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Diagrammatic Convention for Supports 

 

 

 

 

Axial Force, Shear Force and Bending Moment 

Three forces are required to maintain internal equilibrium at every section of a beam.  

The force acting along the geometric axis of the beam (i.e., perpendicular to the cross-sectional plane) is 

called Axial Force, the force acting parallel to its cross-sectional plane (i.e., perpendicular to the axis) is 

Shear Force while the moment or couple acting at the section is Bending Moment. They maintain the 

horizontal equilibrium (Fx = 0), vertical equilibrium (Fy = 0) and moment equilibrium (Mz = 0) of the 

beam segment at the relevant cross-section and are therefore calculated by considering the three equilibrium 

equations at the section.  

For design purposes, it may be necessary to calculate the axial force, shear force and bending moment at 

several sections of a beam, resulting in diagrams of the forces versus the distance along beam length.  

Axial Force, Shear Force and Bending Moment Diagram 

Draw the Axial Force Diagram (AFD), Shear Force Diagram (SFD) and Bending Moment Diagram (BMD) 

of the beam loaded as shown below. 

 

 

 

 

 

 

The support reactions can be calculated by considering the equilibrium equations of the overall structure; 

i.e., Fx = 0, Mz = 0 (at B) and Mz = 0 (at A), giving Ax = 0, Ay = 5 k and By = 5k. 

Example 1.1: Free Body Diagrams for various Segments of the Beam 

Free body diagrams are drawn for various beam segments considering the points D, C(left), C(right) and E at 

distances 3, 5 (left), 5 (right) and 7 from the support A of the beam.    

             

             

             

             

             

             

   

         
x (ft) H (k) V (k) M (k-ft) 

3 0 −5 5  3 = 15 

5(−) 0 −5 5  5 = 25 

5(+) 0 
+10−5  

= +5 
5  5 − 10  0 

 = 25 

7 0 
+10−5  

= +5 
5  7 − 10  2 

= 15 

3 
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25 

Fig. 1.1: Support Conditions 

Fig. 1.2: Beam Free Body 

Fig. 1.3: Introduction to 

AFD, SFD and BMD 

Table 1.1: Results of Example 1.1 
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Sign Convention for Axial Force, Shear Force and Bending Moment 

For this course, the following sign conventions have been chosen for axial force, shear force and bending 

moment. In short, tension is assumed positive for axial force, shear forces forming clockwise couple are 

considered positive while a bending moment causing sagging shape is taken as positive. 

 

 

 

 

 

 

Relationship between Applied Load, Shear Force and Bending Moment 

Instead of the direct approach of cutting a beam and determining the shear force and bending moment at a 

section by statics, an efficient alternative approach can be used. Certain fundamental differential relations 

need to be derived for this purpose. These can be used for the construction of shear force and bending 

moment diagrams of beams. 

 

 

 

 

 

 

 

 

 

 

 

Consider an element x long, isolated by two adjoining sections taken perpendicular to its axis in the beam 

loaded as shown above. As the shear force and bending moment may vary from one section to the next, they 

are assumed to be V and M on the left section and (V + V) and (M + M) on the right section of the beam 

element. However, if the length x is infinitesimal (i.e., x  0), no variation of the applied load w(x) is 

considered; i.e., w(x) is assumed to be constant within the length x.  

 

From the equilibrium of vertical forces; i.e., Fy = 0  

  V + w x − (V + V) = 0  V/x = w                                               .………………..(1.1) 

From the equilibrium of moments about the right sections; i.e., Mz = 0  

  M + V x + (w x) x/2 − (M + M) = 0  M/x = V + w x/2                …….………...…(1.2) 

In the limit x  0, the above equations take the following forms,  

  dV/dx = w                                      …...…………….(1.3) 

  dM/dx = V                                      …...…………….(1.4) 

Combining Eq. (1.3) and (1.4), d
2
M/dx

2
 = w                               ……......………..(1.5) 

Eq. (1.5) can be used for determining support reactions of the beams, while Eqs. (1.3) and (1.4) are very 

convenient for the construction of shear force and bending moment diagrams, using the equations 

  V = w dx + C1                          ………………….(1.6) 

        and M = V dx + C2                                     ……………...…..(1.7) 

  

 

 

 

Positive Axial Force Positive Shear Force Positive Bending Moment 

x 

w(x) load per unit length 
y 

x 
x 

y 

M + M 

V + V 

M 
V 

x 

w 

Fig. 1.5: Beam and Beam elements between adjoining sections 

Fig. 1.4: Sign Convention for Axial Force, Shear Force and Bending Moment 



 3 

Integration Method for SFD and BMD 

 

Example 1.2 

Derive equations for the shear force and bending moment of the beams loaded as shown below.  

Also draw the corresponding SFD and BMD.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The following SFD and BMD are drawn for (b) using EXCEL 

 

 

B A 

w0 per unit length 

L 

B A 

5 k/ft 

10 

w(x) = w0                                      ………..(1.8) 

V(x) = w0 x + C1                                          ………..(1.9) 

M(x) = w0 x
2
/2 + C1 x + C2                 ………(1.10) 

 

Boundary conditions 

M(0) = 0 and M(L) = 0 

 

M(0) = 0 in Eq. (1.10) 

 0 = 0 + 0 + C2 

 C2 = 0                   ………(1.11) 

 

M(L) = 0 in Eq. (1.10) 

 0 = w0 L
2
/2 + C1 L + 0 

 C1 = w0 L/2                   ………(1.12) 

 

Eq.(1.9)  V(x) = w0 x + w0 L/2 ……(1.13) 

 

(1.10)  M(x) = w0 x
2
/2 + w0L/2 x ……(1.14) 

 

w(x) = 0.5 x                                  ………(1.15) 

V(x) = 0.5 x
2
/2 + C1                                  …....…(1.16) 

M(x) = 0.5 x
3
/6 + C1 x + C2               ………(1.17) 

 

Boundary conditions 

V(0) = 0 and M(0) = 0 

 

V(0) = 0 in Eq. (1.16) 

 0 = 0 + C1 

 C1 = 0                   ………(1.18) 

 

M(0) = 0 in Eq. (1.17) 

 0 = 0 + 0 + C2 

 C2 = 0                   ………(1.19) 

 

Eq.(1.16)  V(x) = 0.5 x
2
/2     ………(1.20) 

 

(1.17)  M(x) = 0.5 x
3
/6             …….…(1.21) 
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Fig. 1.7(a): SFD for Example 1.2(b) Fig. 1.7(b): BMD for Example 1.2(b) 

Fig. 1.6(a): Simply Supported Beam under UDL  Fig. 1.6(b): Cantilever Beam under triangular load  
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Representing Different Loadings by Singularity Functions  

 

Singularity Functions: 

f(x) = xan
  f(x) = 0, when x  a and f(x) = xan

, when x  a [where n  0]               …………(1.22) 

f(x) = xa0
  f(x) = 0, when x  a and f(x) = 1, when x  a 

Howeverxan
 has no physical significance if n  0, and is written only as a notation with an asterisk (*) as 

subscript; e.g., f(x) = xa1
* 

The integration and differentiation of singularity functions follow the rules for ordinary polynomial 

functions;i.e., xan
 dx = xa n+1

/(n+1)
 
+ C1 and d(xan

)/dx = nxan1
                  ………….(1.23)

 

e.g., xa2 
dx = xa3

/3 + C1 and d(xa2
)/dx = 2xa1 

 

By definition, xan
* dx = xa n+1

*
 
+ C1 if n  0                …...…………(1.24) 

e.g., xa2
* dx = xa1

*
 
+ C1 and xa1

* dx = xa0 
+ C1 

 

Singularity Functions for Common Loadings: 

Common loadings are expressed in terms of the following singularity functions 

 

 

  

 

 

    w(x) = 10x0
1

* 20x5
1

*        w(x) = 2x5
0
              w(x) = 100x5

2
* 

 

 

Example 1.3 

Derive the equations for the shear force and bending moment of the beams loaded as shown below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 1.4: Derive the equations for the SF and BM of the beam loaded as shown below (in Fig. 1.10). 

w(x) = 10x0
1

*+ R1x5
1

* 1x5
0
 +1x15

0
 + 0.15x30

1
 

BCs: V(0) = 0, M(0) = 0, M(40) = 0 

          

             

            

10 k 20 k 

5 10 5 10 

2 k/ 

5 10 

100 k 

5 10 10 15 

10k   
1 k/   1.5 k/   

w(x) =  P0xL/2
1

*                                                ….....(1.25) 

V(x) =  P0xL/2
0 
+ C1                                        ….....(1.26) 

M(x) =  P0xL/2
1
 + C1 x + C2                     …….(1.27) 

Boundary conditions: M(0) = 0 and M(L) = 0 

M(0) = 0 in Eq. (1.27) 

 0 = 0 + 0 + C2  C2 = 0                        …….(1.28) 

M(L) = 0 in Eq. (1.27) 

 0 = P0 L/2 + C1 L + 0  C1 = P0/2      …....(1.29) 

Eq.(1.26)  V(x) = P0xL/2
0
 + P0/2 …...(1.30) 

(1.27)  M(x) = P0 xL/2
1
 + P0/2 x     ……(1.31) 

 

B A 

L/2 

B A 

P0 

L 

Fig. 1.9: (a) Simply Supported Beam            and      (b) Cantilever Beam under concentrated load 

P0 

L/2 

Fig. 1.8: Singularity Functions for Common Loadings 

w(x) =  P0x0
1

*                                                      ….....(1.32) 

V(x) =  P0x0
0 
+ C1                                              ….....(1.33) 

M(x) =  P0x0
1
 + C1 x + C2                           …….(1.34) 

Boundary conditions: V(0) = 0 and M(0) = 0 

V(0) = 0 in Eq. (1.33)  

 0 = 0 + C1  C1 = 0                              …….(1.35)                      

M(0) = 0 in Eq. (1.34) 

 0 = 0 + 0 + C2  C2 = 0                         …....(1.36) 

Eq.(1.33)  V(x) = P0x0
0
               …...(1.37) 

(1.34)  M(x) = P0 x0
1
                      ……(1.38) 

 

Fig. 1.10 
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Summation Method for SFD and BMD 

 

The earlier formulations derived the following relations between applied load, shear force and bending 

moment,  

  dV/dx = w                                     ...………………..(1.3) 

  dM/dx = V                                      …...…………….(1.4) 

  V = w dx + C1                            …..…………….(1.6) 

        and M = V dx + C2                                         ….…………….(1.7) 

While these equations have been used in the integration method of SFD and BMD, for hand calculations it is 

more convenient to use their physical meanings; i.e.,  

(i) Eqs. (1.3) and (1.4)  Slope of the SFD is the applied load, while slope of the BMD is the shear force 

(ii) Eq. (1.6)  Shear Force is the summation of the vertical forces along the beam (C1 is the SF at left end) 

     and (1.7)  Bending Moment is equal to the area under the SFD (C2 is the BM at left end) 

The conclusions (ii) are particularly useful and form the basic concepts of the Summation Method of drawing 

the SFD and BMD by hand calculation.  

Based of that, the nature of SFD and BMD for common loading conditions is shown in Table 1.2. 

 
Table 1.2: Nature of Load, SF and BM 

w(x) Concentrated Load UDL Triangular 

V(x) Straight Line, No Slope Sloped Straight Line Parabolic 

M(x) Sloped Straight Line Parabolic Cubic 

 

Example 1.5 

Use the Summation Method to draw the SFD and BMD of the beams loaded as shown below. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 1.6 

Use the Summation Method to draw the SFD and BMD of the beams shown in Example 1.2(a), (b), 1.3(b). 

 

 

MA = 0  P0 L/2  RB L = 0  RB = P0 /2 

Fy = 0  RA  P0 + RB = 0  RA = P0 /2 

 

 

B A 

L/2 

B A 

10 L/2 

P0 

Fig. 1.11: (a) Simply Supported Beam under concentrated load and (b) Cantilever Beam under UDL 

RA RB 1 k/ft RB 

MB 

−P0/2 

P0/2 

SFD 

BMD 

P0L/4 

Fy = 0  RB   1  10 = 0  RB = 10 k 

MB = 0  MB 1  10  5 = 0  MB = 50 k-ft  

SFD (k) 

BMD (k-ft) 

−10 

−50 
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Typical SFD and BMD for Beams 

Example 1.6 

Use the Summation Method to draw the SFD and BMD of the beams loaded as shown below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B A 

w0 per unit length 

L 

B A 

5 k/ft 

10 

Fig. 1.6(a): Simply Supported Beam under UDL  Fig. 1.6(b): Cantilever Beam under triangular load  

MA = 0  (w0 L) L/2  RB L = 0  RB = w0L /2 

Fy = 0  RA  w0 L + RB = 0  RA = w0L /2 

 

 

−w0L/2 

w0 L/2 

SFD 

BMD 

Fy = 0  RB   5  10/2 = 0  RB = 25 k 

MB = 0  MB 25  10/3 = 0  MB = 83.33 k-ft  

SFD (k) 

BMD (k-ft) 

−25 

−83.33 

w0 L
2
/8 

RA RB 

RB 

MB 

MA= 0  (P0/2) L/3 + (P0/2) 2L/3 RB L = 0  

 RB = P0 /2 

Fy = 0  RA  P0/2  P0/2 + RB = 0  RA = P0 /2 

 

 

B A 

L/3 

B A 

L L/3 

P0/2 

Fig. 1.12: (a) Simply Supported Beam under 2-Point load and (b) Cantilever Beam under concentrated load 

RA RB 
P0 RB 

MB 

−P0/2 

P0/2 

SFD 

BMD 

P0L/6 

Fy = 0  RB   P0 = 0  RB = P0 

MB = 0  MB  P0 L = 0  MB = P0 L  

SFD 

BMD 

−P0 

−P0L 

P0/2 

L/3 
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Further Topics on SFD and BMD 

 

SFD and BMD for Beams with Internal Hinge 

Internal hinges are often used in beams (particularly bridges) to make them statically determinate. Since no 

bending moment can develop in an internal hinge, it provides an additional equation for calculating the 

support reactions, which would otherwise be impossible using statics only. 

A beam is not continuous at an internal hinge, i.e., its slopes on both sides of it are different. Details of this 

are discussed in studies on beam deflection. 

 

Example 1.7 

Use the Integration Method and Summation Method to draw the SFD and BMD of the beam shown below. 

  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SFD and BMD for Frames 

Since frames are composed of beams (and columns), their SFD and BMD follow the same basic process as 

for individual beams. The best process would be to draw the freebody diagram of each structural element 

(i.e., each beam and column) and draw their SFD and BMD just like for beams.  

The final diagrams in such cases will be an assembly of SFD and BMD of all structural elements of the 

frame. 

 

Example 1.8 

Draw the SFD and BMD of the frames shown below. 

 

 
   1 k/ft            10 k 

   6      
 

 

 
4        12    4  
 

 

B C D E 
A 

10 5 5 5 

10 k 

BMD = 0   RE  5 = 0  RE  = 0 

MC = 0  RB  10  10  15 = 0  RB = 15 k 

Fy = 0  RB + RC + RE  10 = 0  RC = 5 k 

 

 

Fig. 1.7: Beam with Internal Hinge  

w(x) = 10x0
1

*  + RBx5
1

* + RCx15
1

*                                                

V(x) = 10x0
0

 + RBx5
0
 + RCx15

0 
 + C1                                         

M(x) = 10x0
1
 + RBx5

1
 + RCx15

1
 + C1 x + C2                      

 

Boundary conditions: V(0) = 0, M(0) = 0, M(20) = 0, M(25) = 0 

V(0) = 0  C1 = 0, M(0) = 0  C2 = 0 

M(20) = 0  0 = 200 + 15 RB + 5 RC = 0  

and M(25) = 0  0 = 250 + 20 RB + 10 RC = 0 

Solving  RB = 15, RC = 5 

 

V(x) = 10x0
0
 + 15x5

0
 5x15

0 

and M(x) = 10x0
1
 + 15x5

1
 5 x15

1
 

B C D E 
A 

10 5 5 5 

10 k 

SFD (k) 

10 

5 

50 

BMD (k-ft) 

10 6 

8 



 8 

Summary Notes on BMD 

 

1.  BM = 0 at points A 

(i) Free End   (ii) Hinge/Roller Supported End  (iii) Internal Hinge 

 

A                    A                             A 

  

 

2.  BM  0 at points B (in general, but can be = 0 only for special loading cases)  

(i) Fixed End      (ii) Internal Roller/Hinge support  

    B           B 

                                                                                

  

3.  Verify and memorize the following BMDs 

(i) Cantilever Beams   P 

 M0                                    w/ 

         

                                                  

   

  

     

       M0    Pd             wL
2
/2 

(ii) Simply Supported Beams 

      M0                  P        w/     

        

                                                    

                               

   

 M0               Pab/(a+b)              wL
2
/8  

                         

      (= PL/4, if a = b = L/2) 

(iii) Beams with Overhang  

                             P           w/ 

               M0 

                                        

                                  

   

                     

          M0             Pa                  wa
2
/2            

           

(iv) Beams with Internal Hinge 

     P        P 

                           w/            

      

                                         

                                               

                     

          Pab/(a+b)     Pab/(a+b)               wL
2
/8  

                                             

     Pac/(a+b)                   waL/2 

L d L 

L a b L 

a L a L a L 

   c  d        a     b   a      b        c        d          L             a 



 9 

4. Qualitative BMDs 

  

                              

      

                                         

                                  
                     

                                

           

[ implies that the ordinate can be positive or negative depending on the loads and spans]  

 

                 

                                       

      

                                        

                       

                                          
                                          

             

             

             

 

           

             

   

  

             
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Practice Problems on SFD and BMD 

1.  Draw the SFD and BMD of the beams loaded as shown below  

[Assume concentrated moment = 100 k, load = 10 k, UDL = 1 k/, peak of triangular load = 1.5 k/]. 

 

      (i)              (ii)  

   

 

                         

 

 

(iii)             (iv) 

             

  

 

 

2.   Draw the AFD, SFD and BMD of the beams loaded as shown below. 

 

 

 

 

 

 

 

 

 

 

 

3.  For the load distribution over the length of footing ABCD shown in the figure below, calculate 

 (i)  the length x and uniformly distributed load w k/ft required to maintain equilibrium, 

 (ii)  the shear force at the left and right of B and bending moment at C using Singularity Functions. 

 

 

 

 

 

 

4.  Draw the AFD, SFD and BMD of the beam bcd in the frame abcde loaded as shown below. 

    

 

 

 

    

 

 

5.  Draw the AFD, SFD and BMD of column ABEF in the frame shown below [B, C, E, F are pin joints]. 

              

                         

                        

                                                        

   

                                                                                                     

                                    

       

5 5 
10 10 10 

10 6 

3 

3@10= 30 

10  

7  

5  

1 k/ 
A  

B  

C  

D  

E  

F  

10  15  

C B 

A  

100 k  200 k  

w k/ft 
D 

30  5  x  

d and e are Internal Hinges 
c 

a  

1 k/ft 

f 

10  10  20  30  

1 k/ft 

e d 

10  

b 

20 k 

45º  

B 

A  

100 k 2 k/ 
1 k/ 

C D 
E 

10  10  5  5  

B is an Internal Hinge 60 

5 10 10 15 

40 40 

a 

c 
b 

14 

20 k 

28 28 

e 

d 20 k 

14 

1 k/ft 

c is an Internal Hinge 

45º  45º  
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Stress, Strength and Factor of Safety 

Stress 

Stress is defined as the internal force on a body per unit area. Thus if an internal axial force P acts on a 

cross-sectional area A, the axial stress on the area is  

 = P/A                          …………………..(2.1) 

 

 

 

 

 

 

 

 

 

In general, stresses can be classified as Normal Stress (acting perpendicular to the area) and Shear Stress 

(acting parallel to the area). Under this broad classification, several types of normal and shear stress may act 

on structures due to various types of loading. Other than the axial loading mentioned, normal stress may also 

be caused by bending moments. Shear stresses are also caused by direct or flexural shear forces as well as 

torsional moments. In general, if a shear force V acts parallel to an area A, the average shear stress on the 

area is  

 = V/A                                           ………………..(2.2) 

 

Strength 

Strength is the ability of a body to resist stress. The purpose of calculating stresses in structural members is 

to compare them with the experimentally determined material strengths in order to assure desired 

performance.  

 

Physical testing in a laboratory can provide information regarding a material’s resistance to stress. In a 

laboratory, specimens of known material, manufacturing process and heat treatment are subjected to 

successively increasing known forces until they finally rupture. The force necessary to cause rupture is 

called the Ultimate Load. The Ultimate Strength of the material is obtained by dividing this ultimate load by 

the original cross-sectional area of the specimen. Therefore, the units of stress and strength are the same. 

 

The common types of strength tests performed in the laboratory on Civil Engineering materials are 

* Tension Test (of steel, concrete, cement) 

* Compression Test (of concrete, brick, timber, soil) 

* Direct Shear Test (of metals, concrete, soil) 

* Torsional Shear Test (of metals, concrete) 

* Static Bending Test (of steel, concrete, timber) 

* Impact Test (of metals, aggregate) 

* Fatigue/Abrasion Test (of metals, concrete, aggregate) 

* Non-Destructive Test (of metals, concrete) 

Besides laboratory tests, field tests are also performed (e.g., on soil) to determine material strengths in a 

more realistic scenario. 

 

Factor of Safety 

Although a material can be stressed up to its ultimate strength before it ruptures, practical application and 

serviceability do not often allow it to be so highly stressed. Some safety is required to allow for the 

uncertainties and variations in applied loads, field conditions and material strengths. The permissible limit 

up to which a material can be stressed is called its Allowable Stress. Therefore the ratio of ultimate strength 

and allowable stress is a ‘safety ratio’ of the material (i.e., indicates how safe it is) and is often called the 

Factor of Safety; i.e., 

Factor of Safety = Ultimate Strength/Allowable Stress               ……………..(2.3) 

 

 

P P 

P P 

Fig. 2.1 shows a body being subjected to an external axial load 

of P, which causes an internal force P at every cross-section of 

the body. Therefore, the axial stress  at each cross-section of 

the body is equal to P/A.  

The commonly used units of stress are lb/in
2
 (psi), kip/in

2
 (ksi), 

kg/cm
2
, N/m

2
 (Pascal or Pa), kN/m

2
 (kilo-Pascal or kPa), 

MN/m
2
 (mega-Pascal or MPa, also given by N/mm

2
) etc.  

 

 

Fig. 2.1: Concept of Normal Stress 

Area = A 
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Axial Force Diagrams 

Concentrated Axial Loads 

The concentrated loads on axially loaded members are predominant in many cases, e.g., in columns of multi-

storied structures where the distributed loads (e.g., self-weights) are negligible compared to the loads from 

various floors. 

Example 2.1 

Draw the AFD of the beams loaded axially by the concentrated loads shown below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Distributed Axial Loads 

Significant examples where distributed axial loads are important include vertically suspended members 

subjected to self-weight or pile foundations where the loads from super-structure are resisted by skin 

friction; i.e., resistance of soil distributed along the pile-length. 

Example 2.2 

Draw the AFD of the piles loaded axially by the distributed loads shown below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fx= 0  XA  3  3 = 0  XA = 6 k 

B 
A 

4 

B A 

15 4 

3 k 

Fig. 2.2: Concentrated axial forces on (a) Simply Supported Beam, (b) Cantilever Beam 

XA 
C 

50 k XB 

Fx = 0  50 + 20 + XB = 0  XB = 30 k 

AFD (k) 

50 

3 k 

12 

D 

20 k 

5 
C 

−6 

AFD (k) 
−3 

30 

Fx = 0  100  50w0 = 0  w0 = 2 k/ft 

B 
A B A 

w0 k/ft 

Fig. 2.3: Piles subjected to (a) Uniformly distributed axial forces, (b) Linearly distributed axial forces 

100 k XB 

Fx = 0  100  (50  2)/2 + XB = 0  XB = 50 k 

AFD (k) 

50 

−100 

AFD (k) 

100 k 

50 

2 k/ft 

−100 
−50 
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Design of Bolted (Riveted) Joints 

Bolted (or riveted) joints are widely used in connections between various structural members. Its versatility 

makes it useful for connections between members made of different materials; e.g., steel, timber. 

There are two types of bolted joints; i.e., Lap Joints and Butt Joints. In a lap joint, the plates to be connected 

are lapped over one another and fastened together by one or more rows of connectors (Fig. 2.4). In butt joint, 

the plates are butted together and joined by two cover plates connected to each of the main plates 

(occasionally, only one cover plate is used). The joints are identified here (as single-row, double-row and so 

on) by the number of rows of connectors that fasten the cover plate to each main plate (Fig. 2.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stresses in Bolted Joints 

There are three major types of stresses that may work on bolted joints; i.e., (a) shear stress in bolts, (b) 

tensile (tearing) stress in plates, (c) bearing stress between bolts and plates. Other types of failure are 

possible if the joint is not designed properly; e.g., tearing or shearing of plate behind a connector hole that is 

too close to edge. 

 

Example 2.3 

Calculate the maximum shearing, tearing and bearing stresses in the riveted joint shown below (in Fig. 2.6) 

when subjected to a force P = 25 k. Also comment on the adequacy of the joint if the allowable shearing, 

tearing and bearing stresses are 15, 20 and 25 ksi respectively.  

     Row1    Row2    0.75 diameter bolts (in 0.875 diameter holes) 

 

 

 

 

       P                    P          6 

 

             

             

        

     P                  P   

               

 

 

 

The force P can be assumed to be equally distributed among the bolts; i.e., each bolt taking (25/5 =) 5 k 

force parallel to its cross-sectional area. 

Shear stress in each bolt = 5/[/4  (0.75)
2
] = 11.32 ksi 

Maximum tensile force in Row1 = 25 k  Maximum Tensile stress = 25/[0.5  (6 2  0.875)] = 11.76 ksi 

Maximum tensile force in Row2 = 25 10 = 15k  Tensile stress = 15/[0.5  (6 3  0.875)] = 8.89 ksi 

Bearing stress between each bolt and plate (main plate and cover plate) = 5/[(0.75)  (0.5)] = 13.33 ksi 

Joint is adequate for bolt shear (11.32  15 ksi), plate tension (11.76  20 ksi) and bearing (13.33  25 

ksi). 

0.5 thick plates 

 

Fig. 2.4: Lap Joints (a) Single Row, (b) Double Row Fig. 2.5: Butt Joints (a) Single Row, (b) Double Row 

Fig. 2.6: Bolted joint subjected to force P 



 14 

Design of Welded Connections 

Welding is a method of joining metals by fusion. With heat from either an electric arc or an oxyacetylene 

torch, the metal at the joint is melted and fused with additional metal from a welding rod. When cool, the 

weld material and the base metal form a continuous and homogenous joint. The reliability of welded 

connections has increased to the point where they are used extensively to supplement or replace riveted or 

bolted connections in structural and machine design. It is frequently more economical to fabricate a member 

by welding simple component parts together than to use a complicated casting.  

The two principal types of welds are butt welds [Fig. 2.7 (a)] and fillet welds [Fig. 2.7 (b)]. The strength of a 

butt weld is equal to the allowable stress multiplied by the product of the length of the weld times the 

thickness of the thinner plate of the joint. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 2.4 

In Fig. 2.9 shown below, calculate the length of 3/8-inch weld joints required on sides   

(i) AB and CD only, (ii) AB, AD and CD to connect the 0.5 thick channel section ABCD to the 0.625 

thick plate EFGH. Axial force of 50 kips passes through centroid of ABCD [Given: Allowable shear stress = 

16 ksi].      
      

 E                 F                E, F 

          0.625  

     A               B             A, B 

      

      3.25            

 

          50 kips 

  1.75 

                   D               C               C, D  

      

           0.5 

                 H                G               G, H 

Front View              Side View 

 

 

(i) For welds on AB and CD, the axial force is resisted by FAB = 50  1.75/5 = 17.5 k, FCD = 50  3.25/5 = 

32.5 k 

 Weld lengths are LAB = FAB/(0.707 t all) = 17.5/(0.707  3/8  16) = 4.13, LCD = FCD/(0.707 t all) = 

7.66; i.e., use welds of length 4.25 and 7.75 respectively. 

(ii) The weld lengths on AB and CD can be reduced if the connection is welded on AD also. For the 

resultant of weld forces to pass through the centroid, welds length on AD can be LAD = 1.50  2 = 3.00 

 This leaves a weld length of (4.13 + 7.66  3.00 =) 8.79 to be divided on sides AB and CD 

 Weld length on AB is = LAB = 8.79  1.75/5 = 3.08, and on CD is = LCD = 8.79  3.25/5 = 5.71; 

 i.e., use welds of length 3.25 and 5.75 respectively. 

Fig. 2.9: Welded joint subjected to 50 kip force 

Fig. 2.7: (a) Single and Double V-Butt Weld Fig. 2.7: (b) Side Fillet and End Fillet Weld 

The strength of transverse fillet welds is determined by the 

shearing resistance of the throat of the weld regardless of the 

direction of the applied load. In the 45 fillet weld in Fig. 2.8, 

with the leg equal to t, the shearing area through the length of 

weld L times the throat depth, or A = L (t sin 45) = 0.707 Lt.  

Shear stress = Shear force/Shearing area; i.e.,  = V/A  

  = V/(0.707 Lt)  L = V/(0.707t )  ……..………..(2.4) Fig. 2.8: Weld Leg and Throat 

Leg 

Leg 

Throat 
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Practice Problems on Stresses 

1. Calculate the allowable value of force P for the truss shown below [Given: Cross-sectional area of both 

AB and AC = 2 in
2
, ultimate strength in compression = 30 ksi, tension = 36 ksi, factor of safety = 2.0]. 

                               A   

            P                 

 

        20 

 

 

             B           C 

        20      20                   

         

2. Draw the AFD and calculate the maximum tensile and compressive stress in the bar ABC shown below.
          

     

   

       2 dia                4 dia 

             

         

  
3. Calculate the shearing stress in the rivets and the maximum tearing and bearing stresses in the plates at 

joint B of the structural member ABC loaded as shown below. 

 

            
     

   

                              12 

             

         

  
 

4.  In the truss ABCD shown below, use factor of safety = 1.5 to calculate the required 

(i) Bolt diameter (d), (ii) Thickness (t) of member BD, (iii) Width (b) of member BD 

[Given: Shear strength = 150 MPa, bearing strength = 250 MPa, axial strength = 200 MPa]. 
 

 

                                    

 

 

             

                                 

                   

 

                                                 

 

5. (i)  Calculate the maximum allowable value of P for the axially loaded member abc shown below.  

(ii)  For the force P calculated in (i), determine the lengths of 10 mm welds to connect the members ab 

and bc at joint b 

 [Given: Allowable stress in shear = 180 MPa, tension = 200 MPa, compression = 150 MPa]. 
 

            

     

   

                               

             

         

  

 

 

200 k 50 k 

A C B 

10 10 

50 k/in 

A 

40 20 20 

1 k/in 10 12 20 k 
B 

3 rivets of 1 dia 3/8 thick plates 

Joint B 
Member ABC 

10 12 C 

100 mm 150 mm 

Member abc 

10mm thick welds 

Joint b 

100 mm 150 mm a 

4 @ 250mm = 1000mm 

c 3P 

12mm thick rectangular plates 

P b 

Joint B (Enlarged) 

A  

B  

D  

200 kN  

30 

Gusset Plate 

30 

C  

Bolt diameter = d 

b 

Thickness = t 

Member BD 
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6.  In the structure ABC loaded as shown in the figure below,  

(i)  Check the adequacy of the member BC,  

(ii)  Design the welds for member BC with Gusset Plate at joint B  

[Given: Allowable axial stress in member BC = 18 ksi, Allowable shear stress in welds = 15 ksi]. 
 

                                    

 

 

             

                                 

                   

 

                                                 

 

 

 

7.  Design the welds at the Gusset Plate of a truss (connecting members 1, 2 and 3) in the figure shown 

below [Given: F1 = F3 = 45 kips, F2 = 25 kips, Allowable shear stress in the welds = 16 ksi].     

 

 

  

 

 

 

 

 

 

 

 

             

             

    

 

 

 

 

 

 

Mem1 (443/4) 

Mem2 (445/8) 

Mem3 (443/4) 

Joint B (Enlarged) 

A  B  

C  

10 k  

30 

Cross-section of BC 

Member BC 

Member AB 

Gusset Plate 
0.25 

0.25 

4 

4 

Gusset 

Plate 
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Stress, Strain and Stress-Strain Diagram 

Stress is defined as the internal force on a body per unit area. Thus if an internal axial force P acts on a 

cross-sectional area A, the axial stress on the area is  

   = P/A                          …………………..(3.1) 

Fig. 3.1(a) shows a body being subjected to an external axial load of P, which causes an internal force P as a 

reaction at every cross-section of the body. Therefore, the axial stress  on the body is equal to P/A. The 

commonly used units of stress are lb/in
2
 (psi), kip/in

2
 (ksi), kg/cm

2
, N/m

2
 (Pascal or Pa), kN/m

2
 (kilo-Pascal 

or kPa) etc.  

 

Several types of stress may act on structures under various types of load. Other than the axial loading 

mentioned, stresses are caused by direct or flexural shear forces as well as flexural and torsional moments. 

In general, stresses can be classified as normal stress (acting perpendicular to the area) and shear stress 

(acting parallel to the area). This chapter deals with normal stresses. 

 

An obvious effect of stress is the deformation it causes in the body. Strain is the deformation caused in a 

body per unit length. If a body of length L [Fig. 3.1(b)] undergoes an axial deformation of , the axial strain 

caused in the body is 

   = /L               …………………..(3.2) 

Strain is a non-dimensional quantity but often units like in/in, cm/cm etc are used for strain. Like stress, 

strain can be broadly classified as normal strain and shear strain.  
 

                      

                 

 

            Area = A              L 

 

 

 

  (a)      (b)     (c)  

Fig. 3.1: (a) Concept of stress, (b) Concept of strain, (c) Different stress-strain diagrams    

 

The diagram showing the stress (along y-axis) and strain (along x-axis) on a body is called its Stress-Strain 

(-) Diagram. Usually it is typical of the material, but also depends on the size of the specimen, the rate of 

loading, etc. Fig. 3.1(c) shows typical - diagrams for different materials.  

 

P 

P 

P 

P 

 
 

 

 
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Essential Elements of Stress-Strain Diagram 

The stress vs. strain (-) diagrams discussed in the previous section are often used in studying various 

mechanical properties of materials under the action of loads. Depending on the type of materials, the - 
diagrams are drawn for specimens subjected to tension (typically for mild steel, aluminum and several other 

metals, less often for granular materials) or compression (more often for concrete, timber, soil and other 

granular materials).  

 

Several elements of the - diagrams are used in Strength of Materials as well as structural analysis and 

design. Figs. 3.2 (a) and 3.2 (b) show two typical stress-strain diagrams often encountered in material 

testing. The first of them represents a material with an initial linear - relationship followed by a 

pronounced yield region, which is often followed by a strain hardening and failure region (typical of Mild 

Steel). The second curve represents a material with nonlinear - relationship almost from the beginning and 

no distinct yield region (typical of concrete and timber).  

 

 

 

 

 

 

 

 

(a)       (b) 

Fig. 3.2: Typical stress-strain diagrams for (a) Yielding materials, (b) Non-yielding materials 

 

Up to a certain limit of stress and strain, the - diagram for most materials remain linear (or nearly so); i.e., 

the stress remains proportional to the strain initially. Up to this limit, the material follows the Hooke’s Law, 

which states that deformation is proportional to applied load. The corresponding stress is called the 

Proportional Limit (or Elastic Limit), which is denoted by p in Fig. 3.2(a), and the strain is denoted by p. 

The ratio of p and p (or any stress and strain below these) is called the Modulus of Elasticity or Young’s 

Modulus and is denoted by E. 

  E = p/p              …………………..(3.3)   

The area under the - diagram indicates the energy dissipated per unit volume in straining the material 

under study. The corresponding area up to the proportional limit is called Modulus of Resilience and is given 

by the following equation  

 Modulus of Resilience = p p/2 = p
2
/2E            …………………..(3.4) 

Longitudinal strain is accompanied by lateral strain as well, of different magnitude and opposite sign. If the 

longitudinal strain is long and the corresponding lateral strain is lat, the ratio between the two is called the 

Poisson’s Ratio, often denoted by .  

   = lat/lomg               …………………..(3.5) 

The Modulus of Elasticity and the Poisson’s Ratio are two basic material constants used universally for the 

linear elastic analysis and design.    

 

Within proportional limit, the - diagram passes through the origin. Therefore, the strain sustained within 

the proportional limit can be fully recovered upon withdrawal of the load; i.e., without any permanent 

deformation of the material. However, this is not applicable if the material is stressed beyond p. If load is 

withdrawn after stressing the material beyond yield point, the - diagram follows the initial straight path 

during the process of unloading and therefore does not pass through the origin; i.e., the strain does not return 

to zero even when stress becomes zero. 

 

 

 

 

 

p 

p 

yu 

yl 

ult 

brk 

y(offset) y(proof) 

y(offset) y(proof) 

Apparent - Curve 

Actual - Curve 
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In many materials, the proportional limit is followed by a stress (or small range of stresses) where the 

material is elongated (i.e., strained) without any significant change in stress. This is called the Yield Strength 

for the material and is often denoted by y. As shown in Fig. 3.2 (a), yielding occurs within a range of stress 

rather than any particular stress. The upper limit of the region is called Upper Yield Strength while the lower 

limit is called Lower Yield Strength of the material. In Fig. 3.2 (a), they are denoted by yu and yl 

respectively.  

 

However materials with - diagrams similar to Fig. 3.2 (b) do not have any particular yield point or region. 

In order to indicate the stress where the material is strained within the range of typical yield strains or 

undergoes permanent deformation typical of yield points, two methods have been suggested to  locate the 

‘yield point’ of non-yielding materials. One of the is the Proof Strength, which takes the stress y(proof) as the 

yield point of the material corresponding to a pre-assigned strain indicated by y(proof). The other is the Offset 

Method, which takes as yield point a point corresponding to a permanent strain of y(offset). Therefore the Yield 

Strength by Offset Method is obtained by drawing a straight line from y(offset) parallel to the initial tangent of 

the - diagram and taking as yield strength the point where this line intersects the - diagram. 

 

Beyond yield point, the strains increase at a much faster rate with nominal increase in stress and the material 

moves towards failure. However, the material can usually take stresses higher than its yield strength. The 

maximum stress a material can sustain without failure is called the Ultimate Strength, which is denoted by 

ult in Fig. 3.2 (a). For most materials, the stress decreases as the material is strained beyond ult until failure 

occurs at a stress called Breaking Strength of the material, denoted by brk in Fig. 3.2 (a).  

 

Here it may be mentioned that the stress does not actually decrease beyond ultimate strength in the true 

sense. If the Actual - Diagram [indicated by dotted lines in Fig. 3.2 (a)] of the material is drawn using the 

instantaneous area (which is smaller than the actual area due to Poisson’s effect) and length of the specimen 

instead of the original area and length, the stress will keep increasing until failure. All the other - diagrams 

shown in Figs. 3.1 and 3.2 (and used for most Civil Engineering applications) are therefore called Apparent 

- Diagrams.  

 

The total area under the - diagram is called the Modulus of Toughness. Physically, this is the energy 

required to break a specimen of unit volume.  

 

Ductility is another property of vital importance to structural design. This is the ability of the material to 

sustain strain beyond elastic limit. Quantitatively it is taken as the final strain in the material (the strain at 

failure) expressed in percentage.  

 

Table 3.1 shows some useful mechanical properties of typical engineering materials (quoted from available 

literature). However, these properties may vary significantly depending on the ingredients used and the 

manufacturing process. For example, although the yield strength of Mild Steel is shown to be 40 ksi, other 

varieties with yield strengths of 60 ksi and 75 ksi are readily available. The properties of concrete are even 

more unpredictable. Here, the ultimate strength is mentioned to be 3 ksi, but concretes with much lower and 

higher ultimate strengths (1~7 ksi) are used in different construction works. The typical properties of timber 

also vary significantly depending on the type of timber (e.g., Gurjan, Jarul), seasoning (e.g., green, air-dry) 

or type of loading (compression or bending, parallel or perpendicular to grain). 

 

Table 3.1: Useful Mechanical Properties of Typical Engineering Materials 

Material 
p  

(ksi) 

y  

(ksi) 

ult  

(ksi) 

E  

(ksi) 
 

Modulus of 

Resilience 

(ksi) 

Modulus of 

Toughness 

(ksi) 

Ductility 

(%) 

Reduction of 

Area 

(%) 

Mild Steel 35 40 60 29000 0.25 0.02 15 35 60 

Aluminum 60 70 80 10000 0.33 0.18 7 10 30 

Concrete 1.4 2.0 3.0 3000 0.30 0.0003 0.006 0.30 0.60 

Timber 3.4 4.5 5.3 2000 0.30 0.003 0.007 0.80 1.60 

 

[Note: Properties may vary significantly depending on ingredients and manufacturing process] 
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Three-Dimensional Stresses 

Uniaxial normal stress (discussed in the previous section) is only an idealized stress scenario. In practice, an 

element can be subjected to a combination of normal and shear stresses acting in different directions.  

 

Figs. 3.3(a) and 3.3(b) show the three-dimensional stresses acting on an element along the x, y and z axes as 

well as the two-dimensional stresses on the x-y plane. 

 
 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Shear Stress and Strain 

As mentioned before, shear stress acts parallel to a surface whereas normal stress acts perpendicular to it. 

And as shown in Fig. 3.3, an element can be subjected to shear stresses in addition to normal stresses. For 

the equilibrium of the element in Fig. 3.3(b), summation of moments about point O  

  {xy (y)(z)} (x) + {yx (x)(z)} (y) = 0   yx = xy             ………………………..(3.8) 
 

It can be shown similarly that, zy =  yz    and  xz = zx              ………………..(3.9), (3.10) 

Therefore the shear stresses in mutually perpendicular planes are equal.  

 

Shear stresses would naturally cause shear strains in an element, as shown in the x-y plane in Fig. 3.4. This is 

the change of angle between the planes x and y; i.e., shear strain (denoted by xy) inclines the sides of the 

deformed element in relation to the original axes. 

 

 

 

 

 

 

 

 

 

 

 

 

                               

            Fig. 3.4: Concept of Shear Strain                      Fig. 3.5: Shear Stress vs. Shear Strain 

 

Within the elastic range, shear stress is related to shear strain by  

   = G                            ………………………(3.11) 

where G is the Modulus of Rigidity or Shear Modulus of the material and is related to elastic modulus by 

  G = E/(2 (1 + ))                              ………………………(3.12) 

xx 

x 

z 

y 

xy 

xz 

yy 

yx 
yz 

zz 

zx 

zy 

xx 

xy 

yy 

yx 

Fig. 3.3: Stresses (a) Three-dimensional, (b) On x-y plane 

The sign convention followed here is 

ij = Normal stress on plane i along j-axis ........(3.6) 

 

τij = Shear stress on plane i along j-axis ............(3.7) 

 

 

For example 

xx = Normal stress on plane x (i.e., yz) along x-axis 

 

yx = Shear stress on plane y (i.e., xz) along x-axis 

x 

y 

z 

O 

xy 
xy 

yx 

yx 

xy 

G 

 

 x 

y 
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Constitutive Relations for Isotropic Materials: Generalized Hooke’s Law 

In this section, six basic relations between a general state of stress and strain are derived using the principle 

of superposition from the previously established simpler stress-strain equations. This set of equations is 

referred to as the Generalized Hooke’s Law and is valid for Isotropic Materials; i.e., materials having the 

same properties in all directions (as against anisotropic materials, with significantly different properties in 

different directions). 

 

According to the basic concept of Hooke’s Law, a linear relationship exists between the applied stress and 

the resulting strain (e.g., xx =xx/E). During this process, a lateral contraction or expansion of a body also 

takes place (i.e., yy and zz), depending on whether it is being stretched or compressed. The extent of the 

lateral deformation is obtained using the Poisson’s Ratio (i.e., yy = zz = xx). Therefore, a uniaxial normal 

stress xx causes normal strains in three directions; i.e., xx/E, xx/E and xx/E along the x, y and z axis 

respectively. Similarly, the normal stress yy causes normal strains, yy/E, yy/E and yy/E and the 

normal stress zz causes normal strains zz/E, zz/E and zz/E. 

 

Based on the above, the three normal strains according to generalized Hooke’s Law for Isotropic Linearly 

Elastic Materials can be written as 

 xx = xx/E  yy/E  zz/E                                  ………………………(3.13a) 

 yy =  xx/E + yy/E  zz/E                                  ………………………(3.13b) 

 zz =  xx/E  yy/E + zz/E                                  ………………………(3.13c) 

 

The relationships between the shear stresses and strains are more direct and follow Eq. (3.11); i.e.,  

 xy = xy/G                                    ………………………(3.14a) 

 yz = yz/G                                            ………………………(3.14b) 

 zx = zx/G                                            ………………………(3.14c) 

 
Example 3.1 

The rectangular prism shown below is subjected to normal force in the x direction and is restrained in the y 

and z directions (i.e., yy = 0, zz = 0). Calculate the normal stresses (xx, yy, zz) and strain (xx) that develop 

in the prism [Given: Modulus of Elasticity = 2000 ksi, Poisson’s ratio = 0.30]. 

 

 

             

             

              

             

             

           
 

        Fig. 3.6: Force on Rectangular Prism  

 

 

 

Elongation of the prism in the x-direction, xx = (1.49  10
-3

)  10 = 0.0149 in 

 

Tensile force in y-direction, Pyy = 1.71  (10  3) = 71.4 kips  

and in z-direction, Pzz = 1.71  (10  5) = 85.7 kips 

 

Example 3.2 

Calculate all the shear forces, stresses and strains if the prism is also subjected to a uniformly distributed 

shear force of Vxy = 45 k. 

 

 

 

60 k 60 k 

3 

5 

10 

y 

x 

z 

The normal stress in x-direction is 

xx = 60/(5  3) = 4 ksi 

 

yy = (0.30  4 +yy  0.30 zz)/2000 = 0 

 yy  0.3 zz = 1.20 

zz = (0.30  4  0.30 yy + zz)/2000 = 0 

  0.3 yy + zz = 1.20 

 

Solving, yy = 1.71 ksi, zz = 1.71 ksi 

 

xx = (4 0.30  1.71  0.30  1.71)/2000 

        = 1.49  10
-3
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Axial Deformations 

Calculation of structural deformations is one of the main objectives of the study of axial strains. Excessive 

deformation can render a structure useless even if it is safe in terms of stress induced. It may also cause 

excessive stresses adjacent structural elements. Axial deformation in a structure is caused by axial strains. 

The figure below (Fig. 3.7) shows a differential element of length x in an axially loaded bar.  

 

 

 

 

 

 

 

Fig. 3.7: Axial Deformation of Differential Element 

 

If the applied loads cause the differential element to extend by a differential amount u, the axial strain 

 xx =  u/x, and in the limit x  0, xx =  du/dx         …………………(3.15) 

 

  du = xx dx = xx/E dx = Pxx/AE dx   du = Pxx/AE dx 

 where Pxx = Axial force, A = Cross-sectional area, E = Modulus of elasticity at distance x 

 The axial deformation between points A and B is given by 

     uB  uA = (Pxx/AE) dx                         …………………(3.16) 

  

Therefore, using Eq. (3.15), the axial deformation between sections A and B can be calculated if the axial 

force, cross-sectional area and modulus of elasticity are known at any section. For the special case when 

they are all constant, the axial deformation takes the special form 

     uB  uA = PxxL/AE             …………………(3.17) 

 

Example 3.3 

Calculate the axial deformations at point B and C of the axially loaded bars shown below in Fig. 3.8 

[Given: E = 2000 ksi, Members AB and BC are (6  3/8) and (4  3/8) sections respectively]. 

 

 

 

 

 
 A  B         C        A      B             C 

 

 

 

 

 

     

 

0.5 k/ 

 

x x 

u 

x 

40 50 

 

20 k 

 
40 k 

 
20 k 

 
40 k 

 
20 k 

 

40 

 
20 

 AFD (k) 

 

40 

 
20 

 
AFD (k) 

 

uB  uA = PABLAB/AABE 

 uB  0 = 20   40/{(6  3/8)  (2000)} 

 uB = 0.178 

 

uC  uB = PBCLBC/ABCE 

 uC  uB = 40   50/{(4  3/8)  (2000)} 

 uC = 0.844 

 

uB  uA = PAB dx/AABE 

 uB  0 = (20 + 40)/2  40/{(6  3/8)  (2000)} 

 uB = 0.267 

 

uC  uB = PBCLBC/ABCE 

 uC  uB = 40   50/{(4  3/8)  (2000)} = 0.667 

 uC = 0.933 

 

40 50 

 

Fig. 3.8: Axially Loaded Bars with AFD 

Example 3.4 

Calculate uB and uC if the depth of member AB varies linearly between A and B from 6 to 4. 
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Analysis of Statically Indeterminate Bars 

A large portion of civil engineering structures is statically indeterminate; i.e., they cannot be analyzed by 

statics alone. Analysis of such structures require knowledge of displacements; i.e., axial deformation. 

Solution of statically indeterminate structures is one of the main objectives of the study of axial 

deformations.  

 

Example 3.5 

Draw the axial force diagram of the statically indeterminate axially loaded bar shown below in Fig. 3.9 

[Given: E = 2000 ksi, Members AB and BC are (6  3/8) and (4  3/8) sections respectively]. 

 

 

 

 

 
  A     B            C 

 

 

 

 

 

 

 
 A  B         C        A      B             C 

 

 

 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

Example 3.6 

Calculate the forces in wires A, B and C supporting the rigid bar ABC loaded as shown in Fig. 3.11  

[Given: E = 10,000 ksi and A = 0.20 in
2
 for wire A and C, while E = 30,000 ksi, A = 0.30 in

2
 for B]. 

10 k 

 

10 

 

C 

 
B 

 
A 

 

40 50 

 

20 k 

 
40 k 

 
20 k 

 
P 

 
P 

 

40 

 
20 

 AFD1 (k) 

 

P 

 AFD2 (k) 

 

uC1  uA1 = PABLAB/AABE + PBCLBC/ABCE 

 uC1  0 = 20  40/{(6  3/8)  (2000)} +                     

                    40   50/{(4  3/8)  (2000)} 

 uC1 = 0.178 + 0.667 = 0.844 

 

uC2  uA2 = P LAB/AABE + PLBC/ABCE 

 uC2 = P {40/(6  3/8) + 50/(4  3/8)}/(2000) 

          = P (17.78 + 33.33)/2000 = P/39.13 

 

40 50 

 

Fig. 3.10: Statically Determinate Components of the Problem 

40 50 

 

20 k 

 
40 k 

 

Fig. 3.9: Statically Indeterminate Axially Loaded Bar 

The structure is solved by first withdrawing the support at 

C and then ensuring that the elongation at that point is 

zero. Fig. 3.10 shows the two components of the problem. 

uC = uC1 + uC2 = 0.844 + P/39.13 = 0 

 P = −33.04 k 
6.96 

 
−13.04 

 

AFD (k) 

 

Fig. 3.11: Rigid Bar ABC 

Supported by A, B, C 

10 

25 

 

25 

 

∑MB = 0  PA  10 − PC  10 = 0   PA = PC = P (let) 

∑Fy = 0  PB + P + P −10 = 0  PB = 10 −2P 

 

Rigid bar ABC  A (= C ) = B  

 P  (25  12)/(10000  0.2) = (10 −2P)  (50  12)/(30000  0.3) 

 P/(0.2) = (10 −2P)  (2)/(3  0.3)  4.5 P = 20 − 4P 

 P = 2.35 k 

PB = 10 −2P = 5.3 k 
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Stresses and Strains in Thin-Walled Pressure Vessels 

A cylindrical tank carrying gas or fluid under a pressure p is subjected to tensile forces that resist the 

bursting forces developed across longitudinal and transverse sections. Consider a typical section A-A through 

the pressure loaded cylinder shown in Fig. 3.12 (a). A free body diagram of the lower half of the cylinder 

isolated by the cutting plane is shown in Fig. 3.12 (b). 

 

 

 

  

 

 

 

 

  (a)        (b) 

 

 

As shown in Fig. 3.12, the cylinder is occupied by a fluid, which transmits pressure equally in all directions. 

From the accompanying free-body diagram, the bursting force F, acting over the flat surface of the fluid, 

equals the pressure p multiplied by the area DL over which it acts, i.e.,   

F = pDL        …..………..(3.18) 

The stress in the longitudinal section that resists the bursting force F is obtained by dividing it by the area of 

the two cut surfaces. This gives t = F/A = pDL/2tL  

 t = pD/2t                                     ..……………(3.19) 

This stress is called the Tangential stress because it acts tangent to the surface of the cylinder. Other 

common names are Circumferential Stress, Hoop Stress and Girth Stress. 

 

 

 

 

 

 

D 

F = pDL 

A A 

p 
P 

L P 

Fig. 3.12: Calculation of Bursting Force F 

P =Dtl 

F = p(D
2
/4) 

Fig. 3.13: Bursting Force on Transverse Section 

Considering next the free-body diagram of a transverse 

system (Fig. 3.13), where the bursting force acts over the 

end of the cylinder is resisted by the resultant P of the 

tensile forces acting over the transverse section; i.e.,  

P = F  (D + t)t l = p(D
2
/4)  

 l   pD/4t      ……………………………(3.20) 

where l  is called the Longitudinal Stress because it acts 

parallel to the longitudinal axis of the cylinder. 

 

Eqs. (3.19) and (3.20) show that the longitudinal stress is 

one-half the tangential stress. 

Since the longitudinal and transverse stresses act in perpendicular planes, the corresponding strains obtained by 

 t = t/E −l/E = (pD/2t) (1−/2)          …………………….(3.21a) 

l = l/E −t/E = (pD/2t) (0.5−)        …………………….(3.21b) 

Fig. 3.14: Longitudinal and Hoop Stress and Strain 

t, t 

 

l, l l, l 

t, t 
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Connections in Thin-Walled Pressure Vessels 

Instead of a single thin-walled piece of metal, pressure vessels are often composed of several metal sheets 

bolted or welded together. And since Eqs. (3.19) and (3.20) show that the longitudinal stress is one-half the 

tangential stress, the longitudinal joint (Fig. 3.15) should be twice as strong as the hoop joint, otherwise the 

permissible internal pressure will depend on the strength of the longitudinal joint. 

             

             

             

             

             

             

             

              

Bolt Connections 

For connections joined together by bolts spaced at Sl along the length of the vessel, the force (pD/2) Sl is to 

be resisted by the shear force acting on each bolt. 

 (pD/2) Sl = all (d
2
/4)  Sl = (all/p) (d

2
/2D)    ……………….…. (3.22 a) 

It is reasonable to conclude from previous analysis that the bolts would be distributed at twice this spacing 

along the perimeter of the vessel, to be acted on by longitudinal pressure and resisted by bolt shear stress. 

Here, the longitudinal force p(D
2
/4) is resisted by all the bolts [number = Perimeter/Spacing = (D + t)/Sh] 

around the perimeter of the vessel.  

 p (D
2
/4) = [(D + t)/Sh] [all (d

2
/4)]  Sh  (all/p) (d

2
/D)                   …………….......... (3.22 b) 

which is indeed twice the spacing of the longitudinal bolts, shown in Eq. (3.22 a).  

 

Weld Connections 

For connections joined together by welds of thickness tl along the length of the vessel, the force (pD/2)L is 

to be resisted by the shear force acting on each weld. 

pDL/2 = all (0.707tl L)  tl = (p/all) (0.707D)    ………………….. (3.23 a) 

On the other hand, the longitudinal force [p (D
2
/4)] will be resisted by circumferential welds of thickness th 

and length (D + t); i.e.,   

 p (D
2
/4) =all [0.707 th(D + t)]  th   (p/all) (0.353D)  ………………….. (3.23 b) 

which is half the thickness required for longitudinal welds, as expected. 

 

Possible reasons for failure of Pressure Vessels 

*  Increased temperature (due to fire/heat) can 

-  Increase gas pressure p 

- Melt the wall-metal 

- Reduce the metal-strength 

*  Decreased temperature can reduce the strength and ductility of the metal 

* Careless handling/storage or accidents can lead to impact loading that may damage the wall 

* Poor design may result in inadequate welds or bolts 

* Poor workmanship can lead to porous welding/reduced weld thickness than designed 

* Corrosion can reduce the thickness of the wall, weld, bolt or may create holes within the wall causing 

stress concentration 

Longitudinal Bolts 

spaced @ Sl 

Hoop Bolts 

spaced @ Sh 

Fig. 3.15: Longitudinal and Hoop Joints (a) Bolted, (b) Welded 

Longitudinal Weld 

(Thickness tl) 

Hoop Weld 

(Thickness th) 



 26 

Practice Problems on Strain 

1. The figure below shows the load vs. elongation diagrams of specimens X and Y. If their cross-sectional 

areas are AX = 0.20 in
2
, AY = 0.25 in

2
 and gage-lengths are LX = LY = 5 respectively, determine which 

specimen is made of (i) stronger, (ii) stiffer, (iii) more resilient, (iv) more ductile, (v) tougher material. 

 

 

   

 

 

 

 

 

 

 

 

 

 

2. The figure below shows the idealized load (P) vs. elongation () diagram of a 2 long mild steel 

specimen with X-sectional area = 0.20 in
2
. If P1 = 40 kN, P2 = 50 kN, 1 = 0.075 mm, 2 = 12.5 mm, 

calculate (i) ultimate strength, (ii) modulus of elasticity, (iii) % elongation, (vi) modulus of toughness. 
 

 

                              

    

    

     

 

 

                    

3. The figure below shows the axial force (P) vs. elongation () diagram of a 200 mm long mild steel 

specimen of 25 mm diameter. Calculate the (i) Young’s modulus, (ii) apparent and actual breaking 

strength and (iii) energy needed to break the specimen. 

 

 

 

                              

    

    

     

 

 

  

4.  The Proof Strength, yield strength from Offset Method and ultimate strength of a (2 2) timber 

specimen (6 long) are all equal to 6 ksi, while its proportional limit is 3 ksi. Calculate the  

 (i) modulus of elasticity, (ii) modulus of resilience, (iii) ultimate deformation of the specimen. 

  Also draw its load (P) vs. deformation () diagram indicating appropriate values of P and . 

5. The rectangular prism shown below is subjected to uniformly distributed normal forces in the x and y 

directions and is restrained in the z direction (i.e., zz = 0). Calculate the normal stresses (xx, yy, zz) and 

strains (xx, yy, zz) that develop in the prism [Given: E = 2000 ksi, Poisson’s ratio = 0.20]. 

    2 k 

                                  

          

 

                      

     

          

            

      z     2 k 
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(0.4, 200) 

(15, 300) 

(30, 250) 

5 

2 1 
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6.  For members ABCD shown below, draw the axial stress diagram and calculate the elongations at point 

A, B, C and D. Neglect the effects of stress concentration [Given: Modulus of Elasticity = 30,000 ksi]. 

 
                               1        1     

                   

     20 k           5 k         2                 1        

                        

  A   B       C        D    Section A            Section B, C, D 

 

          10             10 10          1      1     

                 

           A    20 k       B       C   5 k   D   2             1        

     

       Section A                Section B, C, D 

7. Rework Question 6 if both ends A and D are restrained. 

 

8. A rigid bar is supported by a pin at A and two linearly elastic wires at B and, as shown in the figure 

below. The area of the wire B is 60 mm
2
 and wire C is 120 mm

2
. Determine the reactions at A, B and C 

caused by the applied force P = 6 kN.  

 

 
                                       A 

                                                     B 
                 
             C                           1 m 

 

 

 
              P = 6 kN 

           0.5 m     0.5 m     0.5 m 
 

9. Calculate the forces and axial stresses in wires a and c supporting the rigid beam abcd shown below.  

Also calculate the deflection of the beam at a, c and d 

[Given: E = 30,000 ksi, A = 0.20 in
2
, L = 15″ for wire a, E = 20,000 ksi, A = 0.10 in

2
, L = 15″ for c] 

 

 

 

 

 

 

 

 

10. A cylindrical steel pressure vessel 400 mm in diameter with a wall thickness of 20 mm is subjected to an 

internal pressure of 4.5 MPa. 

 (i)  Calculate the tangential and longitudinal stresses and strains in the steel. 

 (ii)  To what value may the internal pressure be increased in the allowable stress in steel is 120 MPa 

 (iii)  If the internal pressure is increased until the vessel burst, sketch the type of fracture that would occur 

 [Given: Modulus of elasticity of steel = 200 GPa, Poisson’s ratio = 0.25]. 

 

11. For a gas cylinder of 6 diameter and 0.25 wall thickness, calculate the 

(i)  maximum internal pressure that the cylinder can be subjected to, 

(ii)  corresponding tangential and longitudinal stresses and strains in the wall of the cylinder, 

(iii)  required spacing of 1 diameter bolts and thickness of welds (both longitudinal and circumferential) 

if the cylinder is subjected to an internal pressure one-third the maximum pressure calculated in (i). 

 [Given: Allowable tensile stress in the wall = 20 ksi, Allowable shear stress in bolts and welds = 16 ksi,  

  Modulus of elasticity of steel = 30  10
3
 ksi, Poisson’s ratio = 0.25]. 

 

12. A large pipe, 1.5 m in diameter, is composed of wooden pieces and bound together by steel hoops 300 

mm
2
 in cross-sectional area. If the permissible tensile stress in the hoops is 130 MPa, what is the 

maximum spacing between hoops under a head water of 30 m [Given: Unit weight of water = 1 ton/m
3
]. 

 

10          10           10 

3' 

 

c 

 b 

 

a 

 

6' 

d 

 

3' 

2 k/ft 1 k/ft 
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Bending Stress and Neutral Axis 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If NN = s and PP = s + u 

If s  0, Normal Strain, x = u/s  du/ds             …………...…….(4.1) 

Also, u = y    u/s = y /s                    …………………(4.2) 

If s  0, du/ds =  y d/ds                     ……………..…..(4.3) 

Also, Curvature  = 1/R = d/ds  

Eq. (4.1)  x =  y                        …………………(4.4) 

Using stress-strain relationship, x = Ex  Normal Stress, x = E y           …………………(4.5) 

Total Normal force on the section, ∑dFx =x dA = E  y dA                   …………………(4.6) 

Since ∑dFx = 0   E  y dA= 0    y dA = 0                   …………………(4.7) 

Eq. (4.7)  The beam bends about its Centroidal Axis, which is also called its Neutral Axis 

Total moment on the section, ∑dMz = ∑ y dFx =   y x dA =E  y2
 dA  

Mz = E Iz       = Mz/EIz               …………………(4.8) 

Combining Eqs. (4.4) and (4.8)  x =  Mz y/Iz                   …………………(4.9) 

Maximum normal stress,  

x(max) =  Mz ymax/Iz,  commonly denoted by  x(max) =  Mz c/Iz            ………..………(4.10) 

 

 

Example 4.1: Calculate the maximum bending stress in the simply supported beam shown below. 

 

Maximum bending moment, Mmax = wL
2
/8 = 12.5 k = 150 k    

Moment of inertia Iz = 10  10
3
/12 = 833.33 in

4
      

ymax = c = 10/2 = 5 

 

Maximum normal stress  

x(max) 
 
=  150  5/833.33 =  0.9 ksi  

                     

 

 

                    

O 

N 
N 

D 
C 

A 
B 

R 

 

P 
P 

y 

N 

N 

D 

C 

A 

B 

P 

P 

1 k/ft 

M M 

Assumptions: 

1. Plane sections remain plane 

2. Deformations are small 

3. Hooke’s law is valid 

Fig. 4.1: Pure Bending of Beam 

10 

10 

+ 0.9 ksi 

−0.9 ksi 

L = 10 

Fig. 4.2: Bending Stress in Simply Supported Beam 
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Bending Stress in Composite Sections 

Instead of homogeneous materials, engineering structures are quite often made of composite sections. For 

example, concrete and wooden beams are sometimes reinforced by steel and metal straps, plastics reinforced 

with fibers. The structural analysis of these sections is somewhat different from the analysis of homogeneous 

sections. Although the basic assumption ‘plane sections remain plane after bending‘ is still valid, the 

resulting stresses are quite different, depending (for linearly elastic materials) on the modulus of elasticity of 

the different materials of the section. 

To use the basic equations of pure bending, the structural analysis of these sections assumes them to be 

made of a homogeneous material. Instead of changing the modulus of elasticity over the section, the width 

of various parts is modified proportionately. The stress analysis is made of an Equivalent or Transformed 

Section derived. 

Example 4.2 

For a simply supported beam loaded as shown below, draw the flexural stress and strain diagrams over the 

composite cross-sectional area at section B. 
                  10        

            

                       E1 = 1000 ksi 

              

                                    E2 = 3000 ksi 

          

                      5             5                             E3 = 2000 ksi 

        

                    
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 4.3 

If the cross-sectional area of the simply supported beam loaded as in Example 4.2 is made of Reinforced 

Concrete as shown below, draw the flexural stress diagram over the section B.  

Assume that the section is ‘uncracked’ [Given: Esteel = 30000 ksi, Econcrete = 3000 ksi]. 

 
          2.5 

    

           

   9.5 

                

 

 

 

 

A 
B 

C 

1 k/ft 
4 

6 

2 

7 

Maximum bending moment, Mmax = −110
2
/8 = −12.5 k-ft = −150 k-in 

For the Equivalent Section (Fig. 4.4), assumed to be made of material1 

y = (40  1 + 126  5 + 40  10)/(40 + 126 + 40) = 5.19 

andI = 20  2
3
/12 + 40  (5.19−1)

2
 +21  6

3
/12 + 126  (5.19−5)

2
  

 + 10  4
3
/12 + 40  (5.19−10)

2
 = 2076.90 in

4
 

Bending strains 

a = −{(−150)  6.81/2076.90}/1000 = 4.92  10
−4 

b = −{(−150)  2.81/2076.90}/1000 = 2.03  10
−4 

c = −{(−150)  (−3.19)/2076.90}/1000 = −2.31  10
−4 

d = −{(−150)  (−5.19)/2076.90}/1000 = −3.75  10
−4 

 

The corresponding stresses are 

a = aE1 = 4.92  10
−4

  1000 = 0.492 ksi 

b1 = bE1 = 0.58  10
−5 
 1000 = 0.203 ksi, b2 = b E2 = 0.609 ksi 

c2 = cE2 = −0.692 ksi, c3 = cE3 = −0.461 ksi 

d3 = dE3 = −0.750 ksi 

 

 

Fig. 4.3: Simply Supported Composite Beam 

4 

6 

2 

10 

20 

21 

Fig. 4.4: The Equivalent Section 

a 

b 

c 
d 

Fig. 4.6: Reinforced Concrete Section 

Fig. 4.5: Variation of Flexural Strain and Stress 

Bar diameter = 0.75 

4.92 

2.03 

10 

Strain (10
−4

) 

2.31 

3.75 

0.492 

0.203 
0.609 

0.461 
0.692 

0.750 
Stress (ksi) 
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Bending Stress in Reinforced Concrete 

Reinforced Concrete is one of the prime examples of a composite section subjected to flexural stress. It is a 

combination of concrete and reinforcing steel working together in a wide range of structural applications. As 

a building material, it has unique characteristics, because the very low tensile strength of plain concrete is 

offset by the high tensile efficiency of the encased steel bars. The following examples illustrate the linearly 

elastic material behavior of Reinforced Concrete subjected to flexural stress.  

The first illustration is Example 4.3 shown before, when concrete does not crack due to tensile stress. 

Solution of Example 4.3 

 

 
          

    

           

                9.5 

                

 

 

 

 

 

 

The modular ratio, n = Esteel/Econcrete = 30000/3000 = 10 

Transformed extra steel area in the Equivalent Cracked section, (n−1)As = 9  [3  (0.75)
2
/4] = 11.93 in

2 

y = (120  6 + 11.93  9.5)/(120 + 11.93) = 6.32 

Moment of Inertia,I = 10  12
3
/12 + 120  (6 − 6.32)

2
 + 11.93  (9.5 − 6.32)

2
 = 1572.91 in

4 

Maximum compressive stress in concrete, fc = My/I = 150  6.32/1572.91 = 0.602 ksi 

   Maximum tensile stress in concrete, ft = 150  (12  6.32)/1572.91 = 0.542 ksi 

   Maximum tensile stress in steel, fs = 150  (9.5 − 6.32)/1572.91  10 = 3.04 ksi 

As the tensile stress induced in concrete is quite substantial (expected to be greater than its tensile strength), 

it is more reasonable to assume concrete to have cracked in tension. 

Example 4.4 

Rework Example 4.3 if the Reinforced Concrete section at B (shown below) is assumed ‘cracked’. 

 
          

    

           

         9.5 

                

 

 

 

 

 

 

Modular ratio, n = 10 

Transformed steel area in the Equivalent Cracked section, nAs = 10  [3  (0.75)
2
/4] = 13.25 in

2 

Taking moments of the cracked area about neutral axis  

10 c  c/2 = 13.25 (9.5 − c)  5c
2
 + 13.25 c − 125.91 = 0  c = 3.86 

Moment of Inertia,I = 10  3.86
3
/3 + 13.25  (9.5−3.86)

2
 = 613.30 in

4 

Maximum compressive stress in concrete, fc = Mc/I = (150  3.86)/613.30 = 0.945 ksi 

   Maximum tensile stress in steel, fs = 150  (9.5−3.86)/613.30  10 = 13.78 ksi 

Fig. 4.6 (Repeated): 

Reinforced Concrete Section 

Bar diameter = 0.75 

10 

2.5 

10 

2.5 

9.5 

nAs  

c 

Fig. 4.6 (Repeated): 

Reinforced Concrete Section Fig. 4.7: Equivalent Uncracked Section 

10 

nAs  

Bar diameter = 0.75 

2.5 

10 10 

(n1)As  

y 

0.542 

0.602 

Flexural Stress 

(ksi) 

3.04 

0.942 

Flexural Stress (ksi) 

13.78 

Fig. 4.8: Equivalent Cracked Section 
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Plastic Bending of Beams 

For reasons of economy, it is important to determine member strengths beyond the elastic limit. The elastic 

bending theory for beams can be readily extended to inelastic bending by introducing a uniaxial nonlinear 

stress-strain relationship for the material. The basic requirement for statics and kinematics of deformation 

will remain the same as for the elastic case. 

The elastic perfectly plastic idealization, for reasons of simplicity, is often used, for beams of ductile 

materials in determining their behavior in bending. Fig. 4.9 shows the elastic-perfectly plastic uniaxial 

stress-strain (-) relationship of a material, while Fig. 4.10 shows the development of strain and stress 

when a beam section made of this material is subjected to pure bending.  

 

 

 

 

 

 

 

 

 

 

As shown in Fig. 4.10, it is reasonable to assume linear variation of strain across the section (i.e., plane 

sections remain plane after bending), but as the strain increases the corresponding variation of stress is no 

longer linear. At the extreme case, the stress over almost the entire section may reach the yield point (yp); 

i.e., the section becomes fully plastic and the corresponding bending moment Mp (the Plastic Moment of the 

section) is given by  

  Mp = yp Z               ………..………(4.11) 

where Z is called the plastic Section Modulus. The ratio of the plastic and elastic section modulus (i.e., Z and 

S) is called the aspect ratio () of the section; i.e.,   

   = Z/S                ………..………(4.12) 

If the material has identical - relation in tension and compression, the neutral axis of the fully plastic 

section corresponds to two equal areas in tension and compression. 

 

Example 4.5 

Calculate the Section Modulus, Plastic Section Modulus and Shape Factor of the sections shown below. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4.9: Elastic-Perfectly Plastic - Relation Fig. 4.10: Development of Bending Strain and Stress 

M 
yp 

yp 

 

 

Elastic   Elasto-

Plastic  
Fully Plastic  

2 

12 

12 

2 

For the rectangular section, the neutral axis divides the area into two segments of (b  h/2). 

Compressive force = Tensile force = yp (bh/2) 

Plastic moment Mp = Tensile (or compressive) force  Moment arm = yp (bh/2)  h/2 

Mp = yp (bh
2
/4)  Z = bh

2
/4 

Since S = bh
2
/6,  = Z/S = 1.5 

 

For the T-section, the neutral axis divides the area along the flange line.  

Compressive force = Tensile force = yp (12  2) = 24yp 

Plastic moment Mp = Tensile (or compressive) force  Moment arm = 24yp  (1 + 6) 

Mp = yp (168)  Z = 168 in
3
 

Also,y = (24  1 + 24   8)/48 = 4.5;  c = 14 − 4.5 = 9.5 

I = 12  2
3
/12 + 24 (1 − 4.5)

2
 + 2  12

3
/12 + 24 (8 − 4.5)

2
 = 884 in

4
 

S = 884/9.5 = 93.05 in
3
,  = Z/S = 1.81 

Fig. 4.11 

b 

h 
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Practice Problems on Bending Stress 

1.  Calculate (i) the maximum positive and negative bending moments, (ii) the maximum tensile and 

compressive flexural stresses in the beam ABC loaded as shown below. 

                                   10 

         1.5 k/ft    

            A              

                                            B C                  6 

              15       5 

                        

2.  The figure below shows a 5 long cantilever beam of uniformly varying cross-section. The beam is 1 

wide and its depth increases linearly from 1 at the free end A to 2 at the fixed end B. If the beam 

weighs 150 lb per ft
3
, calculate the maximum bending stress at B due to the self-weight of the beam. 

 
                          1   

        

                                 A                 B 

                                                   2 

                Section A 

 

                             Section B 

3.  Calculate the maximum allowable load P in the simply supported beam loaded as shown below, if the 

allowable compressive stress in the cross-section is 20 ksi and allowable tensile stress 15 ksi. For this 

value of P, (i) draw the bending stress and strain diagrams over the section, (ii) calculate the 

compressive and tensile forces acting on the section [Given: Modulus of elasticity E = 30,000 ksi]. 

           

                 P/2              P/2             

          

     

                                                            

                           

                    

   10               10              10    

 

      

4. A concrete cylinder of 1 diameter and 2 height is suspended at the free end of a 12 cantilever beam as 

shown in the figure below, which also shows the composite cross-section of the beam, made of steel and 

timber. Calculate the maximum flexural stresses in the section [Given: Unit weight of concrete = 0.15 

k/ft
3
, Modulus of elasticity of steel = 30,000 ksi, Modulus of elasticity of timber = 1500 ksi].  

         
                    

                                   
 

                      
                                                                       

       

                                                                        

                    

 

 

 

5. For the beam described in Question 4, draw the flexural strain diagram over the composite cross-

sectional area shown below at Section A. Also calculate the maximum stress in timber and aluminum. 

 

 

 

 

 

 

 

 

 
Composite cross-section 

12 

A 

2 

12 

12 

2 

2 

1 

2 

9 

6 

Concrete 

Cylinder 

Timber 

Steel 

Cross Section 

Cross Section 

1 

1 

5 

1 

1 

20 

2 

2 

16 
2 2 

Timber Et = 2000 ksi 

Aluminum Ea = 10000 ksi 
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6. (i)  Calculate the required depth ‘h’ if the Section 1 shown below (made of concrete) is subjected to a

 negative bending moment of 50 k-ft.  

(ii)  Calculate the maximum flexural stress in concrete if the section is made of Reinforced Concrete as 

shown below in Section 2. Assume the section is ‘cracked’ due to concrete tension 

  [Given: Allowable concrete stress in tension = 200 psi, compression = 1500 psi, n = 10]. 

 

                

      

        

   

        

 

 
            
 

7. Calculate the bending moment required to cause the Reinforced Concrete section shown below to crack 

in concrete tension. Also calculate the corresponding tensile stress in steel bars and maximum 

compressive stress in concrete [Given: n = 10, Allowable tensile stress in concrete = 300 psi]. 

 

                

      

           

    

                

 

            

 

8.  The side elevation and 1-ft wide cross-section ‘A’ of the Reinforced Concrete wall of a 12-ft high water 

tank is shown in the figure below. Calculate the maximum bending stresses in concrete and steel 

assuming that the section is (i) ‘uncracked’, (ii) ‘cracked’ due to concrete tension  

 [Given: Esteel = 30000 ksi, Econcrete = 3000 ksi]. 

 
               

 

 

                 3 5 3 

           12 

                   10    12 

       

                      

                               

 

9.  Calculate the (i) Section Modulus, (ii) Plastic Section Modulus and Shape Factor of the inverted T-

section shown in Question 3. 

 

10.  Calculate the ultimate moment capacity of the RC section shown in Question 7. 

 

 

 

 

 

 

 

 

A Section A 

Bar diameter = 0.75 

Bar diameter = 5/8 

Steel Bar  

(1 diameter) 

12 

h 

12 

2.5 

15.5 

Section 1 
(Concrete) 

Section 2 (Reinforced Concrete) 

Steel Bar  

(1 diameter) 

12 

2.5 

12.5 
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Shear Flow and Flexural Shear Stress 

The theory of simple bending analyzes a section under pure bending, neglecting the effect of shear force 

acting on it. But in actual practice when a beam is loaded, the shear force at a section always comes into play 

along with the bending moment. And sometimes the shear stress at a section assumes much importance in 

design. 

Shear Force at a Section 

Consider a small beam segment ABCD of length dx shown in Fig. 5.1(a), in equilibrium under the action of 

shear forces V and (V + dV) and bending moments M and (M + dM) at sections AB and CD respectively. 

 

 

 

 

 

 

Fig. 5.1: (a) Shear and Moment on a Differential Beam Segment, (b) Cross-Sectional Area 

 

If I = Centroidal moment of inertia of the cross-sectional area [shown in Fig. 5.1(b)], 

Bending stress on the differential area dA at height y on section AB,  = − My/I      .…………….(5.1) 

and on the differential area on section CD,  + d  = − (M + dM) y/I             …...………...(5.2) 

The net unbalanced normal force acting on the differential area dA 

 dF = (M + dM) y/I   dA − (M) y/I  dA = (dM)(dA) yI    …...………...(5.3) 

Total unbalanced normal force on the dark-shaded area 

 F =  dF =  (dM) (dA) y/I = (dM) Ay /I       …...………...(5.4) 

This force has to be balanced by a shear force F acting along the length of the beam.  

Shear force per unit length of beam (at height y0 from the Neutral Axis) = F/dx = (dM/dx) Ay /I = VQ/I 

 i.e., Shear Flow, q = VQ/I                ……...………...(5.5) 

If b is the width of the section at height y0 from Neutral Axis, shear stress along horizontal surface b dx 

 yx  = VQ/I b                    ……...………...(5.6) 

Sincexy =yx (from past formulation of shear stress), shear stress along the vertical surface AB is also  

   = VQ/I b                    ……...………...(5.7) 

 

 

Example 5.1: Calculate the flexural shear stress at levels 1-1, 2-2 and 3-3 at the support sections of the 

simply supported beam shown below. 

 

Shear force at support, V = wL/2 = 5 k = 5000 lb    

Moment of inertiaIz = 10  10
3
/12 = 833.33 in

4
      

 

 

 

  

                     

 

 

 

b M 

V + dV V 

A C 

B D 

y 

dx 

y 
M + dM 

Neutral Axis 

dA 
y0 

F 

1 k/ft 

10 

2 

L = 10 

Fig. 5.2: Levels at Section of Simply Supported Beam 

3 

5 At level 1-1, Q11 = (10  5)  5/2 = 125 in
3 

11 = VQ11/I b = 5000  125/(833.33  10) = 75 psi 

 

At level 2-2, Q22 = (10  2)  (3 + 2/2) = 80 in
3 

22 = VQ22/I b = 5000  80/(833.33  10) = 48 psi 

 

At level 3-3, Q33 = 0 

33 = VQ33/I b = 5000  0/(833.33  10) = 0 

 

3 3 

2 2 

1 1 
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Flexural Shear Stress in Typical Sections 

The following examples demonstrate the shear stress distribution over several cross-sectional areas. 

 

Example 5.2: Show the variation of flexural shear stress over a rectangular and circular cross-section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 5.3: Calculate the flexural shear stress at Level 1-1 and 2-2 for the T- and I-sections shown below 

and loaded as a simply supported beam shown in Example 5.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the rectangular section, 

Area A = bh, Moment of inertiaIz = bh
3
/12 

At level y0, Q0 = b  (h/2 − y0)  (h/2 + y0)/2  

            = b  {(h/2)
2 
−(y0)

2
}/2

 

0 = VQ0/I b  

       = V  [b {(h/2)
2 
−(y0)

2
}/2]/(bh

3
/12 b) 

       = 1.5 (V/bh)  {1
 
−(2y0/h)

2
} 

max = 1.5 (V/bh) = 1.5 V/A          [when y0 = 0] 

 

y0 

h/2 

h/2−y0 

b 

Fig. 5.3: Flexural Shear Stress Distribution for (a) Rectangular Section, (b) Circular Section 

 

 

 

1.5 V/A 

 

 

 

1.33V/A 

y0 

R 

R−y0 

y 

dy 

For the circular section, 

Area A = R
2
, Moment of inertiaIz = R

4
/4 

At level y, dQ = {2√(R
2
−y

2
) dy} y = 2y√(R

2
−y

2
) dy 

At level y0, Q0 = 2y√(R
2
−y

2
) dy = 2/3 (R

2
−y0

2
)

3/2
 

0 = VQ0./I b  

       = V  [2/3 (R
2
−y0

2
)

3/2
]/{R

4
/4 2√(R

2
−y0

2
)} 

       = (4/3) (V/R
2
)  {1

 
−(y0/R)

2
} 

max = (4/3) (V/R
2
) = 1.33 V/A [when y0 = 0]  

For the T-section, 

Area A = 24+24 = 48 in
2
,y = (246 + 2413)/48 = 9.5 

Moment of inertia 

Iz = 24 (12
2
/12 + 3.5

2
) + 24 (2

2
/12 + 3.5

2
) = 884 in

4
 

At level 1-1, Q11 = 24  (2.5 + 2/2) = 84 in
3 

At level 2-2, Q22 = Q11 + 2  2.5  (2.5/2) = 90.25 in
3
 

11 (flange) = VQ11/Iz b11 = 5  84/[884  12]  

           = 0.040 ksi 

11 (web) = 5  84/[884  2] = 0.238 ksi 

22 = 5  90.25/[884  2] = 0.255 ksi 

max = 0.255 ksi, while avg = 5/48 = 0.104 ksi 

Neglecting the flange, avg   5/(28) = 0.179 ksi 

Fig. 5.4: Flexural Shear Stress Distribution for a (a) T-Section, (b) I-Section 

2 

12 

12 

2 

9.5 

1 1 

2 2 

2 

12 

2 

1 1 

2 2 
6 

6 

2 

For the I-section, 

Area A = 24 + 24 + 24 = 72 in
2
,y = 8 

Moment of inertia 

Iz = 12  16
3
/12 − 10  12

3
/12 = 2656 in

4
 

At level 1-1, Q11 = 24  (6 + 2/2) = 168 in
3 

At level 2-2, Q22 = Q11 + 2  6  (6/2) = 204 in
3
 

11 (flange) = VQ11/Iz b11 = 5  168/[2656  12]  

           = 0.026 ksi 

11 (web) = 5  168/[2656  2] = 0.158 ksi 

22 = 5  204/[2656  2] = 0.192 ksi 

max = 0.192 ksi, while avg = 5/72 = 0.069 ksi 

Neglecting the flange width, avg  5/(32) = 0.156 ksi 
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Flexural Shear and Connections 

Structural sections are often built by combining together several simpler sections. The main purpose is to 

enhance the load-carrying capacity of the sections, which may otherwise be inadequate to withstand the 

design loads. These sections can be either glued together or joined by bolts/welds to withstand the shear flow 

working at the joints to separate the sections. 

 

Example 5.4: 

(i)  Calculate the flexural shear flow at Level 1-1 of the T-sections joined as shown below in (a) and (b) if 

loaded as the simply supported beam shown in Example 5.1.  

(ii) Calculate the spacing of 3/8 bolts required at the joints to withstand shear flow. 

(iii) Calculate the size of welds required at the joints [Given: Allowable shear stress = 15 ksi]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 5.5:  

Repeat the calculations of Example 5.4 for the I-section shown in Example 5.3. 

 

 

1 

For the T-section joined as (a) 

Area A = 48 in
2
,y = 9.5, Iz = 884 in

4
 

At level 1-1, Q11 = 24  (2.5 + 2/2) = 84 in
3 

 

Shear flow q11 = VQ11/Iz = 5  84/884 = 0.475 k/in 

Allowable shear at bolts = (/4)  (3/8)
2
  15 = 1.66 k 

Required bolt spacing = 1.66/0.475 = 3.49 

Bolts can be spaced @ 3.5 c/c 

 

Allowable weld shear = 0.707all  t  2 = 1.414  15  t 

            = 21.21 t   k/in 

21.21 t = 0.475  t = 0.022, which is quite nominal 

1/16 thickness will be more than sufficient  

    [even if used in part of the beam] 

 

Fig. 5.5: Flexural Shear Flow at 1-1 for a T-Section joined as (a) and (b) 

2 

12 

12 

2 

9.5 

1 1 2 

12 
9.5 

2 

For the T-section joined as (b) 

Area A = 48 in
2
,y = 9.5, Iz = 884 in

4
 

At level 1-1, Q11 = 5  2  (2.5 + 2/2)  2 = 70 in
3 

 

Shear flow q11 = VQ11/Iz = 5  70/884 = 0.396 k/in 

Allowable shear at bolts = 1.66 k 

Required bolt spacing = 1.66/0.396 = 4.18 

Bolts can be spaced @ 4 c/c 

 

Allowable weld shear = 21.21 t   k/in 

21.21 t = 0.396  t = 0.019, which is also nominal 

1/16 thickness will again be more than sufficient 

 

5 
1 
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Shear Center 

Torsional moments are caused by forces acting off the axis of a section. Every cross-section possesses a 

point through which the transverse load must be applied so as to produce to torsion in the section. The point 

is called the Shear Center of the section. Torsion is produced if the transverse load is applied away from the 

shear center and moreover, the twist takes place around it. For this reason, the shear center is also called the 

center of twist. 

For cross-sectional areas having one axis of symmetry (e.g., T-section, channel section), the shear center is 

always located on the axis of symmetry. For those having two axes of symmetry (e.g., rectangular, circular, 

I-section), the shear center coincides with the centroid of the cross-sectional area. 

For thin-walled channel sections, of particular interest here, the location of the shear center is obtained 

explicitly by considering the shear flow within the section due to applied transverse load V. If b = Width of 

the flange, h = Height of the web, t = Thickness of the section, I = Moment of inertia of the section (shown 

in Fig. 5.6), the maximum shear flow in the horizontal flanges  

 qmax = VQmax/I = V  (b  t  h/2)/I              ……………..….(5.8) 

Horizontal Force, H = qmax b/2 = V  (b
2
   h  t)/(4 I)              ……………..….(5.9) 

Torsional moment due to horizontal forces T = H  h = V  (b
2
 h

2
 t)/(4 I)             …………..….(5.10) 

Required distance of applied load from web, e = T/V = (b
2
 h

2
 t)/(4 I)              …………..….(5.11) 

 
  
 

             

             

             

             

             

             

             

             

             

   

 

 

 

 

For thin-walled cross-sections, I can be approximated by  

 I  th
3
/12 + bth

2
/2                ………………….(5.12) 

from which e  b/(2+h/3b)                 …..……………...(5.13) 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.6: Location of Shear Center of Thin-walled Channel section 
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As mentioned, torsion is induced in the section if the transverse 

load is applied away from the shear center. Fig. 5.7 shows that 

in such cases, the section twists about its shear center; i.e., the 

torsional moment equals to the applied force times its 

perpendicular  distance from the shear center.  

 

Knowledge about torsional deformations is required to 

calculate the torsional rotation induced in such cases. 

Fig. 5.7: Section twists about Shear Center 
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Practice Problems on Flexural Shear Stress 

1. Compare the maximum flexural shear stresses on a square and a circular area if their cross-sectional 

areas the same (assume 100 in
2
) and they are subjected to the same shear force (assume 10 k). 

2.  (i)  Calculate the maximum allowable load P in the simply supported beam loaded as shown below, if 

 the allowable shear stress in the cross-section is 12 ksi.  

 (ii) For this value of P, draw the shear stress diagram over the section at support. 

 
           

                 P/2              P/2             

          

     

                                                            

                           

                    

   10               10              10    

 

      

 

3.  (i)  Calculate the maximum allowable value of w (k/ft) if the flexural shear stress over the cross-section 

 is not to exceed 100 psi. 

 (ii)  For the value of w calculated in (i), draw the shear stress diagram over the cross-section where the 

 shear force in the beam is the maximum. 

 
                                    

         w k/ft    

            A              

                                            B C                 10 

              15       5 

                        

 

4.  The figure below shows a 5 long cantilever beam of uniformly varying cross-section. The beam is 1 

wide and its depth increases linearly from 1 at the free end A to 2 at the fixed end B. If the beam 

weighs 150 lb per ft
3
, calculate the maximum shear stress at the fixed end B due to the self-weight of the 

beam. 

                          1   

        

                                 A                 B 

                                                   2 

                Section A 

 

                             Section B 

 

5.  Rectangular plates [(50.5) and (30.5)] are to be joined either by bolts of 0.25 diameter (spaced @ 

3 c/c) or 1/8 thick welds to form an I-section as shown below. Calculate the shear stress induced in the 

bolts and welds if the section is subjected to a shear force of 10 kips  

 [Given: Allowable shear stress = 12 ksi]. 

              

                           

         

                       

        3  0.5 

 

     

     

 

   

4 

10 

Cross Section 

5 

0.5 

0.5 

Welds Bolts 

2 

12 

12 

2 

Cross Section 

5 

1 

1 

25 
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6.  Locate the shear centers of the areas (thickness = 0.25 throughout) shown below by centerline 

dimensions, and calculate the torsion produced by the vertical forces (10 kips) passing through points A. 

 
                 

                   

              

             

                            

             

             

               

             

                

                         

 

7. The channel-shaped cross-sectional area of a beam is shown below by centerline dimensions. If the self-

weight of the beam is 15 lb, calculate the magnitude of force P needed to avoid torsion in the section.  

 

 

 

 

 

              

             

             
              

 

6 

4 

Thickness = 1/8 

(throughout) 

P 

1 

1 

5 

2 3.5 

A 

2 

7 A 7 

2 2 

A 


