University of Asia Pacific
Department of Basic Sciences and Humanities
Mid-term Examination Spring 2023
Program: B.Sc. in Civil Engineering
Course Title: Principles of Economics
Course Code: ECN 201
Time: 1 hour
Credit Hour: 2.00
Full Marks: 40

There are three Questions. Answer any two including Q-1. All questions are of equal value. Figures in the right margin indicate marks.
1.
$\mathrm{P}=100-2 \mathrm{Q}$
$\mathrm{P}=10+\mathrm{Q}$
a) Calculate consumer surplus, producer surplus and total surplus from the given 10 equations.
b) Explain the impact of change in input price on equilibrium price and quantity.10
2. a) Describe different types of price elasticity of supply with the help of diagrams. $\mathbf{1 0}$
b) When demand is price inelastic, a price increase decreases total revenue. - True / $\mathbf{1 0}$ False

OR

3. a) Describe different types of price elasticity of demand with the help of diagrams. 10
b) When demand is price elastic, a price increase decreases total revenue. - True / $\mathbf{1 0}$ False

University of Asia Pacific

Department of Basic Sciences \& Humanities
Mid-Semester Examination, Spring -2023
Program: B.Sc. in Civil Engineering

Course Title: Mathematics-IV
Course Code: MTH 203
Time: 1.00 Hour
Credit: 3.00
Full Marks: 60
There are four (4) questions. Answer three (3) including Q1 and Q2. Figures given in the right margin indicate the marks of the respective questions.

1. a. Obtain the associated differential equations of the equation
$y=A \cos a x+B \sin a x$, where A and B are arbitrary constants and a is a fixed number.
b. Obtain the differential equation of all circles passing through the origin and having their centres on the x axis.
2. a. Identify and solve the equation $x^{2}(y+1) d x+y^{2}(x-1) d y=0$.
b. Verify whether the differential equation is exact or not. Also, solve the equation $\left(y^{2}-2 x y+6 x\right) d x-\left(x^{2}-2 x y+2\right) d y=0$.
3. a. Solve the equation $x^{2} \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}-4 y=x^{4}$.
b. Solve the equation $\left(D^{2}-3 D+2\right) y=\sin 3 x$.

OR

4. a. Identify and solve the equation $\frac{d^{3} y}{d x^{3}}+6 \frac{d^{2} y}{d x^{2}}+25 y=0$.
b. Solve the equation $\left(D^{3}-2 D^{2}-5 D+6\right) y=\left(e^{2 x}+3\right)^{2}$.

University of Asia Pacific
 Department of Civil Engineering Mid Semester Examination Spring 2023 (Set 2)

Given $R_{0}=$ Last three digits of Registration \#

1. Calculate equivalent polar moment of inertia ($J_{c q}$) of the cross-section shown in Fig. 1 by centerline dimensions
[Given: $x=\left(1+0.01 R_{0}\right) \mathrm{ft}$
Wall thickness $=0.10 \mathrm{ft}$ throughout $]$.

2.

Fig. 2 shows a motorbike with helical Spring-pairs A and B at a distance $L_{A B}=\left(1+0.01 R_{\theta}\right)^{\mathrm{m}}$, supporting a weight W_{0} $\left(=500+5 R_{0}\right)^{\mathrm{N}}$ at the center of gravity G.

All springs have shear modulus $=80 \mathrm{GPa}$, coil diameter $=$ 3^{mm}, mean diameter $=50^{\mathrm{mm}}$, number of coils $=6$.
(i) For each Spring B, calculate the
(a) Force,
(b) Deformation.
(ii) Draw Mohr's circle of stresses for the coil of Spring B.
3. Fig. 2 shows front wheel C and rear wheel D of a motorbike at a distance $L_{(V)}=\left(2+0.02 R_{()}\right)^{m}$, supporting weight $W_{T}\left(=2000+20 R_{0}\right)^{\mathrm{N}}$ at the center of gravity G.
Fig. 3(a) shows the front view of a moving motorbike, being subjected to centrifugal force H_{x} (in addition to weight W_{T}).
Fig. 3(b) shows the contact surface area of both tyres, as well as the center of gravity G (where W_{T} works), inertia force H_{x} (= $0.5 W_{T}$) and centrifugal force H_{y}, acting at height $h=\left(1+0.1 R_{\theta}\right)^{\mathrm{m}}$. Given: $b_{0}=300^{\mathrm{mm}}$ and $t_{0}=150^{\mathrm{mm}}$, calculate the
(i) Centrifugal force H_{y} required to overturn the bike
(ii) Maximum combined normal stress on the contact area of tyres.

Fig. 3(b)
4. Fig. 4(a) shows impact force (P) on the head of a motorcyclist, Fig. 4(b) shows impact force (Q) reduced by protective helmet while Fig. 4(c) shows a simplified model of the neck cross-section.
If $P=\left(5+0.05 R_{0}\right)$ kips, calculate the
(i) Principal Stresses (σ_{l} and σ_{2}) acting at the center of the neck cross-section.

Fig. 4(a)

Fig. 4(b)
(ii) Yield Strength (Y) required to avoid yielding, according to Tresca yield criterion
(iii) Yield Strength required to avoid yielding, according to St. Venant $(v=0.30)$, for force $Q=P / 10$.

List of Useful Formulae for CE 213

* Torsional Rotation $\phi_{\mathrm{B}}-\phi_{\mathrm{A}}=\int\left(\mathrm{T} / \mathrm{J}_{\mathrm{eq}} \mathrm{G}\right) \mathrm{dx}$, and $=\left(\mathrm{TL} / \mathrm{J}_{\mathrm{eq}} \mathrm{G}\right)$, if $\mathrm{T}, \mathrm{J}_{\mathrm{eq}}$ and G are constants

Section	Torsional Shear Stress	$\mathbf{J}_{\text {eq }}$
Solid Circular	$\tau=T c / J$	$\pi \mathrm{~d}^{4} / 32$
Thin-walled	$\tau=T /(2(\mathrm{~A})$	$4\left(\mathrm{~A}^{2} /(\mathrm{Jds} / \mathrm{t})\right.$
Rectangular	$\tau=T /\left(\alpha \mathrm{bt}^{2}\right)$	$\beta \mathrm{pt}^{3}$

b / t	1.0	1.5	2.0	3.0	6.0	10.0	α
α	0.208	0.231	0.246	0.267	0.299	0.312	0.333
β	0.141	0.196	0.229	0.263	0.299	0.312	0.333

* Normal Stress (along x-axis) due to Biaxial Bending (about y - and z-axis): $\sigma_{x}(y, z)=M_{z} y / I_{z}+M_{y} z / I_{y}$
* Normal Stress (along x-axis) due to Combined Axial Force (along x-axis) and Biaxial Bending (about y - and z-axis): $\sigma_{x}(y, z)=P / A+M_{z} y / I_{z}+M_{y} z / I_{y}$
* Corner points of the kern of a Rectangular Area are (b/6, 0), ($0, \mathrm{~h} / 6$), ($-\mathrm{b} / 6,0$), ($0,-\mathrm{h} / 6$)
* Maximum shear stress on a Helical spring: $\tau_{\text {max }}=\tau_{\text {direct }}+\tau_{\text {torsion }}=P / A+T r / J=P / A(1+2 R / r)$
* Stiffness of a Helical spring is $\mathrm{k}=\mathrm{Gd}^{4} /\left(64 \mathrm{R}^{3} \mathrm{~N}\right)$
* $\sigma_{\mathrm{xx}}{ }^{\prime}=\left(\sigma_{\mathrm{xx}}+\sigma_{\mathrm{yy}}\right) / 2+\left\{\left(\sigma_{\mathrm{xx}}-\sigma_{\mathrm{yy}}\right) / 2\right\} \cos 2 \theta+\left(\tau_{\mathrm{xy}}\right) \sin 2 \theta=\left(\sigma_{\mathrm{xx}}+\sigma_{\mathrm{yy}}\right) / 2+\sqrt{ }\left[\left\{\left(\sigma_{\mathrm{xx}}-\sigma_{\mathrm{yy}}\right) / 2\right\}^{2}+\left(\tau_{\mathrm{xy}}\right)^{2}\right] \cos (2 \theta-\alpha)$
$\tau_{\mathrm{xy}}{ }^{\prime}=-\left\{\left(\sigma_{\mathrm{xx}}-\sigma_{\mathrm{yy}}\right) / 2\right\} \sin 2 \theta+\left(\tau_{\mathrm{xy}}\right) \cos 2 \theta=\tau_{\mathrm{xy}}{ }^{\prime}=-\sqrt{ }\left[\left\{\left(\sigma_{\mathrm{xx}}-\sigma_{\mathrm{yy}}\right) / 2\right\}^{2}+\left(\tau_{\mathrm{xy}}\right)^{2}\right] \sin (2 \theta-\alpha)$
where $\tan \alpha=2 \tau_{\mathrm{xy}} /\left(\sigma_{\mathrm{xx}}-\sigma_{\mathrm{yy}}\right)$
* $\sigma_{\mathrm{xx}(\text { max })}=\left(\sigma_{\mathrm{xx}}+\sigma_{y y}\right) / 2+\sqrt{ }\left[\left\{\left(\sigma_{\mathrm{xx}}-\sigma_{y y}\right) / 2\right\}^{2}+\left(\tau_{\mathrm{xy}}\right)^{2}\right]$; when $\theta=\alpha / 2, \alpha / 2+180^{\circ}$
$\sigma_{\mathrm{xx}(\text { min })}=\left(\sigma_{\mathrm{xx}}+\sigma_{\mathrm{yy}}\right) / 2-\sqrt{ }\left[\left\{\left(\sigma_{\mathrm{xx}}-\sigma_{\mathrm{yy}}\right) / 2\right\}^{2}+\left(\tau_{\mathrm{xy}}\right)^{2}\right]$; when $\theta=\alpha / 2 \pm 90^{\circ}$
* $\tau_{\mathrm{xy}(\text { max })}=\sqrt{ }\left[\left\{\left(\sigma_{\mathrm{xx}}-\sigma_{\mathrm{yy}}\right) / 2\right\}^{2}+\left(\tau_{\mathrm{xy}}\right)^{2}\right]$; when $\theta=\alpha / 2-45^{\circ}, \alpha / 2+135^{\circ}$
$\tau_{x y(\text { min })}=-\sqrt{ }\left[\left\{\left(\sigma_{x x}-\sigma_{y y}\right) / 2\right\}^{2}+\left(\tau_{x y}\right)^{2}\right]$; when $\theta=\alpha / 2+45^{\circ}, \alpha / 2-135^{\circ}$
* Mohr’s Circle of Stresses: Center $(a, 0)=\left[\left(\sigma_{x x}+\sigma_{y y}\right) / 2,0\right]$ and radius $R=\sqrt{ }\left[\left\{\left(\sigma_{x x}-\sigma_{y y}\right) / 2\right\}^{2}+\left(\tau_{x y}\right)^{2}\right]$
* To avoid Yielding
Maximum Normal Stress Theory (Rankine):
Maximum Normal Strain Theory (St. Venant):

Maximum Shear Stress Theory (Tresca): \quad\begin{tabular}{lll}
$\left|\sigma_{1}\right|<\mathrm{Y}$ \& and

$\sigma_{1}-v \sigma_{2} \mid<\mathrm{Y}$ \& and

$\sigma_{1}-\sigma_{2} \mid<\mathrm{Y}$ \& and \& $\left\lvert\,$| $\sigma_{2} \mid<\mathrm{Y}$. |
| :--- |
| $\sigma_{2}-v \sigma_{1}$ |$<\mathrm{Y}\right.$.

$\sigma_{1} \mid<\mathrm{Y}$ \& and $\left|\sigma_{2}\right|<\mathrm{Y}$
\end{tabular}

Maximum Distortion-Energy Theory (Von Mises): $\left(\sigma_{1}{ }^{2}+\sigma_{2}{ }^{2}-\sigma_{1} \sigma_{2}\right)<Y^{2}$

University of Asia Pacific
 Department of Civil Engineering
 Midterm Examination Spring 2023
 Program: B.Sc. in Engineering (Civil)

Course Title: Numerical Analysis and Computer Programming
Course Code: CE 205
Time: 1 hour
Credit Hour: 3.00
Full Marks: 40
(Answer all of the questions. Assume any reasonable value for missing data.)

Part A

1. The volume of a regular octagonal prism is expressed by the equation.

$$
V=2(1+\sqrt{2}) a^{2} h
$$

Where, volume ' V ' $=60 \mathrm{~m}^{3}$ and height ' h ' $=3 \mathrm{~m}$. Solve the equation for base edge ' a ' between the interval $[1.5,2.5]$ using Regula Falsi method, which is correct upto 3 decimal places.
2. Solve the following equations using Gauss Jordan Elimination method.

$$
\begin{gather*}
x+3 y+z=10 \\
x-2 y-z=-6 \\
2 x+y+2 z=10 \tag{10}
\end{gather*}
$$

3. Imagine, a construction company has developed a model which determines the C: FA: CA ratio for concrete mixture to be used in a day. On a certain day, the ratio needs to be determined by the following system of linear equations:

$$
\begin{gathered}
27 \mathrm{FA}+6 \mathrm{CA}-\mathrm{C}=85 \\
\mathrm{FA}+\mathrm{CA}+54 \mathrm{C}=110 \\
6 \mathrm{FA}+15 \mathrm{CA}+2 \mathrm{C}=72
\end{gathered}
$$

Now, determine the C: FA: CA ratio using Gauss Seidel method.

Part B

1. Imagine you are designing a road pavement, and you need to assess the impact of wheel loads on the pavement's structural integrity. You need to write a C++ program to calculate the impact factor for the pavement based on the wheel loads. The impact factor (IF) for a wheel load is calculated as follows: IF = (Load $/$ Spacing $) *($ Tire Pressure $/ 1000)$
Where: Load is the magnitude of the wheel load (in kg). Spacing is the spacing between wheels (in meters). Tire Pressure is the tire pressure (in kPa).

Write a C++ program that takes as input: The number of wheel loads; For each wheel load, the program should take the magnitude (in kg), tire pressure (in kPa), and spacing between wheels (in meters); A specified value beyond which pavement integrity will be impacted.

The program should then calculate and display the impact factor for each wheel load. Sum the impact factors and determine if pavement integrity is impacted when the total impact factor exceeds a specified value.
2. Write a $\mathrm{C}++$ program that allows environmental engineering students to input the AQI value and displays the corresponding AQI category.

The program should:
Display a menu of AQI categories: Good, Moderate, Unhealthy for Sensitive Groups, Unhealthy, Very Unhealthy, and Hazardous.
Allow the user to input AQI of their area to determine the category.
Use a switch statement to determine and display the AQI category based on the entered AQI value.

AQI Categories:

Good: 0-50
Moderate: 51-100
Unhealthy for Sensitive Groups: 101-150
Unhealthy: 151-200
Very Unhealthy: 201-300
Hazardous: 301 and above

University of Asia Pacific
 Department of Civil Engineering
 Mid-Term Examination Spring 2023
 Program: B.Sc. in Civil Engineering

Course Title: Fluid Mechanics
Course Code: CE 221
Time: 1 hour
Credit Hour: 3.00
Full Marks: 50

Answer all the Questions. Assume any reasonable value(s) if miscing. Necessary hyures are given in the opposite nage

1. Senine and provide mathematical expression for the following fluid properties:
i) kinematic viscosity, ii) surface tension, iii) bulk modulus of elasticity, iv) specific volume, v) capillary effect
2. Define and briefly explain different flow type for following criterion:
i) time, ii) density, iii) space iv) velocity distribution and Reynold's number, v) velocity components,
3. Derive the mathematical expression for equation of continuity for steady and unsteady
flow (Draw necessary figure)
4. Two parallel plates are filled with fluid of s.g. $=0.8$ and dynamic viscosity 0.7 poise.
?'ates are 10 cm apart and one plate is moving at $1 \mathrm{~m} / \mathrm{s}$ while the other is stationary (fivgue 1). Vocity distribution of the flow is: $\mathrm{v}=100-\mathrm{k}(10-\mathrm{y})^{2}$. Find i) velocity gradient, ii) shear stress at boundary
5. Calculate the resultant force on triangular gate ABC in figure: 2 and lovate its center of pressure. It is located 10 cm below from water table and its height is 40 cm and width is 60 cm .
6. A foow velocity profil. : siven, $u=-x, v=y, w=0$ find out whether, the flow is a)
steady or unsivato b) $1 \mathrm{D} / 2 \mathrm{D} / 3 \mathrm{D}=$? c) does it satisfy continuity? d) find the egutaion of streamline.

Figure: 1

Figure: 2

University of Asia Pacific
 Department of Civil Engineering Midterm Examination Spring 2023

Course Title: Engineering Geology \& Geomorphology
Time: 1 hour

Answer to all the questions

1(a). Draw a schematic diagram of the rock cycle and provide two examples of each type of rock.
(b). Distinguish between physical and chemical weathering processes. Also distinguish between $3+3=6$ weathering and erosion.

2(a). Mention the basin factors (no description required) affecting runoff.
2(b). In the following basin determine the value of x for which flow rate (Q) or runoff will be the maximum. Also find the FF and CC of the basin for maximum runoff.

3(a). Mention two assumptions of rational formula.
3(b). For the following figure and information calculate intensity of rainfall in $\mathrm{mm} / \mathrm{hr}$.
$A_{1}=2.0$ Acre $\left(1\right.$ Acre $\left.=4840 \mathrm{~d}^{2}\right) ; \mathrm{L}=70 \mathrm{yd} ; \mathrm{C}_{2}=0.2 ; \mathrm{C}_{3}=0.7 ; \mathrm{Q}_{\mathrm{p}}=63.7 \mathrm{yd}^{3} / \mathrm{hr}$

4(a). With the aid of a neat sketch show different parts of a typical fold geometry.
4(b). Classify fold (mention names only). Draw a neat sketch of oblique fault.
4(c). Sketch and mention few major features of any two types of drainage pattern.

