CHAPTER 5

ECONOMICAL & PHYSICAL JUSTIFICATION FOR CANAL

Advantages of Lining
- Seepage Control
- Prevention of Water-Logging
- Increase in Channel Capacity
- Increase in Commanded Area
- Reduction in Maintenance Costs
- Elimination of Flood Dangers

Selection of suitable type of lining
- Low cost
- Impermeability
- Hydraulic efficiency (i.e. reduction in rugosity coefficient)
- Durability
- Resistance to erosion
- Repairability
- Structural stability

Financial Justification and Economics of Canal Lining

(i) Annual benefits:
(a) Saved seepage water by lining:
Let, the rate of water is sold to the cultivators = Tk. \(R_1 \)/cumec
If \(m \) cumecs of water is saved by lining the canal annually, then the money saved by lining = Tk. \(m \ R_1 \)

(b) Saving in maintenance cost:
Let, the average cost of annual upkeep of unlined channel = Tk. \(R_2 \)
If \(p \) is the percentage fraction of the saving achieved in maintenance cost by lining the canal, then the amount saved = \(p \ R_2 \) Tk.
:. The total annual benefits = \(m \ R_1 + p \ R_2 \)

(ii) Annual costs:
Let, the capital expenditure required on lining is \(C \) Tk. & the lining has a life of \(Y \) years
:. Annual depreciation charges = \(C/Y \) Tk.
:. Interest of the capital \(C = C(r/100) \) \[\because r = \text{percent of the rate of annual interest} \]
:. Average annual interest = \(C/2(1/100) \) Tk. \[\because \text{Since the capital value of the asset decreases from } C \text{ to zero in } Y \text{ years} \]
:. The total annual costs of lining = \(C/Y + C/2(1/100) \)

:. Benefit cost ratio = \(\frac{\text{Annual Benefits}}{\text{Annual Costs}} = \frac{m \ R_1 + p \ R_2}{C \frac{C}{Y} + \frac{r}{2} \times \frac{100}{100}} \)

If \(p \) is taken as 0.4, then
Benefit cost ratio = \(\frac{m \ R_1 + 0.4 \ R_2}{C \frac{C}{Y} + \frac{r}{2} \times \frac{100}{100}} \)
Problem:
An unlined canal giving a seepage loss of 3.3 cumec per million square meters of wetted area is proposed to be lined with 10 cm thick cement concrete lining, which costs Tk. 180 per 10 square meters. Given the following data, work out the economics of lining and benefit cost ratio.

Annual revenue per cumec of water from all crops	Tk. 3.5 lakhs
Discharge in the channel	83.5 cumecs
Area of the channel	40.8 m²
Wetted perimeter of the channel	18.8 m
Wetted perimeter of the lining	18.5 m
Annual maintenance cost of unlined channel per 10 square meter	Tk. 1.0

Solution:
Let us consider 1 km reach of canal. Therefore, the wetted surface per km = 18.8×1000 = 18,800 m²

(i) Annual Benefits
(a) Seepage loss
Seepage loss in unlined canal @ 3.3 cumec per million sq. m = (3.3/10⁶)×18,800 cumec/km
= 62,040×10⁻⁶ cumec/km
Assume, seepage loss in lined channel at 0.01 cumec per million square meter of wetted perimeter
∴ Seepage loss in unlined canal = (0.01/10⁶)×18,800 = 188×10⁻⁶ cumecs/km
Net saving = (62,040×10⁻⁶ − 188×10⁻⁶) cumec/km = 0.06185 cumec/km
Annual revenue saved per km of channel = (0.06185×3.5) lakhs = 0.21648 lakhs = 21,648 Tk.
(b) Saving in maintenance
Annual maintenance cost of unlined channel for 10 square meter = Tk.1
Total wetted perimeter per 1 km length = 18,800 m²
∴ Annual maintenance charge for unlined channel per km = Tk.1,880
Assume that 40% of this is saved in lined channel
Annual saving in maintenance charges = Tk. (0.4×1880) = Tk.752
∴ Total annual benefits per km = Tk. (21,648 + 752) = Tk.22,400

(ii) Annual Costs
Area of lining per km of channel = 18.5×1000 = 18500 m²
Cost of lining per km of channel @ Tk. 180 per 10 m² = (18500×180/10) Tk. = 333000 Tk.
Assume, life of lining as 40 years
Depreciation cost per year = Tk. (333,000/40) = Tk. 8325
Assume 5% rate of interest
Average annual interest = C/2 (r/100) = 3,33,000/2×(5/100) = Tk. 8325
∴ Total annual cost = Tk (8325 + 8325) = Tk. 16,650
Benefit cost ratio = Annual benefits/Annual costs = 22,400/16,650 = 1.35
Benefit cost ratio is more than unity, and hence, the lining is justified.
Causes of failure of weir or barrage on permeable foundation:

1. Failure due to Subsurface Flow

 (a) Failure by Piping or undermining
 The water from the upstream side continuously percolates through the bottom of the foundation and
 emerges at the downstream end of the weir or barrage floor. The force of percolating water removes the
 soil particles by scouring at the point of emergence. As the process of removal of soil particles goes on
 continuously, a depression is formed which extends backwards towards the upstream through the bottom
 of the foundation. A hollow pipe like formation thus develops under the foundation due to which the weir
 or barrage may fail by subsiding. This phenomenon is known as failure by piping or undermining.

 (b) Failure by Direct uplift
 The percolating water exerts an upward pressure on the foundation of the weir or barrage. If this
 uplift pressure is not counterbalanced by the self weight of the structure, it may fail by rapture.

2. Failure by Surface Flow

 (a) By hydraulic jump
 When the water flows with a very high velocity over the crest of the weir or over the gates of the
 barrage, then hydraulic jump develops. This hydraulic jump causes a suction pressure or negative pressure
 on the downstream side which acts in the direction uplift pressure. If the thickness of the impervious floor
 is sufficient, then the structure fails by rapture.

 (b) By scouring
 During floods, the gates of the barrage are kept open and the water flows with high velocity. The
 water may also flow with very high velocity over the crest of the weir. Both the cases can result in
 scouring effect on the downstream and on the upstream side of the structure. Due to scouring of the soil on
 both sides of the structure, its stability gets endangered by shearing.

Bligh’s Creep Theory for Seepage Flow

According to Bligh’s Theory, the percolating water follows the outline of the base of the foundation of
the hydraulic structure. In other words, water creeps along the bottom contour of the structure. The length
of the path thus traversed by water is called the length of the creep. Further, it is assumed in this theory,
that the loss of head is proportional to the length of the creep. If H_L is the total head loss between the
upstream and the downstream, and L is the length of creep, then the loss of head per unit of creep length
(i.e. H_L/L) is called the hydraulic gradient. Further, Bligh makes no distinction between horizontal and
vertical creep.

Consider a section a shown in Fig above. Let H_L be the difference of water levels between upstream and
downstream ends. Water will seep along the bottom contour as shown by arrows. It starts percolating at A
and emerges at B. The total length of creep is given by

\[
L = d_1 + d_1 + L_1 + d_2 + d_2 + L_2 + d_3 + d_3
= (L_1 + L_2) + 2(d_1 + d_2 + d_3)
= b + 2(d_1 + d_2 + d_3)
\]
Head loss per unit length or hydraulic gradient = \[\frac{H_L}{b + 2(d_1 + d_2 + d_3)} = \frac{H_L}{L} \]

Head losses equal to \(\left(\frac{H_L}{L} \times 2d_1 \right) \), \(\left(\frac{H_L}{L} \times 2d_2 \right) \), \(\left(\frac{H_L}{L} \times 2d_3 \right) \); will occur respectively, in the planes of three vertical cut offs. The hydraulic gradient line (H.G Line) can then be drawn as shown in figure above.

(i) Safety against piping or undermining:

According to Bligh, the safety against piping can be ensured by providing sufficient creep length, given by \(L = C.H_L \), where \(C \) is the Bligh’s Coefficient for the soil. Different values of \(C \) for different types of soils are tabulated in Table –1 below:

<table>
<thead>
<tr>
<th>SL No.</th>
<th>Type of Soil</th>
<th>Value of C</th>
<th>Safe Hydraulic gradient should be less than</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fine micaceous sand</td>
<td>15</td>
<td>1/15</td>
</tr>
<tr>
<td>2</td>
<td>Coarse grained sand</td>
<td>12</td>
<td>1/12</td>
</tr>
<tr>
<td>3</td>
<td>Sand mixed with boulder and gravel, and for loam soil</td>
<td>5 to 9</td>
<td>1/5 to 1/9</td>
</tr>
<tr>
<td>4</td>
<td>Light sand and mud</td>
<td>8</td>
<td>1/8</td>
</tr>
</tbody>
</table>

Note: The hydraulic gradient i.e. \(H_L/L \) is then equal to 1/C. Hence, it may be stated that the hydraulic gradient must be kept under a safe limit in order to ensure safety against piping.

(ii) Safety against uplift pressure:

The ordinates of the H.G line above the bottom of the floor represent the residual uplift water head at each point. Say for example, if at any point, the ordinate of H.G line above the bottom of the floor is 1 m, then 1 m head of water will act as uplift at that point. If \(h' \) meters is this ordinate, then water pressure equal to \(h' \) meters will act at this point, and has to be counterbalanced by the weight of the floor of thickness say \(t \).

\[\text{Uplift pressure} = \gamma_w \times h' \text{ [where } \gamma_w \text{ is the unit weight of water]} \]

\[\text{Downward pressure} = (\gamma_w \times G).t \text{ [Where } G \text{ is the specific gravity of the floor material]} \]

For equilibrium,

\[\gamma_w \times h' = \gamma_w \times G \times t \]
\[\Rightarrow h' = G \times t \]

Subtracting \(t \) on both sides, we get

\[(h' - t) = (G \times t - t) = t(G - 1) \]
\[\Rightarrow t = \left(\frac{h' - t}{G - 1} \right) = \left(\frac{h}{G - 1} \right) \]

Where, \(h' - t = h = \text{Ordinate of the H.G line above the top of the floor} \)
\[G - 1 = \text{Submerged specific gravity of the floor material} \]

Lane’s Weighted Creep Theory

Bligh, in his theory, had calculated the length of the creep, by simply adding the horizontal creep length and the vertical creep length, thereby making no distinction between the two creeps. However, Lane, on the basis of his analysis carried out on about 200 dams all over the world, stipulated that the horizontal creep is less effective in reducing uplift (or in causing loss of head) than the vertical creep. He, therefore, suggested a weightage factor of 1/3 for the horizontal creep, as against 1.0 for the vertical creep.

Thus in Fig–1, the total Lane’s creep length (\(L_L \)) is given by

\[L_L = (d_1 + d_1) + (1/3) L_1 + (d_2 + d_2) + (1/3) L_2 + (d_3 + d_3) \]
\[= (1/3) (L_1 + L_2) + 2(d_1 + d_2 + d_3) \]
\[= (1/3) b + 2(d_1 + d_2 + d_3) \]

To ensure safety against piping, according to this theory, the creep length \(L_L \) must no be less than \(C_1 H_L \), where \(H_L \) is the head causing flow, and \(C_1 \) is Lane’s creep coefficient given in table –2
Table – 2: Values of Lane’s Safe Hydraulic Gradient for different types of Soils

<table>
<thead>
<tr>
<th>SL No.</th>
<th>Type of Soil</th>
<th>Value of Lane’s Coefficient C_1</th>
<th>Safe Lane’s Hydraulic gradient should be less than</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Very fine sand or silt</td>
<td>8.5</td>
<td>1/8.5</td>
</tr>
<tr>
<td>2</td>
<td>Fine sand</td>
<td>7.0</td>
<td>1/7</td>
</tr>
<tr>
<td>3</td>
<td>Coarse sand</td>
<td>5.0</td>
<td>1/5</td>
</tr>
<tr>
<td>4</td>
<td>Gravel and sand</td>
<td>3.5 to 3.0</td>
<td>1/3.5 to 1/3</td>
</tr>
<tr>
<td>5</td>
<td>Boulders, gravels and sand</td>
<td>2.5 to 3.0</td>
<td>1/2.5 to 1/3</td>
</tr>
<tr>
<td>6</td>
<td>Clayey soils</td>
<td>3.0 to 1.6</td>
<td>1/3 to 1/1.6</td>
</tr>
</tbody>
</table>

Khosla’s Theory and Concept of Flow Nets

Many of the important hydraulic structures, such as weirs and barrage, were designed on the basis of Bligh’s theory between the periods 1910 to 1925. In 1926 – 27, the upper Chenab canal siphons, designed on Bligh’s theory, started posing undermining troubles. Investigations started, which ultimately lead to Khosla’s theory. The main principles of this theory are summarized below:

(a) The seepage water does not creep along the bottom contour of pucca flood as started by Bligh, but on the other hand, this water moves along a set of stream-lines. This steady seepage in a vertical plane for a homogeneous soil can be expressed by *Laplacian* equation:

$$\frac{d^2\phi}{dx^2} + \frac{d^2\phi}{dz^2}$$

Where, ϕ = Flow potential = Kh; K = the co-efficient of permeability of soil as defined by Darcy’s law, and h is the residual head at any point within the soil.

The above equation represents two sets of curves intersecting each other orthogonally. The resultant flow diagram showing both of the curves is called a *Flow Net*.

Stream Lines: The streamlines represent the paths along which the water flows through the sub-soil. Every particle entering the soil at a given point upstream of the work, will trace out its own path and will represent a streamline. The first streamline follows the bottom contour of the works and is the same as Bligh’s path of creep. The remaining streamlines follows smooth curves transiting slowly from the outline of the foundation to a semi-ellipse, as shown below.

Equipotential Lines: (1) Treating the downstream bed as datum and assuming no water on the downstream side, it can be easily started that every streamline possesses a head equal to h_1 while entering the soil; and when it emerges at the down-stream end into the atmosphere, its head is zero. Thus, the head h_1 is entirely lost during the passage of water along the streamlines.

Further, at every intermediate point in its path, there is certain residual head (h) still to be dissipated in the remaining length to be traversed to the downstream end. This fact is applicable to every streamline, and hence, there will be points on different streamlines having the same value of residual head h. If such points are joined together, the curve obtained is called an equipotential line.
Every water particle on line AB is having a residual head \(h = h_1 \), and on CD is having a residual head \(h = 0 \), and hence, AB and CD are equipotential lines.

Since an equipotential line represent the joining of points of equal residual head, hence if piezometers were installed on an equipotential line, the water will rise in all of them up to the same level as shown in figure below.

(b) The seepage water exerts a force at each point in the direction of flow and tangential to the streamlines as shown in figure above. This force \((F) \) has an upward component from the point where the streamlines turns upward. For soil grains to remain stable, the upward component of this force should be counterbalanced by the submerged weight of the soil grain. This force has the maximum disturbing tendency at the exit end, because the direction of this force at the exit point is vertically upward, and hence full force acts as its upward component. For the soil grain to remain stable, the submerged weight of soil grain should be more than this upward disturbing force. The disturbing force at any point is proportional to the gradient of pressure of water at that point \((i.e. \frac{dp}{dl}) \). This gradient of pressure of water at the exit end is called the exit gradient. In order that the soil particles at exit remain stable, the upward pressure at exit should be safe. In other words, the exit gradient should be safe.

Critical Exit Gradient

This exit gradient is said to be critical, when the upward disturbing force on the grain is just equal to the submerged weight of the grain at the exit. When a factor of safety equal to 4 to 5 is used, the exit gradient can then be taken as safe. In other words, an exit gradient equal to \(\frac{1}{4} \) to \(\frac{1}{5} \) of the critical exit gradient is ensured, so as to keep the structure safe against piping.

The submerged weight \((W_s) \) of a unit volume of soil is given as:

\[
W_s = \gamma_w (1 - n) (S_s - 1)
\]

Where, \(\gamma_w = \) unit weight of water.
\(S_s = \) Specific gravity of soil particles
\(n = \) Porosity of the soil material

For critical conditions to occur at the exit point

\[
F = W_s
\]

Where \(F \) is the upward disturbing force on the grain
Force \(F = \) pressure gradient at that point \(= \frac{dp}{dl} = \gamma_w \times \frac{dh}{dl} \)
Khosla’s Method of independent variables for determination of pressures and exit gradient for seepage below a weir or a barrage

In order to know as to how the seepage below the foundation of a hydraulic structure is taking place, it is necessary to plot the flow net. In other words, we must solve the Laplacian equations. This can be accomplished either by mathematical solution of the Laplacian equations, or by Electrical analogy method, or by graphical sketching by adjusting the streamlines and equipotential lines with respect to the boundary conditions. These are complicated methods and are time consuming. Therefore, for designing hydraulic structures such as weirs or barrage or pervious foundations, Khosla has evolved a simple, quick and an accurate approach, called Method of Independent Variables.

In this method, a complex profile like that of a weir is broken into a number of simple profiles; each of which can be solved mathematically. Mathematical solutions of flownets for these simple standard profiles have been presented in the form of equations given in Figure (11.5) and curves given in Plate (11.1), which can be used for determining the percentage pressures at the various key points. The simple profiles which are most useful are:
(i) A straight horizontal floor of negligible thickness with a sheet pile line on the u/s end and d/s end.
(ii) A straight horizontal floor depressed below the bed but without any vertical cut-offs.
(iii) A straight horizontal floor of negligible thickness with a sheet pile line at some intermediate point.

The key points are the junctions of the floor and the pole lines on either side, and the bottom point of the pile line, and the bottom corners in the case of a depressed floor. The percentage pressures at these key points for the simple forms into which the complex profile has been broken is valid for the complex profile itself, if corrected for
(a) Correction for the Mutual interference of Piles
(b) Correction for the thickness of floor
(c) Correction for the slope of the floor

(a) Correction for the Mutual interference of Piles:
The correction C to be applied as percentage of head due to this effect, is given by

\[C = 19 \frac{D}{b} \left(\frac{d + D}{b} \right) \]

Where,

- \(b' \) = The distance between two pile lines.
- \(D \) = The depth of the pile line, the influence of which has to be determined on the neighboring pile of depth
- \(d \) = The depth of the pile on which the effect is considered
- \(b \) = Total floor length

\(d, D \) is to be measured below the level at which interference is desired.

The correction is positive for the points in the rear of back water, and subtractive for the points forward in the direction of flow. This equation does not apply to the effect of an outer pile on an intermediate pile, if the intermediate pile is equal to or smaller than the outer pile and is at a distance less than twice the length of the outer pile.
Suppose in the above figure, we are considering the influence of the pile no (2) on pile no (1) for correcting the pressure at C₁. Since the point C₁ is in the rear, this correction shall be positive. While the correction to be applied to E₂ due to pile no (1) shall be negative, since the point E₂ is in the forward direction of flow. Similarly, the correction at C₂ due to pile no (3) is positive and the correction at E₂ due to pile no (2) is negative.

(b) Correction for the thickness of floor:

In the standard form profiles, the floor is assumed to have negligible thickness. Hence, the percentage pressures calculated by Khosla’s equations or graphs shall pertain to the top levels of the floor. While the actual junction points E and C are at the bottom of the floor. Hence, the pressures at the actual points are calculated by assuming a straight line pressure variation.

Since the corrected pressure at E₁ should be less than the calculated pressure at E₁', the correction to be applied for the joint E₁ shall be negative. Similarly, the pressure calculated C₁' is less than the corrected pressure at C₁, and hence, the correction to be applied at point C₁ is positive.

(c) Correction for the slope of the floor

A correction is applied for a slopping floor, and is taken as positive for the downward slopes, and negative for the upward slopes following the direction of flow. Values of correction of standard slopes such as 1 : 1, 2 : 1, 3 : 1, etc. are tabulated in Table 7.4

<table>
<thead>
<tr>
<th>Slope (H : V)</th>
<th>Correction Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 : 1</td>
<td>11.2</td>
</tr>
<tr>
<td>2 : 1</td>
<td>6.5</td>
</tr>
<tr>
<td>3 : 1</td>
<td>4.5</td>
</tr>
<tr>
<td>4 : 1</td>
<td>3.3</td>
</tr>
<tr>
<td>5 : 1</td>
<td>2.8</td>
</tr>
<tr>
<td>6 : 1</td>
<td>2.5</td>
</tr>
<tr>
<td>7 : 1</td>
<td>2.3</td>
</tr>
<tr>
<td>8 : 1</td>
<td>2.0</td>
</tr>
</tbody>
</table>

The correction factor given above is to be multiplied by the horizontal length of the slope and divided by the distance between the two pile lines between which the sloping floor is located. This correction is applicable only to the key points of the pile line fixed at the start or the end of the slope.

Exit gradient (Gₑ)

It has been determined that for a standard form consisting of a floor length (b) with a vertical cutoff of depth (d), the exit gradient at its downstream end is given by

\[Gₑ = \frac{H}{d} \times \frac{1}{\pi \sqrt{\lambda}} \]

Where, \(\lambda = \frac{1 + \sqrt{1 + \alpha^2}}{2} \)

\(\alpha = \frac{b}{d} \)

\(H = \) Maximum Seepage Head

<table>
<thead>
<tr>
<th>Type of Soil</th>
<th>Safe exit gradient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shingle</td>
<td>1/4 to 1/5 (0.25 to 0.20)</td>
</tr>
<tr>
<td>Coarse Sand</td>
<td>1/5 to 1/6 (0.20 to 0.17)</td>
</tr>
<tr>
<td>Fine Sand</td>
<td>1/6 to 1/7 (0.17 to 0.14)</td>
</tr>
</tbody>
</table>
Problem-2
Determine the percentage pressures at various key points in figure below. Also determine the exit gradient and plot the hydraulic gradient line for pond level on upstream and no flow on downstream

Solution:
(1) For upstream Pile Line No. 1
Total length of the floor, \(b = 57.0 \text{ m} \)
Depth of u/s pile line, \(d = 154 - 148 = 6 \text{ m} \)
\[\alpha = \frac{b}{d} = \frac{57}{6} = 9.5 \]
\[\frac{1}{\alpha} = \frac{1}{9.5} = 0.105 \]
From curve plate 11.1 (a)
\[\phi_{C1} = 100 - 29 = 71 \% \]
\[\phi_{D1} = 100 - 20 = 80 \% \]
These values of \(\phi_{C1} \) must be corrected for three corrections as below:

Corrections for \(\phi_{C1} \)
(a) Correction at \(C_1 \) for Mutual Interference of Piles (\(\phi_{C1} \)) is affected by intermediate pile No.2

Correction \[= 19 \frac{D}{b} \left(\frac{d + D}{b} \right) \]

Where, \(D = \) Depth of pile No.2 = 153 – 148 = 5 m
\(d = \) Depth of pile No. 1 = 153 – 148 = 5 m
\(b' = \) Distance between two piles = 15.8 m
\(b = \) Total floor length = 57 m

\begin{align*}
\text{Correction} &= 19 \times \frac{5}{15.8} \times \left(\frac{5 + 5}{57} \right) \\
&= 1.88 \%
\end{align*}

Since the point \(C_1 \) is in the rear in the direction of flow, the correction is (+) ve.
\[\therefore \text{Correction due to pile interference on } C_1 = 1.88 \% (+ \text{ ve}) \]
Knosis's Pressure Curves

Sheet pile not at end

\[\phi = \left(\frac{1}{F_{\text{loss}}^{\chi/\lambda}} \right)^{\frac{1}{\chi}} \]

Values of \(\sqrt{\lambda} = d/b \)

Plate 11-1(a)

To find \(\phi \) for any value of \(\lambda \) and base ratio \(b/b \), read \(\phi \) at base ratio \((1-b/b) \) for that value of \(\lambda \) and subtract from 100.

Thus \(\phi \) for \(b/b = 0.4 \) and \(\lambda = 40 \), \(100 - \phi \) for \(b/b = 1.0 \) and \(\lambda = 40 \), \(100 - \phi \).

To get \(\phi \) for values of \(b/b \) less than 0.4 read \(\phi \) for base ratio \((1-b/b) \) and subtract from 100.

Thus \(\phi \) for \(b/b = 0.4 \) and \(\lambda = 40 \), \(100 - \phi \) for \(b/b = 0.6 \) and \(\lambda = 40 \), \(100 - \phi \).

Depressed floor:

\[\phi_{d} = \left(\frac{1}{F_{\text{loss}}^{\chi/\lambda}} \right)^{\frac{1}{\chi}} \]

\[\phi_{d} = \left(\frac{1}{F_{\text{loss}}^{\chi/\lambda}} \right)^{\frac{1}{\chi}} \]

\[\phi_{d} = 100 - \phi \]

\[\phi_{d} = 100 - \phi \]

\[\phi_{d} = 100 - \phi \] (Depressed floor)

\[\phi_{d} = \phi - \phi_{d} \] (Depressed floor)

\[\frac{1}{\lambda} = \frac{1}{\lambda} \]
(b) Correction at C_1 due to thickness of floor:

Pressure calculated from curve is at C'_1, (Fig. 7.1) but we want the pressure at C_1. Pressure at C_1 shall be more than at C'_1 as the direction of flow is from C_1 to C'_1 as shown; and hence, the correction will be + ve and

$$\text{Correction} = \frac{80\% - 71\%}{154 - 153} \times (154 - 153) = (9/6)\times 1 = 1.5\% (+ \text{ve})$$

(c) Correction due to slope at C_1 is nil, as this point is neither situated at the start nor at the end of a slope.

\[\therefore \text{Corrected } (\phi_{C_1}) = 71\% + 1.88\% + 1.5\% = 74.38\% \text{ (ans)} \]

And \[(\phi_{D_1}) = 80\% \]

(2) For intermediate Pile Line No. 2

\[d = 154 - 148 = 6 \text{ m} \]
\[b = 57 \text{ m} \]
\[\alpha = b/d = 57/6 = 9.5 \]

Using curves of plate 11.1 (b), we have b_1 in this case

\[b_1 = 0.6 + 15.8 = 16.4 \text{ m} \]
\[b = 57 \text{ m} \]

\[\therefore b_1/b = 16.4/57 = 0.298 \text{ (for } \phi_{C_2} \text{)} \]

\[1 - b_1/b = 1 - 0.298 = 0.702 \]

\[\phi_{E_2} = 100 - 30 = 70\% \]
\[\phi_{C_2} = 56\% \]
\[\phi_{D_2} = 100 - 37 = 63\% \]

(Where 30\% is ϕ_C for a base ratio of 0.702 and $\alpha = 9.5$)

(For a base ratio 0.298 and $\alpha = 9.5$)

Corrections for ϕ_{E_2}

(a) Correction at E_2 for sheet pile lines. Pile No. (1) will affect the pressure at E_2 and since E_2 is in the forward direction of flow, this correction shall be + ve. The amount of this correction is given as:

\[\text{Correction} = 19 \sqrt{5} \frac{D}{b} \left(\frac{d + D}{b} \right) \]

Where, $D = \text{Depth of pile No.1}$, the effect of which is considered $= 153 - 148 = 5 \text{ m}$

\[d = \text{Depth of pile No. 2}, \text{the effect on which is considered } = 153 - 148 = 5 \text{ m} \]

\[b' = \text{Distance between two piles } = 15.8 \text{ m} \]

\[b = \text{Total floor length } = 57 \text{ m} \]

\[\begin{align*}
\text{Correction} &= 19 \sqrt{5} \frac{5}{15.7} \left(\frac{5 + 5}{57} \right) \\
&= 1.88\% (+ \text{ve})
\end{align*} \]

(b) Correction at E_2 due to floor thickness

\[\text{Correction} = \frac{\text{Obs } \phi_{E_2} - \text{Obs } \phi_{D_2}}{\text{Distance between } E_2D_2} \times \text{Thickness of floor} \]

\[= \frac{70\% - 63\%}{154 - 148} \times 1.0 \times (7/6)\times 1.0 = 1.17\% \]

Since the pressure observed is at E'_2 and not at E_2 (Fig. 7.2) and by looking at the direction of flow, it can be stated easily that pressure at E_2 shall be less than that at E'_2, hence, this correction is negative.

\[\therefore \text{Correction at } E_2 \text{ due to floor thickness } = 1.17\% (- \text{ve}) \]
(c) Correction at E_2 due to slope is nil, as the point E_2 is neither situated at the start of a slope nor at the end of a shape

Hence, corrected percentage pressure at $E_2 = \text{Corrected } \varphi_{E2} = (70 - 1.88 - 1.17)\% = 66.95\%$

Corrections for φ_{C2}

(a) Correction at C_2 due to pile interference. Pressure at C_2 is affected by pile No.(3) and since the point C_2 is in the back water in the direction of flow, this correction is (+) ve. The amount of this correction is given as:

$$
\text{Correction} = 19 \times \frac{d + D}{b} \left(\frac{d + D}{b} \right) = 19 \times \frac{11}{40} \times \left(\frac{11 + 5}{57} \right) = 2.89\% (+\text{ ve})
$$

(b) Correction at C_2 due to floor thickness. From Fig. 11.10, it can be easily stated that the pressure at C_2 shall be more than at C_2', and since the observed pressure is at C_2, this correction shall be + ve and its amount is the same as was calculated for the point $E_2 = 1.17\%$

Hence, correction at C_2 due to floor thickness = 1.17\% (+ ve)

(c) Correction at C_2 due to slope. Since the point C_2 is situated at the start of a slope of 3:1, i.e. an up slope in the direction of flow; the correction is negative

Correction factor for 3:1 slope from table 11.4 = 4.5

Horizontal length of the slope = 3 m

Distance between two pile lines between which the sloping floor is located = 40 m

:. Actual correction = 4.5 x (3/40) = 0.34\% (- ve)

Hence, corrected $\varphi_{C2} = (56 + 2.89 + 1.17 - 0.34)\% = 59.72\%$

(3) Downstream Pile Line No. 3

d = 152 - 141.7 = 10.3 m

b = 57 m

$1/\alpha = 10.3/57 = 0.181$

From curves of Plate 11.1 (a), we get

$\varphi_{D3} = 26\%$

$\varphi_{E3} = 38\%$

Corrections for φ_{E3}

(a) Correction due to piles. The point E_3 is affected by pile No. 2, and since E_3 is in the forward direction of flow from pile No. 3, this correction is negative and its amount is given by

$$
\text{Correction} = 19 \times \frac{D}{b} \left(\frac{d + D}{b} \right) \quad \text{Where, } D = \text{Depth of pile No.3, the effect of which is considered below the level at which interference is desired} = 153 - 141.7 = 11.3 m
\quad d = \text{Depth of pile No. 2, the effect on which is considered} = 153 - 148 = 5 m
\quad b' = \text{Distance between two piles} (2 &3) = 40 m
\quad b = \text{Total floor length} = 57 m
$$

$$
= 19 \times \frac{2.7}{40} \times \left(\frac{9 + 2.7}{57} \right) = 1.02\% (-\text{ ve})
$$

(b) Correction due to floor thickness

From Fig. 7.3, it can be stated easily that the pressure at E_3 shall be less than at E_3', and hence the pressure observed from curves is at E_3'; this correction shall be – ve and its amount

$$
= \frac{38\% - 32\%}{152 - 141.7} \times 1.3 = (16/10.3)\times1.3 = 0.76\%\text{ (- ve)}
$$

Fig: 5.3
(c) Correction due to slope at E_3 is nil, as the point E_3 is neither situated at the start nor at the end of any slope.

Hence, corrected $\varphi_{E3} = (38 - 1.02 - 0.76) \% = 36.22 \%$

The corrected pressures at various key points are tabulated below in Table below

<table>
<thead>
<tr>
<th>Upstream Pile No. 1</th>
<th>Intermediate Pile No. 2</th>
<th>Downstream Pile No. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\varphi_{E1} = 100 %$</td>
<td>$\varphi_{E2} = 66.95 %$</td>
<td>$\varphi_{E3} = 36.22 %$</td>
</tr>
<tr>
<td>$\varphi_{D1} = 80 %$</td>
<td>$\varphi_{D2} = 63 %$</td>
<td>$\varphi_{D3} = 26 %$</td>
</tr>
<tr>
<td>$\varphi_{C1} = 74.38 %$</td>
<td>$\varphi_{C2} = 59.72 %$</td>
<td>$\varphi_{C3} = 0 %$</td>
</tr>
</tbody>
</table>

Exit gradient

Let the water be headed up to pond level, *i.e.* on RL 158 m on the upstream side with no flow downstream.

The maximum seepage head, $H = 158 - 152 = 6$ m

The depth of d/s cur-off, $d = 152 - 141.7 = 10.3$ m

Total floor length, $b = 57$ m

$\alpha = b/d = 57/10.3 = 5.53$

For a value of $\alpha = 5.53$, $\frac{1}{\pi \sqrt{\alpha}}$ from curves of Plate 11.2 is equal to 0.18.

Hence, $G_E = \frac{H}{d} \times \frac{1}{\pi \sqrt{\alpha}} = \frac{6}{10.3} \times 0.18 = 0.105$

Hence, the exit gradient shall be equal to 0.105, *i.e.* 1 in 9.53, which is very much safe.
Practice Problems:

1. An unlined canal giving a seepage loss of 3.3 m3/s per million sq.m of wetted area is proposed to be lined with 10 cm thick cement concrete lining which cost Tk.18/sq.m. Given the following data, work out the economics of lining and benefit cost ratio.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual revenue per cumec of water</td>
<td>Tk. 3.5 lacs</td>
</tr>
<tr>
<td>Discharge in the canal</td>
<td>83.5 m3/s</td>
</tr>
<tr>
<td>Area of the canal</td>
<td>40.8 m2</td>
</tr>
<tr>
<td>Wetted perimeter of the canal</td>
<td>18.8 m</td>
</tr>
<tr>
<td>Wetted perimeter of the lining</td>
<td>18.5 m</td>
</tr>
<tr>
<td>Annual maintenance cost of unlined canal</td>
<td>Tk. 0.1/sq.m</td>
</tr>
</tbody>
</table>

Assume any suitable data if required.

2. A canal of length 5 km and of discharge capacity 3.5 m3/s is proposed to be lined with boulder lining. The total cost of lining is estimated as 4 lakhs. The life of lining is considered as 60 years. Justify the lining in the canal from the following data:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate of interest</td>
<td>8 %</td>
</tr>
<tr>
<td>Seepage loss</td>
<td>2 %</td>
</tr>
<tr>
<td>Revenue for irrigation water</td>
<td>Tk. 75 per hec-m</td>
</tr>
<tr>
<td>Maintenance cost per km for lined canal</td>
<td>Tk. 1000</td>
</tr>
<tr>
<td>Maintenance cost per km for unlined canal</td>
<td>Tk. 2500</td>
</tr>
<tr>
<td>Base period of crop</td>
<td>120 days</td>
</tr>
<tr>
<td>Additional benefit/km</td>
<td>Tk. 1000</td>
</tr>
</tbody>
</table>

3. Use Khosla’s curves to calculate the percentage uplift pressure at various key points for a barrage foundation profile shown in figure below applying necessary corrections. Assume the thickness of the floor is 0.8 m. Also find exit gradient considering upstream pond level at 103 m.

4. Use Khosla’s curves to calculate the percentage uplift pressure at points C$_1$, C$_2$, C$_3$, D$_1$ and E$_3$ for a barrage foundation profile shown in figure below applying necessary corrections. Also determine the exit gradient. [Assume: floor thickness = 1 m]

<table>
<thead>
<tr>
<th>Slope (H : V)</th>
<th>Correction Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 : 1</td>
<td>2.5</td>
</tr>
</tbody>
</table>
5. Using Khosla’s curves, determine the following for the apron shown below:
 [Assume: floor thickness = 1 m]
 ![Fig. (i)](image1)
 ![Fig. (ii)](image2)
 (i) Find pressure at critical points with thickness correction
 (ii) Find pressure at C_1 and E_2 with interference correction
 ![Fig. (iii)](image3)
 (iii) Find pressure at point C_2 with slope correction

6. Using Khosla’s curves, determine the following for the apron shown below: **(Spring-2006)**
 (i) Uplift pressure at points E, D, C, E_1 and D_1
 (ii) Exit gradient
 Neglect the effect of floor thickness.
7. Using Khosla’s curves, determine the following for the apron shown below:
 (i) Uplift pressure at points C, E₁ and D₁
 (ii) Exit gradient
 Assume floor thickness = 1 m

8. Using the Khosla’s curves, determine the following for the apron shown below:
 (iii) If percentage of pressure at C₂ is 56%, what will be the percentage of pressure at this point after corrections due to pile interference and slope
 (iv) Find exit gradient where, corrections factor for slope, 3:1 = 4.5,
 Assume floor thickness = 1 m