} \mathrm{~L}=-1$
\therefore Using $\theta(\mathrm{L})=0$ in (2) $\Rightarrow 0=\mathrm{R}_{\mathrm{A}} \mathrm{L}^{2} / 2+\mathrm{C}_{1} \Rightarrow \mathrm{R}_{\mathrm{A}} \mathrm{L}^{2} / 2+\mathrm{C}_{1}=0$
Solving (6) and (7), $\mathrm{R}_{\mathrm{A}}=3 / \mathrm{L}^{3}$ and $\mathrm{C}_{1}=-3 / 2 \mathrm{~L}$
$\therefore \mathrm{v}(\mathrm{x})=(\mathrm{x} / \mathrm{L})^{3} / 2-3(\mathrm{x} / \mathrm{L}) / 2+1$

Fig. 1: Influence Lines for Reactions

Once the equation of IL for R_{A} is determined, the equations of IL for shear force and bending moment at any section can also be derived.

Short Questions and Explanations

Flexibility Method for 2D Trusses vs. 2D Frames

1. Unknowns: Forces only vs. Forces + Moments
2. No. of Unknowns: dosi $=\mathrm{m}+\mathrm{r}-2 \mathrm{j}$ vs. dosi $=3 \mathrm{~m}+\mathrm{r}-3 \mathrm{j}$
3. Member Properties: E, A vs. E, G, A, A*, I
4. Deformations considered: Axial vs. Axial, Shear, Flexural
5. Forces Calculated: Member Axial Forces vs. Member Axial, Shear Forces, BM's
6. Structural Displacements: Deflections vs. Deflections + Rotations

Also learn

- Lateral Load Analysis by Portal vs. Cantilever Method
- Vertical Load Analysis by ACI Coefficients vs. Approximate Hinge locations
- Difference between approximate Methods for Truss Analysis
- Flexibility Method vs. Moment Distribution Method

Briefly explain why

- it is often useful to perform approximate analysis of statically indeterminate structures
- dosi of 3D truss $=\mathrm{m}+\mathrm{r}-3 \mathrm{j}$ and dosi of 3 D frame $=6 \mathrm{~m}+\mathrm{r}-6 \mathrm{j}-\mathrm{h}$
- axial deformations are sometimes neglected for structural analysis of beams/frames but not trusses
- support settlement is to be considered/avoided in designing statically indeterminate structures
- unit load method is often used in the structural analysis by Flexibility Method
- a guided roller can be used in modeling one-half of a symmetric structure
- the terms moment distribution factor and carry over factor in the Moment Distribution Method
- the influence lines of statically determinate structures are straight while the influence lines of statically indeterminate structures are curved

Comment on

- two basic characteristics of the Flexibility Matrix of a structure
- the main advantage and limitation of the Moment Distribution Method
- advantage of using modified stiffness in the Moment Distribution Method
- the applicability of 'qualitative' and 'quantitative' influence lines

Non-coplanar Forces and Analysis of Space Truss

Non-coplanar Force

A vector in space may be defined or located by any three mutually perpendicular reference axes Ox, Oy and Oz (Fig. 1). This vector may be resolved into three components parallel to the three reference axes.

If the force OC (of magnitude F) makes angles α, β and γ with the three reference axes Ox, Oy and Oz , then the components of the force along these axes are given by

$$
\begin{align*}
& \mathrm{F}_{\mathrm{x}}=\mathrm{F} \cos \alpha \tag{i}\\
& \mathrm{~F}_{\mathrm{y}}=\mathrm{F} \cos \beta \tag{ii}\\
& \mathrm{~F}_{\mathrm{z}}=\mathrm{F} \cos \gamma \tag{iii}\\
& \left.\therefore\left[(\mathrm{i})^{2}+(\mathrm{ii})^{2}+(\mathrm{iii})^{2}\right] \Rightarrow \mathrm{F}=\sqrt{\left[\mathrm{F}_{\mathrm{x}}\right.}{ }^{2}+\mathrm{F}_{\mathrm{y}}{ }^{2}+\mathrm{F}_{\mathrm{z}}{ }^{2}\right] \ldots \ldots \ldots \ldots \text { (iv) } \\
& \therefore \text { (i) } \Rightarrow \cos \alpha=\mathrm{F}_{\mathrm{x}} / \sqrt{ }\left[\mathrm{F}_{\mathrm{x}}{ }^{2}+\mathrm{F}_{\mathrm{y}}{ }^{2}+\mathrm{F}_{\mathrm{z}}{ }^{2}\right] \\
& \text { (ii) } \Rightarrow \cos \beta=\mathrm{F}_{\mathrm{y}} / \sqrt{ }\left[\mathrm{F}_{\mathrm{x}}{ }^{2}+\mathrm{F}_{\mathrm{y}}{ }^{2}+\mathrm{F}_{\mathrm{z}}{ }^{2}\right] \tag{vi}\\
& \text { (iii) } \Rightarrow \cos \gamma=\mathrm{F}_{\mathrm{z}} / \sqrt{ }\left[\mathrm{F}_{\mathrm{x}}{ }^{2}+\mathrm{F}_{\mathrm{y}}{ }^{2}+\mathrm{F}_{\mathrm{z}}{ }^{2}\right] \\
& \therefore\left[(\mathrm{i})^{2}+(\mathrm{ii})^{2}+(\mathrm{iii})^{2}\right] \Rightarrow \mathrm{F}=\sqrt{ }\left[\mathrm{F}_{\mathrm{x}}{ }^{2}+\mathrm{F}_{\mathrm{y}}{ }^{2}+\mathrm{F}_{\mathrm{z}}{ }^{2}\right] \ldots \ldots \ldots \ldots . . \text { (iv) } \\
& \therefore \text { (i) } \Rightarrow \cos \alpha=\mathrm{F}_{\mathrm{x}} / \sqrt{ }\left[\mathrm{F}_{\mathrm{x}}^{2}+\mathrm{F}_{\mathrm{y}}^{2}+\mathrm{F}_{\mathrm{z}}^{2}\right] \quad \ldots \ldots \ldots \ldots \ldots \ldots \text {.(v) } \\
& \text { (iii) } \Rightarrow \cos \gamma=\mathrm{F}_{\mathrm{z}} / \sqrt{ }\left[\mathrm{F}_{\mathrm{x}}{ }^{2}+\mathrm{F}_{\mathrm{y}}{ }^{2}+\mathrm{F}_{\mathrm{z}}{ }^{2}\right]
\end{align*}
$$

The values of $\cos \alpha, \cos \beta$ and $\cos \gamma$ given by Eqs. (v), (vi) and (vii) are called the direction cosines of the vector F .

Fig. 1: Non-coplanar Force and Components

Space Truss

Although simplified two-dimensional structural models are quite common, all civil engineering structures are actually three-dimensional. Among them, electric towers, offshore rigs, rooftops of large open spaces like industries or auditoriums are common examples of three-dimensional or space truss. The members of a space truss are non-coplanar and therefore their axial forces can be modeled as non-coplanar forces.

Since there is only one force per member and three equilibrium equations per joint of a space truss, the degree of statical indeterminacy (dosi) of such a structure is given by

$$
\begin{equation*}
\operatorname{dosi}=m+r-3 j \tag{viii}
\end{equation*}
$$

The three equilibrium equations per joint of a space truss are related to forces in the three perpendicular axes x, y and z

$$
\begin{equation*}
\sum \mathrm{F}_{\mathrm{x}}=0, \quad \sum \mathrm{~F}_{\mathrm{y}}=0 \quad \text { and } \quad \sum \mathrm{F}_{\mathrm{z}}=0 \tag{ix}
\end{equation*}
$$

However the other three equilibrium equations related to moments; i.e.,

$$
\begin{equation*}
\sum \mathrm{M}_{\mathrm{x}}=0, \quad \sum \mathrm{M}_{\mathrm{y}}=0 \quad \text { and } \quad \sum \mathrm{M}_{\mathrm{z}}=0 \tag{x}
\end{equation*}
$$

may also be needed to calculate the support reactions of the truss. Here, it is pertinent to mention that the moment of a force about an axis is zero if the force is parallel to the axis (when it does not produce any rotational tendency about that axis) or intersects it (when the perpendicular distance from the axis is zero).

Example: Calculate the support reactions and member forces of the truss shown below.

Ignoring the zero force member CD
$\operatorname{dosi}=m+r-3 j=8+7-3 \times 5=0$
\therefore The structure is statically determinate.

Member	L_{x}	L_{y}	L_{z}	C_{x}	C_{y}	C_{z}
AB	30	0	0	1.00	0.00	0.00
BC	0	0	-20	0.00	0.00	-1.00
BD	-30	0	-20	-0.83	0.00	-0.56
AD	0	0	-20	0.00	0.00	-1.00
AE	15	25	-10	0.49	0.81	-0.32
BE	-15	25	-10	-0.49	0.81	-0.32
CE	-15	25	10	-0.49	0.81	0.32
DE	15	25	10	0.49	0.81	0.32

$$
\begin{align*}
& \sum \mathrm{M}_{\mathrm{CD}}=0 \Rightarrow \mathrm{Y}_{\mathrm{A}} \times 20-10 \times 20=0 \Rightarrow \mathrm{Y}_{\mathrm{A}}=10 \mathrm{k} \tag{1}\\
& \sum \mathrm{M}_{\mathrm{BC}}=0 \Rightarrow \mathrm{Y}_{\mathrm{A}} \times 30+\mathrm{Y}_{\mathrm{D}} \times 30+20 \times 25=0 \Rightarrow \mathrm{Y}_{\mathrm{D}}=-26.67 \mathrm{k} \tag{2}\\
& \sum \mathrm{M}_{\mathrm{y}(\mathrm{D})}=0 \Rightarrow-20 \times 10+\mathrm{Z}_{\mathrm{C}} \times 30=0 \Rightarrow \mathrm{Z}_{\mathrm{C}}=6.67 \mathrm{k} \tag{3}\\
& \sum \mathrm{~F}_{\mathrm{y}}=0 \Rightarrow \mathrm{Y}_{\mathrm{A}}+\mathrm{Y}_{\mathrm{C}}+\mathrm{Y}_{\mathrm{D}}-10=0 \Rightarrow \mathrm{Y}_{\mathrm{C}}=26.67 \mathrm{k} \tag{4}\\
& \sum \mathrm{~F}_{\mathrm{x}}=0 \Rightarrow \mathrm{X}_{\mathrm{D}}+\mathrm{X}_{\mathrm{C}}+20=0 \tag{5}\\
& \sum \mathrm{~F}_{\mathrm{z}}=0 \Rightarrow \mathrm{Z}_{\mathrm{D}}+\mathrm{Z}_{\mathrm{C}}=0 \\
& \quad \Rightarrow \mathrm{Z}_{\mathrm{D}}=-\mathrm{Z}_{\mathrm{C}}=-6.67 \mathrm{k}[\text { using }(3)] \tag{6}
\end{align*}
$$

Equilibrium of Joint A (unknowns $\mathrm{F}_{\mathrm{AB}}, \mathrm{F}_{\mathrm{AD}}$ and F_{AE}):
$\sum \mathrm{F}_{\mathrm{x}}=0 \Rightarrow \mathrm{~F}_{\mathrm{AB}}+0.49 \mathrm{~F}_{\mathrm{AE}}=0$
$\sum \mathrm{F}_{\mathrm{y}}=0 \Rightarrow 0.81 \mathrm{~F}_{\mathrm{AE}}+10=0 \Rightarrow \mathrm{~F}_{\mathrm{AE}}=-12.33 \mathrm{k}$
$\Rightarrow \mathrm{F}_{\mathrm{AB}}=-0.49 \mathrm{~F}_{\mathrm{AE}}=6.00 \mathrm{k}[\operatorname{using}(7)]$
$\sum \mathrm{F}_{\mathrm{z}}=0 \Rightarrow-\mathrm{F}_{\mathrm{AD}}-0.32 \mathrm{~F}_{\mathrm{AE}}=0 \Rightarrow \mathrm{~F}_{\mathrm{AD}}=4.00 \mathrm{k}[\operatorname{using}(8)]$
Equilibrium of Joint B (unknowns $\mathrm{F}_{\mathrm{BC}}, \mathrm{F}_{\mathrm{BD}}$ and F_{BE}):
$\sum \mathrm{F}_{\mathrm{x}}=0 \Rightarrow-\mathrm{F}_{\mathrm{BA}}-0.83 \mathrm{~F}_{\mathrm{BD}}-0.49 \mathrm{~F}_{\mathrm{BE}}=0$
$\sum \mathrm{F}_{\mathrm{y}}=0 \Rightarrow 0.81 \mathrm{~F}_{\mathrm{BE}}-10=0 \Rightarrow \mathrm{~F}_{\mathrm{BE}}=12.33 \mathrm{k}$
$\Rightarrow \mathrm{F}_{\mathrm{BD}}=\left(-\mathrm{F}_{\mathrm{BA}}-0.49 \mathrm{~F}_{\mathrm{BE}}\right) / 0.83=-14.42 \mathrm{k}$ [using (11)]
$\sum \mathrm{F}_{\mathrm{z}}=0 \Rightarrow-\mathrm{F}_{\mathrm{BC}}-0.56 \mathrm{~F}_{\mathrm{BD}}-0.32 \mathrm{~F}_{\mathrm{BE}}=0 \Rightarrow \mathrm{~F}_{\mathrm{BC}}=4.00 \mathrm{k}$ [using (12), (13)]
Equilibrium of Joint C (unknowns X_{C} and F_{CE}):
$\sum \mathrm{F}_{\mathrm{x}}=0 \Rightarrow \mathrm{X}_{\mathrm{C}}-0.49 \mathrm{~F}_{\mathrm{CE}}=0$
$\sum \mathrm{F}_{\mathrm{y}}=0 \Rightarrow 26.67+0.81 \mathrm{~F}_{\mathrm{CE}}=0 \Rightarrow \mathrm{~F}_{\mathrm{CE}}=-32.88 \mathrm{k}$
$\Rightarrow \mathrm{X}_{\mathrm{C}}=0.49 \mathrm{~F}_{\mathrm{CE}}=-16 \mathrm{k}$ [using (16)]
$\sum \mathrm{F}_{\mathrm{z}}=0 \Rightarrow 6.67+0.32 \mathrm{~F}_{\mathrm{CE}}+\mathrm{F}_{\mathrm{CB}}=0 \Rightarrow \mathrm{~F}_{\mathrm{CB}}=4.00 \mathrm{k}$ [verified]
Equilibrium of Joint D (unknowns X_{D} and F_{DE}):
$\sum \mathrm{F}_{\mathrm{x}}=0 \Rightarrow \mathrm{X}_{\mathrm{D}}+0.49 \mathrm{~F}_{\mathrm{DE}}+0.83 \mathrm{~F}_{\mathrm{DB}}=0$
$\sum \mathrm{F}_{\mathrm{y}}=0 \Rightarrow-26.67+0.81 \mathrm{~F}_{\mathrm{DE}}=0 \Rightarrow \mathrm{~F}_{\mathrm{DE}}=32.88 \mathrm{k}$
$\Rightarrow X_{D}=-4.00$ [using (13), (19)]
$\Rightarrow X_{C}=-20-X_{D}=-16.00[$ using (5)]
$\Sigma \mathrm{F}_{\mathrm{z}}=0 \Rightarrow-6.67+0.32 \mathrm{~F}_{\mathrm{DE}}+\mathrm{F}_{\mathrm{DA}}+0.56 \mathrm{~F}_{\mathrm{DB}}=0 \Rightarrow-6.67+10.67+4.00-8.00=0$
$\Rightarrow 0=0$ [verified]

Problems on the Analysis of Space Trusses

1. Calculate the member forces of the space truss loaded as shown below.

2. Calculate the horizontal (along x axis) deflection of joint E and vertical (along y axis) deflection of joint B of the space truss analyzed in class [Given: EA/L = constant $=500 \mathrm{k} / \mathrm{ft}$].
3. Calculate the support reactions and member forces of the space truss loaded as shown below. Also calculate the vertical (along y axis) deflection of the joint d [Given: EA/L $=$ constant $=500 \mathrm{k} / \mathrm{ft}]$.

\top
5^{\prime}

+

5^{\prime}
\perp
4. Calculate the support reactions, member forces and also the horizontal (along x axis) deflection of the joint a of the space truss loaded as shown below [Given: EA/L $=$ constant $=500 \mathrm{k} / \mathrm{ft}$].

Deflection of Grids due to Combined Flexural and Torsional Deformations

Grids are 2-dimensional (coplanar) structures with one deflection and two rotations at each node.
If the structure is in the $\mathrm{x}-\mathrm{z}$ plane, the deflection is out-of-plane (along the y axis) while the rotations are about two in-plane axes (x and z axis). Grids are loaded perpendicular to the structural plane and have three forces per member; i.e., shear force, bending moment and torsion.

Example

Calculate $\Delta_{\mathrm{A}, \mathrm{v}}$ and $\Delta_{\mathrm{C}, \mathrm{v}}$ if
$\mathrm{EI}=40 \times 10^{3} \mathrm{k}-\mathrm{ft}^{2}$
$\mathrm{GJ}=30 \times 10^{3} \mathrm{k}-\mathrm{ft}^{2}$

$$
\begin{aligned}
\Delta_{\mathrm{A}, \mathrm{v}} & =\int\left(\mathrm{m}_{1} \mathrm{~m}_{0} / \mathrm{EI}\right) \mathrm{dS}+\int\left(\mathrm{t}_{1} \mathrm{t}_{0} / \mathrm{GJ}\right) \mathrm{dS} \\
& =\{[5 \times 5 \times(-50) / 3]+5 \times[5 \times(-250)+10 \times(-350)] / 6\} /\left(40 \times 10^{3}\right)+\{10 \times(-5) \times(-50)\} /\left(30 \times 10^{3}\right) \\
& =-109.38 \times 10^{-3}+83.33 \times 10^{-3}=-26.05 \times 10^{-3} \mathrm{ft}
\end{aligned}
$$

$$
\begin{aligned}
\Delta_{\mathrm{C}, \mathrm{v}} & =\{[5 \times 5 \times(-50) / 3]+[5 \times 5 \times(-50) / 3]+5 \times[5 \times(-250)+10 \times(-350)] / 6\} /\left(40 \times 10^{3}\right)+\{10 \times(5) \times(-50)\} /\left(30 \times 10^{3}\right) \\
& =-120.80 \times 10^{-3}-83.33 \times 10^{-3}=-204.13 \times 10^{-3} \mathrm{ft}
\end{aligned}
$$

Assume $\mathrm{EI}=40 \times 10^{3} \mathrm{k}-\mathrm{ft}^{2}, \mathrm{GJ}=30 \times 10^{3} \mathrm{k}-\mathrm{ft}^{2}$
1.

	$5^{\prime}-1$

2.

4.

Deflection of Grids using Method of Virtual Work

1.

$\mathrm{m}_{0}(\mathrm{k}-\mathrm{ft})$

$\Delta_{\mathrm{D}}=[(-50)(5) 5 / 3+\{2(-62.5)+(-150)\}(10)(10) / 6] /\left(40 \times 10^{3}\right)+[(-50)(5) 10] /\left(30 \times 10^{3}\right)$ $=-0.125-0.0833=-0.2083 \mathrm{ft}$
2.

For $\Delta_{\underline{E}}$
$\Delta_{\mathrm{E}}=[(-50)(5) 5 / 3+(-50)(5) 5 / 3+\{(-50)(25)+(-250)(35)\}(10) / 6] /\left(40 \times 10^{3}\right)+[(50)(-5) 5] /\left(30 \times 10^{3}\right)$ $=-0.4375-0.0417=-0.4792 \mathrm{ft}$

$$
\begin{aligned}
\Delta_{\mathrm{D}} & =[(-100)(10) 10 / 3+(-50)(5) 5 / 3+\{(-50)(20)+(-150)(25)\}(5) / 6] /\left(40 \times 10^{3}\right)+ \\
& {[(100+150)(-10) 5] /\left(30 \times 10^{3}\right) } \\
= & -0.1927-0.4167=-0.6094 \mathrm{ft}
\end{aligned}
$$

For Δ_{C}

$$
\begin{aligned}
\Delta_{\mathrm{D}} & =[(12.5)(-2.5) 5 / 3 \times 2] /\left(40 \times 10^{3}\right) \\
& =-26.04 \times 10^{-3} \mathrm{ft}
\end{aligned}
$$

Grids are 2-dimensional (coplanar) structures with one deflection and two rotations at each node.
If the structure is in the $x-z$ plane, the deflection is out-of-plane (along the y axis) while the rotations are about two in-plane axes (x and z axis).
Grids are loaded perpendicular to the structural plane and have three forces per member; i.e., shear force, bending moment and torsion.

Example

$\Delta_{1,0}=\int\left(\mathrm{m}_{1} \mathrm{~m}_{0} / \mathrm{EI}\right) \mathrm{dS}+\int\left(\mathrm{t}_{1} \mathrm{t}_{0} / \mathrm{GJ}\right) \mathrm{dS}$

$$
=\{[5 \times 5 \times(-50) / 3]+5 \times[5 \times(-250)+10 \times(-350)] / 6\} /\left(40 \times 10^{3}\right)+\{10 \times(-5) \times(-50)\} /\left(30 \times 10^{3}\right)
$$

$$
=-109.38 \times 10^{-3}+83.33 \times 10^{-3}=-26.05 \times 10^{-3} \mathrm{ft}
$$

$\Delta_{1,1}=\int\left(\mathrm{m}_{1} \mathrm{~m}_{1} / E I\right) \mathrm{dS}+\int\left(\mathrm{t}_{1} \mathrm{t}_{1} / \mathrm{GJ}\right) \mathrm{dS}$
$=\{5 \times(5 \times 5) / 3+10 \times(10 \times 10) / 3\} /\left(40 \times 10^{3}\right)+\{10 \times(-5) \times(-5)\} /\left(30 \times 10^{3}\right)$
$=9.38 \times 10^{-3}+8.33 \times 10^{-3}=17.71 \times 10^{-3} \mathrm{ft} / \mathrm{k}$
$\therefore \mathrm{V}_{\mathrm{A}}=26.05 \times 10^{-3} / 17.71 \times 10^{-3}=1.47 \mathrm{k}$
1.

Assume (for all members)

$$
\begin{aligned}
& \mathrm{EI}=40 \times 10^{3} \mathrm{k}-\mathrm{ft}^{2} \\
& \mathrm{GJ}=30 \times 10^{3} \mathrm{k}-\mathrm{ft}^{2} \\
& \text { dosi }=3 \times 3+5-3 \times 4=2
\end{aligned}
$$

It will be convenient to take Y_{A} and Y_{C} as the 2 redundants

Case $0\left(Y_{A}=0, Y_{C}=0\right)$

Case $1\left(\mathrm{Y}_{\mathrm{A}}=1, \mathrm{Y}_{\mathrm{C}}=0\right)$

Case $2\left(Y_{A}=0, Y_{C}=1\right)$

$\mathrm{m}_{0}\left(\mathrm{k}^{\prime}\right)$

$\mathrm{m}_{1}\left({ }^{\prime}\right)$

$t_{2}\left({ }^{\prime}\right)$
$\Delta_{1,0}=\int\left(\mathrm{m}_{1} \mathrm{~m}_{0} / \mathrm{EI}\right) \mathrm{dS}+\int\left(\mathrm{t}_{1} \mathrm{t}_{0} / \mathrm{GJ}\right) \mathrm{dS}=\{5 \times(-50)(20+5) / 6\} /\left(40 \times 10^{3}\right)+0=-26.04 \times 10^{-3} \mathrm{ft}=\Delta_{2,0}$
$\Delta_{1,1}=\int\left(\mathrm{m}_{1}{ }^{2} / \mathrm{EI}\right) \mathrm{dS}+\int\left(\mathrm{t}_{1}{ }^{2} / \mathrm{GJ}\right) \mathrm{dS}=\{5 \times(5 \times 5) / 3+10 \times(10 \times 10) / 3\} /\left(40 \times 10^{3}\right)+\left\{10 \times(-5)^{2}\right\} /\left(30 \times 10^{3}\right)$

$$
=9.38 \times 10^{-3}+8.33 \times 10^{-3}=17.71 \times 10^{-3} \mathrm{ft} / \mathrm{k}=\Delta_{2,2}
$$

$\Delta_{1,2}=\Delta_{2,1}=\int\left(\mathrm{m}_{1} \mathrm{~m}_{2} / \mathrm{EI}\right) \mathrm{dS}+\int\left(\mathrm{t}_{1} \mathrm{t}_{2} / \mathrm{GJ}\right) \mathrm{dS}=\{10 \times(10 \times 10) / 3\} /\left(40 \times 10^{3}\right)-8.33 \times 10^{-3}=0$
$\therefore \mathrm{Y}_{\mathrm{A}}=\mathrm{Y}_{\mathrm{C}}=26.04 \times 10^{-3} / 17.71 \times 10^{-3}=1.47 \mathrm{k}$
$\Rightarrow Y_{\mathrm{E}}=10-\mathrm{Y}_{\mathrm{A}}-\mathrm{Y}_{\mathrm{C}}=7.06 \mathrm{k}$
2.

This problem is very similar to Problem 1 , the main difference being m_{0} shown above.
$\Delta_{1,0}=\int\left(\mathrm{m}_{1} \mathrm{~m}_{0} / E I\right) \mathrm{dS}+\int\left(\mathrm{t}_{1} \mathrm{t}_{0} / \mathrm{GJ}\right) \mathrm{dS}$
$=\{10 \times(0 \times 0-4 \times 12.5 \times 5-50 \times 10) / 6\} /\left(40 \times 10^{3}\right)+0=-31.25 \times 10^{-3} \mathrm{ft}=\Delta_{2,0}$
$\Delta_{1,1}, \Delta_{1,2}, \Delta_{2,1}, \Delta_{2,2}$ remaining the same, $\mathrm{Y}_{\mathrm{A}}=\mathrm{Y}_{\mathrm{C}}=31.25 \times 10^{-3} / 17.71 \times 10^{-3}=1.76 \mathrm{k}$
$\Rightarrow \mathrm{Y}_{\mathrm{D}}=10-\mathrm{Y}_{\mathrm{A}}-\mathrm{Y}_{\mathrm{C}}=6.48 \mathrm{k}$
3.

Here, $\Delta_{1,0}=\int\left(\mathrm{m}_{1} \mathrm{~m}_{0} / \mathrm{EI}\right) \mathrm{dS}+\int\left(\mathrm{t}_{1} \mathrm{t}_{0} / \mathrm{GJ}\right) \mathrm{dS}$
$=\{10 \times(-100 \times 10) / 3\} /\left(40 \times 10^{3}\right)+0=-83.33 \times 10^{-3} \mathrm{ft}=\Delta_{2,0}$
$\Delta_{1,1}, \Delta_{1,2}, \Delta_{2,1}, \Delta_{2,2}$ remaining the same, $\mathrm{Y}_{\mathrm{A}}=\mathrm{Y}_{\mathrm{C}}=83.33 \times 10^{-3} / 17.71 \times 10^{-3}=4.71 \mathrm{k} \Rightarrow \mathrm{Y}_{\mathrm{D}}=0.58 \mathrm{k}$
4.

Case $0\left(Y_{A}=0\right)$
$\mathrm{m}_{1}\left(\mathrm{k}^{\prime}\right)$

Case $1\left(\mathrm{Y}_{\mathrm{A}}=1\right)$

$\mathrm{m}_{0}\left(\mathrm{k}^{\prime}\right)$

$\mathrm{t}_{0}\left(\mathrm{k}^{\prime}\right)$

$\mathrm{t}_{1}\left(\mathrm{k}^{\prime}\right)$

Here, $\Delta_{1,0}=\int\left(\mathrm{m}_{1} \mathrm{~m}_{0} / \mathrm{EI}\right) \mathrm{dS}+\int\left(\mathrm{t}_{1} \mathrm{t}_{0} / \mathrm{GJ}\right) \mathrm{dS}=2 \times\{8 \times 40 \times(-8) / 3\} /\left(40 \times 10^{3}\right)+0=-42.67 \times 10^{-3} \mathrm{ft}$
$\Delta_{1,1}=\int\left(\mathrm{m}_{1}^{2} / \mathrm{EI}\right) \mathrm{dS}+\int\left(\mathrm{t}_{1}^{2} / \mathrm{GJ}\right) \mathrm{dS}=2 \times\left\{5 \times(5)^{2} / 3+8 \times(-8)^{2} / 3\right\} /\left(40 \times 10^{3}\right)+0=10.62 \times 10^{-3} \mathrm{ft}$
$\therefore \mathrm{Y}_{\mathrm{A}}=42.67 \times 10^{-3} / 10.62 \times 10^{-3}=4.02 \mathrm{k}, \mathrm{Y}_{\mathrm{C}}=4.02 \mathrm{k}, \mathrm{Y}_{\mathrm{D}}=0.98 \mathrm{k}, \mathrm{Y}_{\mathrm{E}}=0.98 \mathrm{k}$

