University of Asia Pacific Department of Civil Engineering Midterm Examination Fall 2022 Program: B.Sc. in Engineering (Civil)

Course Title: Structural Engineering III		Course Code: CE 411
Time: 1 hour	Credit Hour : 3.0	Full Marks: $4 \times 10 = 40$
(11.		

ANSWER ALL QUESTIONS. Any missing data can be assumed reasonably.

- Ignore zero-force members of the space truss *abcdefgh* shown in *Fig.1* and apply boundary conditions to formulate stiffness matrix and load vector [Given: S_x = 1952 k/ft, Nodal Coordinates (ft) are a(0,0,0), b(0,0,10), c(10,0,5), d(0,-10,0), e(0, -10,10), f(10,-10,5), g(0,-20,0) and h(0,-20,10)].
- 2. Use stiffness method (neglecting axial deformations) to calculate the rotations of joints *c* and *e* of the frame *abcdef* loaded as shown in <u>*Fig.2*</u> [Given: $EI = 21 \times 10^3 k ft^2$].

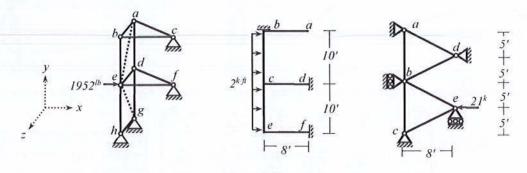
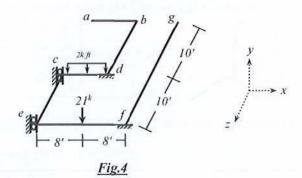
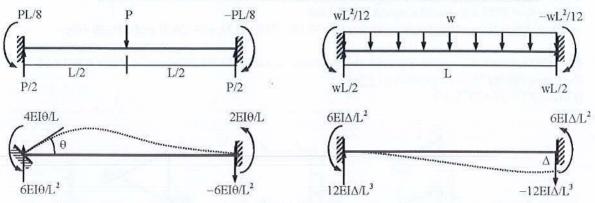



Fig.1


- Identify zero-force members of the truss loaded as shown in <u>*Fig.3*</u>.
 Determine the horizontal displacement of joint *e* and vertical displacement of joint *b*.
 Also calculate member forces
 [Given: *EA/L* = 1952 k/ft].
- 4. Use stiffness method to calculate displacements of joint *c* and *e* of the grid system loaded as shown in *Fig.4* [Given: $EI = 21 \times 10^3 \text{ k-ft}^2$ and $GJ = 18 \times 10^3 \text{ k-ft}^2$].

List of Useful Formulae for CE 411

* The stiffness matrix $\mathbf{K_m}^{\mathbf{G}}$ of a 2D truss member in the global axis system is given by

$$K_{\mathbf{m}}^{\mathbf{G}} = S_{\mathbf{x}} \begin{pmatrix} C^{2} & CS & -C^{2} & -CS \\ CS & S^{2} & -CS & -S^{2} \\ -C^{2} & -CS & C^{2} & CS \\ -CS & -S^{2} & CS & S^{2} \end{pmatrix} \text{ and Truss member force, } P_{AB} = S_{\mathbf{x}} [(u_{B}-u_{A})C + (v_{B}-v_{A})S]$$
$$[\text{where } C = \cos \theta, S = \sin \theta]$$

Fixed End Reactions for One-dimensional Prismatic Members under Typical Loadings

* The stiffness matrix of a 3D truss member in the global axes system [using $C_x = \cos \alpha$, $C_y = \cos \beta$, $C_z = \cos \gamma$] is

$$\mathbf{K_m}^{\mathbf{G}} = S_x \begin{pmatrix} C_x^2 & C_x C_y & C_x C_z & -C_x^2 & -C_x C_y & -C_x C_z \\ C_y C_x & C_y^2 & C_y C_z & -C_y C_x & -C_y^2 & -C_y C_z \\ C_z C_x & C_z C_y & C_z^2 & -C_z C_x & -C_z C_y & -C_z^2 \\ -C_x^2 & -C_x C_y & -C_x C_z & C_x^2 & C_x C_y & C_x C_z \\ -C_y C_x & -C_y^2 & -C_y C_z & C_y C_x & C_y^2 & C_y C_z \\ -C_z C_x & -C_z C_y & -C_z^2 & C_z C_x & C_z C_y & C_z^2 \end{pmatrix} \begin{bmatrix} C_x = L_x/L, C_y = L_y/L, C_z = L_z/L \\ where L = \sqrt{[L_x^2 + L_y^2 + L_z^2]} \\ where L = \sqrt{[L_x^2 + L_y^2 + L_z^2]} \end{bmatrix}$$

* Member force $P_{AB} = S_x \left[\left(u_B - u_A \right) C_x + \left(v_B - v_A \right) C_y + \left(w_B - w_A \right) C_z \right]$

* Ignoring axial deformations, the matrices $\mathbf{K_m}^L$ and $\mathbf{G_m}^L$ of a frame member in the local axis system are

$$\mathbf{K_{m}^{L}} = \begin{pmatrix} S_{1} & S_{2} & -S_{1} & S_{2} \\ S_{2} & S_{3} & -S_{2} & S_{4} \\ -S_{1} & -S_{2} & S_{1} & -S_{2} \\ S_{2} & S_{4} & -S_{2} & S_{3} \end{pmatrix} \qquad \mathbf{G_{m}^{L}} = (P/30L) \begin{pmatrix} 36 & 3L & -36 & 3L \\ 3L & 4L^{2} & -3L & -L^{2} \\ -36 & -3L & 36 & -3L \\ 3L & -L^{2} & -3L & 4L^{2} \end{pmatrix}$$

where $S_{1} = 12EI/L^{3}$, $S_{2} = 6EI/L^{2}$, $S_{3} = 4EI/L$, $S_{4} = 2EI/L$

*The general form of the stiffness matrix for any member of a 2-dimensional frame is

$$\mathbf{K_m}^{G} = \begin{pmatrix} \mathbf{S_xC^2 + S_1S^2} & (\mathbf{S_x - S_1})\mathbf{CS} & -\mathbf{S_2S} & -(\mathbf{S_xC^2 + S_1S^2}) & -(\mathbf{S_x - S_1})\mathbf{CS} & -\mathbf{S_2S} \\ (\mathbf{S_x - S_1})\mathbf{CS} & \mathbf{S_xS^2 + S_1C^2} & \mathbf{S_2C} & -(\mathbf{S_x - S_1})\mathbf{CS} & -(\mathbf{S_xS^2 + S_1C^2}) & \mathbf{S_2C} \\ \mathbf{S_2S} & \mathbf{S_2C} & \mathbf{S_3} & \mathbf{S_2S} & -\mathbf{S_2C} & \mathbf{S_4} \\ -(\mathbf{S_xC^2 + S_1S^2}) & -(\mathbf{S_x - S_1})\mathbf{CS} & \mathbf{S_2S} & \mathbf{S_xC^2 + S_1S^2} & (\mathbf{S_x - S_1})\mathbf{CS} & \mathbf{S_2S} \\ -(\mathbf{S_x - S_1})\mathbf{CS} & -(\mathbf{S_xS^2 + S_1C^2}) & -\mathbf{S_2C} & (\mathbf{S_x - S_1})\mathbf{CS} & \mathbf{S_2S} \\ -\mathbf{S_2S} & \mathbf{S_2C} & \mathbf{S_4} & \mathbf{S_2S} & -\mathbf{S_2C} & \mathbf{S_4} \\ \end{pmatrix}$$

University of Asia Pacific Department of Civil Engineering Midterm Examination – Fall 2022 Program: B.Sc. Engineering (Civil)

Course Title: Transportation Engineering II			Credit Hour: 3:00	Course Code: CE Full Marks: 6	
1.	a)	Compare the different types of joi	nts in rigid pavement.		(3.0)
	 Describe the basic requirements needed to check for the bituminous mix design. 				(5.0)
	c)	What is the major difference between bulk, apparent and effective specific gravity of aggregate?			
	d)	 Briefly discuss about the following i) Ductility test of bitume ii) Abrasion test of Aggre 	en mixes	: • 1) este d'hini	(5.0)
2		Decision and the terrest and the	C. 1: 1	at any article (2)	0+5(

2. a) Design an asphalt concrete mixture for a highway pavement supporting (20.0+5.0) light traffic. Table 1 and 2 shows data obtained from sieve analysis and Marshall method. Determine the optimum asphalt content for this mix for the specified limits given in Table 3. (The nominal maximum particle size in the aggregate mixture is 2 in.). Comment on stability and flow of the mixture.

Table 1: Sieve Analys	sis Results
-----------------------	-------------

Retained on Sieve designation	% by weight	Bulk Specific Gravity	
4.75 mm	7-47	3.44	
2.00 mm	50-67	2.96	
0.425 mm	10-25	3.55	
0.180 mm	8-28	2.15	
0.075 mm	5-15	3.08	

Table 2: Marshall Method

Asphalt %	Weight of specimen in Air (gm)	Weight of specimen in Water (gm)	Stability (lb)	Flow (in)	Maximum Specific gravity
4.0	1252	670	1410	5.5	2.53
4.5	1327	813	1650	3.8	2.70
5.0	1431	725	1370	6.4	2.63

b) Determine the asphalt absorbed for optimum mix based on the optimum asphalt content found in previous question [Q.2 (a)]. the maximum specific gravity for the mixture is 3.44 and the specific gravity of the asphalt content is 2.03. The aggregate characteristics are shown in table 1 of the previous [Q.2 (a)].

(20.0)

$$P_{\rm ba} = 100 \frac{G_{\rm sc} - G_{\rm sb}}{G_{\rm sb}G_{\rm sc}} G_{\rm b}$$
 $VMA = 100 - \frac{G_{\rm mb}P_{\rm s}}{G_{\rm sb}}$ $P_{\rm a} = 100 \frac{G_{\rm mm} - G_{\rm mb}}{G_{\rm mm}}$

6.4.2

$$G_{\rm sc} = \frac{100 - P_{\rm b}}{(100/G_{\rm mm}) - (P_{\rm b}/G_{\rm b})} \qquad G_{\rm sb} = \frac{P_{\rm ca} + P_{\rm fa} + P_{\rm mf}}{\frac{P_{\rm ca}}{G_{\rm bca}} + \frac{P_{\rm fa}}{G_{\rm bfa}} + \frac{P_{\rm mf}}{G_{\rm bmf}}}$$

Table 3 Suggested Test Limit

Marshall Method Mix Criteria	Light Traffic	Medium Traffic	Heavy Traffic	
Compaction (No. of 35 blows each end of Specimen)		50	75	
Stability N (lb)	3336(750)	5338(1200)	8006(1800)	
Flow 0.25 mm (0.01 in)	ow 0.25 mm 8 to 18 8 t		8 to 14	
Air Voids (%)	3 to 11	5 to 15	7 to 20	
Miner	al Percentage of V	oids in Mineral Aggreg	gates	
Standard Sieve Designation	ation	%		
No. 1	6	23.5		
No. 4		2	1	
No. 8		18		
3/8 in.		16		
1/2 in.		15		
¼ in.		14		
l in.		13		
1 ½ in.	an a	12		
2 in.		11.5		
2 ½ in.		11		

University of Asia Pacific **Department of Civil Engineering** Mid Term Examination Fall 2022 **Program: B.Sc. Engineering (Civil)**

......

	se Title: Project Planning and Management ; 1 Hour Credit Hours: 3.00	Course Code: CE 401 Full Marks: 60
	Answer all the questions.	
1.	(a) "An Engineer is hired for his or her Technical skills, fired for Poo promoted for Leadership and Management skills."	or skills and
	To what extent do you agree with the above quoted statement? Justify y with relevant explanation.	your answer [08]
	(b) How will you ensure the quality of construction materials p beginning of erection work and during the erection work?	prior to the [07]
2.	Draw the bar chart for "Finalization of designs and work order" for Construction Project. Assume appropriate activities and their relation duration of the project should be 25 weeks.	distant.

Table 1 shows a list of activities and their immediate predecessors for a project. 3.

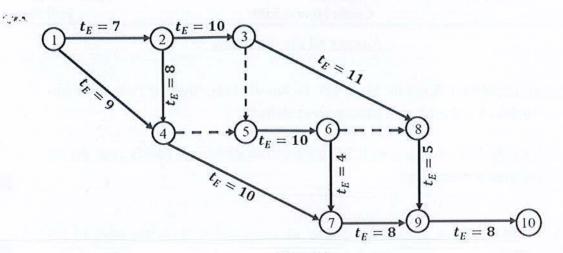
Activity Immediate Predecessors			
А			
В			
С	А		
D	A, B		
Е	С		
F	С		
G	D, E		
Н	F, G		

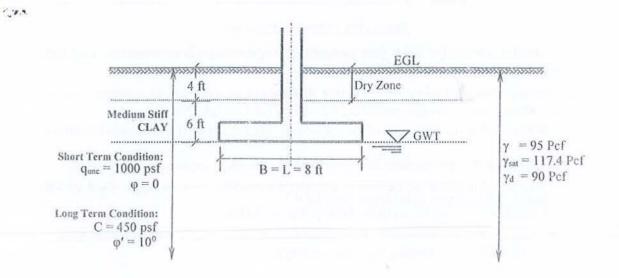
Construct Network Diagram for the activities of the project.

A construction company has an opportunity to submit a bid for the construction of 4. a new factory building. From the specification provided by the client, the PERT Network along with the expected completion time (in weeks) for each activity is shown in *Figure 1*.

[10]

(a) Analyze the Network to determine the Earliest Expected Time and Latest Allowable Occurrence Time for each event.
(b) Analyze your results to determine the slack for various events.
(c) Detect the Critical Path and show it on the Network.
[03]




Figure 1

University of Asia Pacific Department of Civil Engineering Midterm Examination Fall 2022 Program: B.Sc. Engineering (Civil)

Title: Geotechnica .0 hour	al Engineering II	Credit Hour:	3.0	Course Code: CE 441 Full Marks: 40
	Answer the	e following quest	ions	
(a) Mention some required. Compare		eotechnical engin	eering v	where subsurface exploration is
(b) Mention the p exploration program				ilable to conduct a subsurface project.
(c) Write short not	te on any one of the	following: (i)	Logging	(ii) Site reconnaissance
Consider the follow	ving scenario of a g	eotechnical subs	irface e	xploration performed:
- Depth of found	oth of exploration a lation considered, I umn for a square fo	$D_{\rm F} = 10 {\rm ft}$		tress criterion, $D_E = 27.3$ ft
Determine the foot calculate the allow:			ating de	pth of exploration. Also
Consider the follow area of Dhaka City		n existing four-sto	oried bu	ilding already constructed at an
 An existing for Estimated colu Estimated allo performed for the 	oting is found to ha mn load on this foc owable bearing c this site = 4000 psf	ve dimension of 8 sting for existing apacity as dete (analysis conside	3 ft x 10 conditio ermined red a fa	ft n = 400 kips from geotechnical analysis ctor of safety of 2.5).
				condition and comment on
corrected SPT-N v following informat - Hammer Effici	values as applicabl ion:			in Bangladesh. Determine the r strength parameters. Use the
Elevation				EGL
+/- 0.00 ft	Dry 7		202020202020	and a superior of the superior
	Diyz	on.		
- 8.0	a anna an			
- 15.0	© Blow Count	s 2/4/6 PLAST SI	LT Y	= 102.4 Pcf $_{f} = 95.4$ Pcf $_{int} = 117.4$
- 26.0		anter state and the state and	×	
			(conserved)	OWT
- 32.0			- Aller and a second	
- 40.0	© Blow Count	s 4/6/7 PL	ASTIC	$\begin{array}{l} \gamma = 107.4 \ \mathrm{Pcf} \\ \gamma_{\mathrm{d}} = 96.4 \ \mathrm{Pcf} \\ \gamma_{\mathrm{sat}} = 120.4 \end{array}$
- 50,0	ALM DEPENDENCE OF STREET, ST.		<u> </u>	enter en alemán a compañía de estador e vezer a ser a compañía de estador
		Subsurface Soil	Stratig	raphy

. Using Terzaghi's bearing capacity equation, determine the allowable bearing capacity for the square footing for short and long term conditions. The building is conventionally designed for short term condition and is constructed accordingly. Estimate its available actual factor of safety in the long term.

9

5.

University of Asia Pacific Department of Civil Engineering Midterm Examination Fall 2022 Program: B.Sc. Engineering (Civil)

Course Title: Irrigation and flood control		Course Code: CE 461
Time: 1 hour	Credit Hour: 3	Full Marks: 20

- a) Propose five benefits that Bangladesh can achieve through promoting less water consuming crops production during non-monsoon (December to May) months. (3)
 - b) Do you agree that too much reliance on "ground water" for irrigation management in Bangladesh is unsustainable in the long run? Justify your answer. (4)
- 2. a) Do you agree that *sprinkler irrigation* is an appropriate irrigation method for the food production in Bangladesh? Justify your answer. (3)

b) Determine the time required to irrigate a strip of land containing clay loam soil from a tube-well with a discharge of 0.15 m^3 /s by using border flooding method. The infiltration capacity of the soil may be taken as 6 cm/h and the average depth of flow on the field as Z cm.

 $(\mathbf{Z} = 2 + \text{last digit of your roll number}). (2)$

3. a) Do you agree that promoting non-structural measures of flood management will be beneficial for reducing flood hazards in Bangladesh in the long run? Justify your answer. (4)

b) Summarize five benefits of international cooperation for flood management in Bangladesh. (4)