Answer TWO questions including question no. 3

1. a. Define sociology and common sense. 5
b. Discuss how sociological knowledge might be used in everyday life. 15
OR
2. a. Define culture and society. 5
b. Identify the essential components of culture. 15
3. a. What are the features of industrial societies advanced by Lenski? 5
b. Point out the stages of development of human society from Marxist 15
Perspective.

University of Asia Pacific
 Department of Basic Sciences and Humanities
 Mid-Term Examination Spring 2023
 Program: B.Sc. in Civil Engineering

Course Title: Bangladesh Studies: History \quad Credit Hour: $2 \quad$| Course Code: HSS211(b) |
| :--- |
| Time: 1 hour |\quad Full Marks: 40

There are three questions. Answer two questions including Q-1.

1. a. Explain Matsyanyayam. 10
b. Discuss how the Matsyanyaym ended and by whom. 10
2. a. Write a short note on Sultan Shamsuddin Iliyas Shah. 10
b. Explain the social changes in the Muslim period. 10

OR
3. a. Explain who the Bara Bhuiyans were and how they were defeated. 10
b. Write in brief the reasons and results of the Battle of Palassy. 10

University of Asia Pacific
 Department of Civil Engineering
 Mid-Term Examination Spring 2023

Time: 1 (one) Hour
Course Title: Mechanics of Solids I

Full Marks: $(3 \times 20)=60$

Answer all questions.
 Each question carries equal marks

1. Draw Shear Force and Bending Moment Diagram for the following beam loading.

2. Determine the maximum possitive and maximum negative moment for the following beam by Integration method.

3. Use singularity function to draw SFD and BMD for the following beam.

University of Asia Pacific
 Department of Civil Engineering
 Mid-Term Examination Spring 2023
 Program: B.Sc. Engineering (Civil)

Course Title: Engineering Materials Time: 1 hour

Credit Hour: 4.00
Course Code: CE 201
Full Marks: 80

Answer all four questions

1.a) Draw the strain response diagram using the load versus time graph of an elasto-plastic material shown below. $\left(t_{1}-t_{0}=t_{2}-t_{1}\right)$

b) Concrete used in tunnelling works faces the risk of being damaged by high amount of sulfates found in its surrounding environment. Explain how the presence of sulfate salts can lead to deterioration of concrete. How can you modify the composition of OPC to tackle this situation?
2.a) Interpret and explain the compressive strength vs cement fineness graph as shown.

b) Draw the calorimetric curve (rate of heat evolution vs time) of Portland cement hydration process. Label the different stages and add brief descriptions on the figure.
c) Sketch on the same plot the schematic stress-strain graph of two concrete blocks A and B, where the Young's/ elastic modulus of A is about two times greater than that of B.
d) List a few advantages of continuous kiln over intermittent kilns.
3.a) The sieve analysis result of $\mathbf{1} \mathbf{~ k g}$ of a sand sample is provided below. If the entire sample is passed through \#10 sieve only, then 200 gm would retain in it.

Sieve	Materials retained (gm)
$\# 4$	0
$\# 8$	50
$\# 10$	$?$
$\# 16$	360
$\# 30$	$?$
$\# 40$	140
$\# 100$	60
Pan	20

i. Calculate the FM of the sand sample.
ii. Suppose the experiment is repeated using \#50 sieve instead of \#40 sieve and the same result is obtained as given above. Calculate the new FM.
b) First class brick samples are tested for density. The following results are obtained from the test. Calculate the density of brick. Assume specific gravity at $25^{\circ} \mathrm{C}=0.877$.

- Oven dry weight of a brick $=1510 \mathrm{gm}$
- Weight of wax coated brick in air $=1840 \mathrm{gm}$
- Weight of wax coated brick in water $=720 \mathrm{gm}$.

University of Asia Pacific
 Department of Basic Sciences and Humanities
 Mid-term Examination Spring-2023
 Program: B.Sc. Engineering (Civil)

There are four (4) questions. Answer three (3) questions including Q3 and Q4. Figures given in the right margin indicate the marks of the respective questions.

1. a. If $A=\left(\begin{array}{ccc}4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -4 & -3\end{array}\right)$, prove that $A^{3}-4 A^{2}-A+4 I=0$.
b. If $A=\left(\begin{array}{lll}1 & 2 & 1 \\ 0 & 1 & 4\end{array}\right), B=\left(\begin{array}{ll}1 & 2 \\ 0 & 1 \\ 1 & 0\end{array}\right), C=\left(\begin{array}{cc}1 & 5 \\ -1 & -2\end{array}\right)$ then, prove that $(A B) C=A(B C)$.

OR
2. a. Find the rank of the matrix $\left(\begin{array}{ccccc}1 & 3 & 1 & -2 & -3 \\ 1 & 4 & 3 & -1 & -4 \\ 2 & 3 & -4 & -7 & -3 \\ 3 & 8 & 1 & -7 & -8\end{array}\right)$.
b. Given $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), B=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right), C=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$. Prove the following relations: $\mathbf{1 0}$

$$
A^{2}=B^{2}=C^{2}=I \cdot A B=-B A, A C=-C A, B C=-C B .
$$

3. a. Using the property of determinant solve $\left|\begin{array}{ccc}a+b+c & -c & -b \\ -c & a+b+c & -a \\ -b & -a & a+b+c\end{array}\right|$.
b. Find the inverse of matrix $A=\left(\begin{array}{ccc}2 & -1 & -1 \\ 1 & -2 & 1 \\ 1 & -1 & 2\end{array}\right)$.
4. a. Solve the system of linear equations using Gaussian elimination method

$$
\begin{aligned}
& x+y+z=9 \\
& 2 x+5 y+7 z=52 \\
& 2 x+y-z=0
\end{aligned}
$$

b. Using Cramer's rules solve the following system of linear equations

$$
\begin{aligned}
& 3 x+y+2 z=3 \\
& 2 x-3 y-z=-3 \\
& x+2 y+z=4
\end{aligned}
$$

University of Asia Pacific
 Department of Civil Engineering
 Mid Semester Examination, Spring-2023
 Program: B.Sc. in Civil ($1^{\text {st }}$ Year, $2^{\text {nd }}$ Semester)

Course Title: Basic Electrical Engineering Course Code: ECE 201 Time: 1.00 Hour

Credit Hours: 3.00
Full Marks: 60
[There are four questions. Answer any three including questions 1 \& 2. Figures in the right margin indicate marks]

1. a. For the circuit given in figure 1 , Calculate-
i) The equivalent resistance $\boldsymbol{R}_{e q}$.
ii) The current I.

Figure 1
b. Find the value of current I_{1} and I_{2} for the circuit given in figure 2 .

Figure 2
2. For the circuit shown in figure 3, construct the smallest equivalent circuit [one voltage source and a resistor] with respect to the load resistor R_{L}.

Figure 3
3. For the circuit shown in figure 4, using Nodal analysis.
a. Find the node voltages and
b. Calculate V_{o} and i_{o}

Figure 4

OR

4 For the circuit shown in figure 4, using Mesh analysis.
a. Find the mesh currents and
b. Calculate V_{o} and i_{o}

