University of Asia Pacific
 Department of Basic Sciences and Humanities
 Final Examination, Spring 2023
 Program: B. Sc. Engineering (Civil)

Course Title: History of Bangladesh Independence, Society and Culture Time: 03 hours

Credit Hours: 03
Course Code: HSS 105
Full Marks: 150
Use separate answer scripts for Part-A and Part-B. All questions are of equal value. Figures in the right margin indicate marks.

Answer the following questions.

> Part - A

1. Write an essay on the language movement of 1952.
2. Explain about the Six-point program of 1966.
3. Write a short note on the mass upsurge in 1969.

OR

4. Write a short note on the Liberation War of Bangladesh in 1971.
Part - B
5. a. What do you understand by social change? Discuss the sources of social change with 15
examples.

b. Discuss the origin and development of sociology.
6. a. What is social order? Discuss how we learn social order. 15
b. Discuss the contribution of European scholars in Sociology.
7. Define and distinguish between industrial and post-industrial society.

OR

8. Define capitalism and socialism. Discuss the different features of capitalism and 15 socialism.

University of Asia Pacific
 Department of Basic Sciences \& Humanities
 Final Examination, Spring 2023
 Program: B.Sc. in Civil Engineering

Course Title: Mathematics-I
Course Code: MTH 101
Time: 3.00 Hours
Credit: 3.00
Full Marks: 150
There are eight (8) questions. Answer six (6) including Q1, Q2, Q3 and Q4. Figures given in the right margin indicate the marks of the respective questions.

1. a. Integrate the following:
i) $\int \frac{x+1}{x^{2}-7 x+10} d x$
ii) $\int \frac{\cos x}{\sin x+2 \cos x} d x$
iii) $\int \frac{d x}{(3 x+2) \sqrt{2 x+1}}$
b. Evaluate $\lim _{n \rightarrow \infty}\left[\frac{1^{2}}{n^{3}+1^{3}}+\frac{2^{2}}{n^{3}+2^{3}}+\frac{3^{2}}{n^{3}+3^{3}}+\cdots+\frac{n^{2}}{n^{3}+n^{3}}\right]$.
2. a. Obtain the reduction formula for $\int_{0}^{\frac{\pi}{4}} \tan ^{n} x d x$. Use the formula to evaluate $\int_{0}^{\frac{\pi}{4}} \tan ^{8} x d x$.
b. Show that $\int_{0}^{1} \frac{x^{6}}{\sqrt{1-x^{2}}} d x=\frac{5 \pi}{32}$.
3. a. If $w=\sin ^{-1}\left(\frac{x^{2}+y^{2}}{x+y}\right)$, show that $x \frac{\partial w}{\partial x}+y \frac{\partial w}{\partial y}=\tan w$.
b. If $y=(a x+b)^{m}$, find y_{n}.
4. a. If $y=\sin ^{-1} x$ then show that
$\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-n^{2} y_{n}=0$.
b. Find the absolute maximum and minimum values of the function $f(x)=2 x^{3}-15 x^{2}+36 x$ on the interval $[1,5]$.
5. a. Use a double integral to find the volume of the solid that is bounded above by the plane $z=4-x-y$ and below by the rectangle $R=[0,1] \times[0,2]$.
b. Prove that $\int_{0}^{\infty} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2}$.

OR

6. a. Evaluate $\iint_{D}(x+2 y) d A$, where D is the region bounded by the parabolas $y=2 x^{2}$ and $y=1+x^{2}$.
b. Evaluate the improper integral $\int_{-\infty}^{\infty} \frac{d x}{1+x^{2}} d x$.
7. a. Find the area of the surface generated by revolving the curve $x^{2}+y^{2}=4$ about the X axis between $x=-1$ and $x=1$.
b. Show that $\int_{0}^{\frac{\pi}{2}} \log \sin x d x=\frac{\pi}{2} \log \frac{1}{2}$.

OR

8. a. Find the whole area of the cycloid $x=a(\theta+\sin \theta)$, $y=a(1-\cos \theta)$ bounded by its base.
b. Find the perimeter of the cardioid $r=a(1-\cos \theta)$.

University of Asia Pacific
 Department of Basic Sciences and Humanities
 Final Examination, Spring 2023
 Program: B.Sc. in Civil Engineering

Course Title: Physics I
Course Code: PHY 101
Time: 3.0 hours
Credit Hour: 3.0
Full Marks: 150

There are eight questions. Answer six including questions 1, 2, 5 and 6 . Figures in the right margin indicate marks.

1. a) Describe stream line motion. Show that for a liquid in stream line motion,

$$
P+\frac{1}{2} \rho v^{2}+\rho g y=\text { constant }
$$

where the symbols have their usual meanings.
b) Oil flows through a pipe 8.0 cm in diameter at an average speed of $4.0 \frac{\mathrm{~m}}{\mathrm{~s}}$. 5 Determine the flow rate in $\mathrm{m}^{3} / \mathrm{s}$ and $\mathrm{m}^{3} / \mathrm{h}$.
2. a) State and explain first law of thermodynamics.
b) Explain isothermal process. Calculate the work done during an isothermal $5+15$ process.
3. a) Show that for a particle executing simple harmonic motion, the 10 instantaneous velocity is $\omega \sqrt{A^{2}-y^{2}}$ and instantaneous acceleration is $-\omega^{2} y$.
b) When a simple harmonic wave is propagated through a medium, the displacement of a particle (in cm) at any instant of time is given by

$$
y=10 \sin \frac{2 \pi}{100}(36000 t-20)
$$

Calculate the amplitude, wave velocity, wavelength, frequency and time period of the vibrating particle.
c) Differentiate between transverse and longitudinal wave.

OR

4. a) Show that closed end organ pipes have odd harmonics only and hence the value of $\mathrm{n}^{\text {th }}$ harmonic frequency will be $(2 \mathrm{n}+1) \mathrm{f}_{1}$.
b) Distinguish between progressive and stationary wave.
5. a) Show that the fringe width between two consecutive dark fringes is $X=\frac{\lambda D}{d}$, where the symbols have their usual meanings.
b) Light from a sodium vapor lamp forms an interference pattern on a screen 0.8 m from a pair of slits. The bright fringes in the pattern are 0.35 cm apart. What is the slit separation?
6. a) Define periodic motion. Establish that the total energy of a vibrating $5+10$ particle is equal to $2 \pi^{2} \mathrm{ma}^{2} \mathrm{n}^{2}$.
b) A simple harmonic motion is represented by the equation

$$
y=10 \sin \left(10 t-\frac{\pi}{6}\right)
$$

Calculate its
i) frequency
ii) time period
iii) maximum displacement
iv) maximum velocity.
7. a) Describe Carnot cycle with diagram.
b) Find the efficiency of a Carnot's engine working between the temperature $227^{\circ} \mathrm{C}$ and $27^{\circ} \mathrm{C}$.

OR
8. a) Show that $\mathrm{PV}^{\gamma}=$ constant for adiabatic process, where the symbols have 20
their usual meanings.
b) A quantity of air at $27^{\circ} \mathrm{C}$ and atmospheric pressure is suddenly compressed 5 to half of its original volume. Find the final pressure. $[\gamma=1.4]$

University of Asia Pacific
 Department of Civil Engineering
 Final Examination Spring 2023
 Program: B. Sc. Engineering (Civil)

Course Title: Engineering Mechanics Time: 3 hours

Credit Hours: 3.0
Course Code: CE 101
Full Marks: $100(10 \times 10)$

ANSWER ALL THE QUESTIONS

1. In the truss loaded as shown in Fig. 1, (i) identify the zero force members, (ii) calculate the reactions at supports o and r , and (iii) calculate forces in members $m n, q r$ and $m r$.

Fig. 1

Fig. 2
2. Locate the centroid of the composite line (shown in Fig.2) with respect to the given co-ordinate system.
3. For the frame $a b c d e$ loaded as shown in Fig.3, calculate the (i) reactions of supports b and d and (ii) shear force and bending moment at c (mid-point of member $b d$).

Fig. 3

Fig. 4

Fig. 5
4. Determine the value of $P_{2(\min)}$ in Fig. 4 that will cause impending motion towards the direction of P_{2} [Given, $\mathrm{f}_{\mathrm{A}}=\mathrm{f}_{\mathrm{B}}=\mathrm{f}_{\mathrm{C}}=0.2$].
5. A jet of steam issued from a nozzle with a velocity of $V_{1} \mathrm{fps}$ and an absolute rate of 5.1 lb . per sec. It enters a fixed blade which is shaped shown in Fig. 5 and has a negligible frictional loss. Calculate the horizontal and vertical components of the force exerted upon the fixed blade-
6. Compute the minimum moment of inertia $I_{\text {min }}$, and the maximum moment of inertia $\boldsymbol{I}_{\text {max }}$ about the centroidal axes of the shaded area shown in Fig. 6.
7. If the thickness of the composite area shown in Fig. 6 is 2 ft , calculate the mass moment of inertia of the composite mass with respect to the given co-ordinate system [Given, Unit weight of the object, $\left.\gamma=150 \mathrm{lb} / \mathrm{ft}^{3}\right]$.

8. A block weighing 510 lb is resting on a surface and is pulled rightward by a horizontal force F as shown in Fig. 7. If the body starts from rest and after 10 seconds its velocity is $20 \mathrm{ft} /$ second, calculate the applied force F and net work done in 10 seconds [Coefficient of static friction between the block and the surface $=0.20$].
9. A particle is moving with rectilinear motion such that the acceleration $\mathrm{a}=5.2 \mathrm{t} \mathrm{ft} / \mathrm{s}^{2}$. The initial and final velocity of the particle are $10 \mathrm{ft} / \mathrm{s}$ and $20 \mathrm{ft} / \mathrm{s}$, respectively. Calculate the required time and distance travelled by the particle.
10. Locate the centroid of the composite area shown in Fig. 8 Or Fig.9.

University of Asia Pacific
 Department of Civil Engineering
 Final Examination Spring 2023
 Program: B.Sc. Engineering (Civil)

Course Title: Introduction to Civil and Environmental Engineering	Course Code: CE 107	
Time: 2 Hours	Credit Hours: 2.00	Full Marks: 100

(Answer all the questions. Figures in the right margin indicate marks)

1. a) Discuss the effect of climate change on Bangladesh. [10]
b) Explain what factors make Bangladesh more vulnerable during flood. [5]
2. a) Define ecology and ecosystem. Describe the purposes of studying ecology. [4+6]
b) Explain ecosystem hierarchy in brief. [5]
3. a) Discuss the purpose of soil test and site classification. [5]
b) Discuss the components of soil test briefly. [10]
4. a) Define biodiversity hotspot. Explain why we need to protect biodiversity. [3+3]
b) Discuss the types of biodiversity and identify the direct benefits of biodiversity. [4+5]
5. a) Classify field survey based on the instruments used and discuss any two of them. [3+4]
b) Differentiate between national highway and regional highway. [5]
c) Briefly describe different types of structural loads. [8]
6. A five-storied residential building is to be constructed. Estimate the total construction [20] cost as per the PWD schedule. The particulars of the building are as follows:

Serial No	Particulars	Specification
1	Land Size	Determine from plot layout as shown in Figure 1
2	Building type	Residential (Standard)
3	Allowable Bearing Capacity	4 ksf
4	Floor Level	Five
5	Plinth Area	70 \% of land size
6	Construction Material	24 MPa, RCC Structure 1: 1.5:3 (Stone Chips)
7	Ground Floor	Car Parking
8	Rooftop RCC water tank	1500 Gallon
9	Structure type	RCC Frame Structure
10	Underground water reservoir	4000 Gallon
11	Boundary wall	RCC Frame
12	Contingency Cost	Consider 10 \% for this building

Figure 1

Annexure: PWD SCHEDULE

1. Foundation Cost upto PL (per m^{2} of Plinth Area)

Storey	$\mathbf{q}_{\mathbf{n}}=\mathbf{2} \mathbf{~ k s f}$	$\mathbf{q}_{\mathbf{a}}=\mathbf{2 . 5 0}$ $\mathbf{k s f}$	$\mathbf{q}_{\mathbf{a}}=\mathbf{3 . 0} \mathbf{~ k s f}$	$\mathbf{q}_{\mathbf{a}}=\mathbf{3 . 5} \mathbf{k s f}$	$\mathbf{q}_{\mathbf{a}}=\mathbf{4 . 0} \mathbf{k s f}$	$\mathbf{q}_{\mathbf{a}}=\mathbf{4 . 5} \mathbf{~ k s f}$	$\mathbf{q}_{\mathbf{a}}=\mathbf{5 . 0} \mathbf{~ k s f}$
1	3982	3875	3811	3769	3740	3718	3702
2	4684	4381	4199	4080	3997	3936	3830
3	5591	5036	4702	4482	4329	4217	4133
4	6566	5811	5296	4958	4723	4551	4421
5	8001	6774	6035	5550	5212	4965	4778
6	9495	7851	6862	6213	5759	5429	5178
7	10961	8908	7673	6862	6296	5883	5571
8		10043	8544	7560	6873	6371	5992
9		11252	9471	8302	7487	6891	6441
10		12529	10451	9088	8136	7441	6915

2. Superstructure Cost (per m^{2} of Plinth Area)

Building Category													
		$\begin{gathered} \text { Non-Residential } \\ \text { (fc=19-21 MPa, Brick } \\ \text { Chips) } \end{gathered}$			$\begin{gathered} \text { Residential } \\ \text { (fc=19-21 MPa, Brick } \\ \text { Chips) } \end{gathered}$			$\begin{gathered} \text { Non-Residential } \\ \text { (fc=22-25 MPa, Stone } \\ \text { Chips) } \end{gathered}$			$\begin{gathered} \text { Residential } \\ \text { (fc=22-25 MPa, Stone } \\ \text { Chips) } \end{gathered}$		
$\begin{aligned} & \text { Lev } \\ & \text { el } \end{aligned}$	Floor	Econo my	Standa rd	Superio r	Econo my	$\begin{aligned} & \text { Standar } \\ & \mathrm{d} \end{aligned}$	Superio r	Econo my	$\begin{aligned} & \text { Standar } \\ & \mathrm{d} \end{aligned}$	Superio r	Econom y	$\begin{aligned} & \text { Standar } \\ & \mathrm{d} \end{aligned}$	Superio r
0	GF Park	5449	5812	6538	5634	6010	6761	5922	6317	7107	6124	6532	7349
OA	Habitation	8545	9601	12674	8837	9929	13106	9020	10135	13378	9631	10792	14274
1	1 stifloor	8242	9360	12224	8523	9576	12640	8699	9776	12903	9289	10409	13767
2	2ndFloor	8365	9399	12401	8651	9720	12830	8830	9921	13096	9568	10565	14150
3	3 rdFloor	8491	9540	12593	8780	9866	13023	8962	10070	13293	9855	10723	14606
4	4 frafloor	8618	9683	12782	8912	10014	13218	9097	10221	13492	10151	10884	15044
5	5 thefloor	8748	9829	12974	9046	10154	13416	9233	10374	13694	10455	11046	15495
6	6 theloor	8835	9927	13104	9136	10265	13530	9326	10478	13831	11030	11158	15960

3. Boundary Wall:
4. External Water Supply:
5. Gas Connection:

GF:	Tk.260/sqm
Other floors:	Tk.100/sqm

6. Internal Electrification:
(i) Residential Building

Economy:	Tk. $1030 / \mathrm{sqm}$
Standard:	Tk. $1290 / \mathrm{sqm}$
Superior:	Tk. $1550 / \mathrm{sqm}$

(ii) Non- Residential Building

Economy:	Tk. $775 / \mathrm{sqm}$
Standard:	Tk. $970 / \mathrm{sqm}$
Superior:	Tk. $1160 / \mathrm{sqm}$

7. Internal Sanitary and Water Supply:
(i) Residential Building

Economy:	Tk. $475 / \mathrm{sqm}$
Standard:	Tk. $715 / \mathrm{sqm}$
Superior:	Tk. $1070 / \mathrm{sqm}$

(ii) Non-Residential Building

Economy:	Tk. $360 / \mathrm{sqm}$
Standard:	Tk. $540 / \mathrm{sqm}$
Superior:	Tk. $800 / \mathrm{sqm}$

8. Floor Finish Work:
9. Roof top RCC water Tank:

Tk.3500/m
Tk. $60.00 /$ gallon
Tk.260/sqm
Tk.100/sqm

Tk. 1000.00 / sqm
Tk.85.00/gallon

University of Asia Pacific

Semester Final Examination, Spring - 2023

Program: B.Sc. in CE ($1^{\text {st }}$ Year, $1^{\text {st }}$ Semester)

Course Title: Basic Electrical and Electronic
Engineering

Course Code: ECE 101
Credit Hours: 3.00
Full Marks: 150
[There are eight (8) questions. Answer any six (6) including Q1-Q4. Figures in the right margin indicate marks]

1. For the circuit give in figure 1, where all resistances are of equal value, $R=5 \Omega$, determine:
i) The equivalent resistance $\boldsymbol{R}_{\text {eq }}$.
ii) The current I_{s}.
iii) The current $I_{1} \& I_{2}$.
iv) The voltage V_{O}.

Figure 1
2. a. Using nodal analysis, determine all the node voltages in figure 2.
b. Using mesh analysis, determine all the mesh currents in figure 2.

Figure 2
3. a. Calculate the equivalent capacitance $C_{e q}$ in figure 3.

Figure 3
[10]
b. For firyon 4.
i) Determine the value of i_{L} and v_{c}.
ii) Calculate the energy stored in the inductor.
iii) Calculate the energy stored in the capacitor.

Figure 4
4. For the series magnetic circuit given in the figure 5 , determine:
i) the current I required to develop a flux of $\varphi=4 \times 10^{-3} W b$.
ii) $\mu \& \mu_{r}$ of the two materials.

Figure 5
5. Using superposition theorem to determine voltage V_{o} in figure 6 .

[25]

Figure 6
OR
6. For the circuit given in figure 7,
i) Draw the Thevenin's equivalent circuit at the terminal marked a and b. $(a-b$ are the load terminals)
ii) Draw the Norton's equivalent circuit.
iii) Determine the value of R_{L} for maximum power transfer and the value of maximum power.

Figure 7
7. a. The current though a capacitor, $C=2 \mathrm{mF}$ is given by,

$$
t=4 \sin (162 \%+56 j A
$$

i) Determine the expression for the voltage, v.
ii) Sketch v and i on the same axis.
b. Find the average and the R.M.S value of the wave shape given in figure 8 .

Figure 8

OR
8. For the circuit given in Figure 9, determine:
i) Z_{T}
ii) I_{s}
iii) $I_{1} \& I_{2}$
iv) $v_{1} \& v_{2}$
v) Power factor
vi) Power delivered to the circuit

Figure 9

Page 4 of 4

