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• Calculate intensity of gravitational wave for oscillating orbit. 
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• Calculate intensity of gravitational wave for oscillating elliptic orbit. 
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a b s t r a c t 

This paper attempts to formulate a way for calculating the intensity of gravitational wave from two point 

masses in Keplerian circular and elliptic orbits. The intensity is calculated with the assumption that the 

orbital plane of the binary undergoes small oscillation about the equilibrium x-y plane. This problem is 

simplification of a physically possible orbit where one of the point masses is spinning whereby the spin- 

orbit force drives the orbital plane to wobble in a complicated manner. It is shown that the total energy 

of gravitational wave emitted by the binary in this case is dominated by the parameters which take into 

account the oscillation of the plane. The results presented are in fact a generalization of the classic results 

of Landau and Lifshitz. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Gravitational waves (GWs) have always attracted theoreticians 

and experimentalists in the field of cosmology and gravitation as a 

new tool to understand the universe. Scientists have been working 

vigorously ever since their prediction by the General Theory of 

Relativity to meet the challenge of detecting the ultra-weak quiv- 

ers generated by these waves, and thereby unlocking the wealth of 

information contained in them about our universe and its evolu- 

tion. As a result, the study of gravitational waves has become the 

focus of many physicists and lately there have been several works 

in both to develop theories as well as to improve the technology 

for detecting them. Earth-based laser-interferometric detectors 

of gravitational wave are now collecting data, and LIGO has just 

completed the longest scientific run ( Abbott et al. 2016 ) to date 

and confirmed their existence. In such an exciting and important 

time of gravitational wave research, every bit of information on 

gravitational wave, be it theoretical, computational or experi- 
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mental, is valuable. Binary star systems, consisting of compact 

objects such as black holes and neutron stars, are relatively strong 

sources of gravitational wave. Calculation of energy emitted due 

to gravitational wave by point masses in Keplerian elliptical orbit 

was performed by Peters and Mathews (1963) ; Landau and Lifshitz 

(1975) . In current literature, the objectives of gravitational wave 

research are more focused on detection of GW ( Grote 2008; Berti 

et al. 2008; Mendell and Wette 2008; Shoemaker et al. 2008 ) 

and on evolution of GW sources ( Cutler, Kennefick and Poisson 

1994; Ryan 1995; Glampedakis and Kennefick 2002; Gergely and 

Keresztes 2003 ). In present paper we consider the case that the 

orbital plane does not remain invariant on a plane. This is quite 

possible because in a binary where one of the bodies is spinning, 

the spin orbit-force drives the orbital plane to precession ( Vecchio 

2004 ) or to oscillate in a complex manner ( Mashhoon and Singh 

2006 ). Such precession or oscillation modulates the GW signal 

and the total energy emitted also changes. Here we consider a 

simplified problem from the scenario reported by Mashhoon and 

Singh (2006) . Let two point masses in a Keplerian binary revolve 

round the center-of-mass in circular orbit and at the same time, 

the plane of the orbit is undergoing small oscillation about the 
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equilibrium x-y plane. We consider that the amplitude of angular 

oscillation about the x-y plane is very small compared to the ra- 

dius of the orbit. We then calculate the energy emitted separately 

in the two polarization modes of gravitational wave and the total 

energy emitted i.e. intensity in all directions. We found that the 

amount of emitted energy depends on the nature of oscillation of 

the plane - in particular, the angular frequency of oscillation about 

the x-y plane. This is an important finding and we feel that many 

researchers would like to know the way to this result. The paper 

is organized as follows: In Section 2 , we briefly summarize the 

important formulae of gravitational wave. Section 3 is about the 

review of the problem and represents the subsequent calculation 

of gravitational radiation from oscillating circular orbits and from 

oscillating elliptic orbits respectively of a Keplerian binary. Finally, 

Section 4 contains the conclusion. 

2. Gravitational wave 

Gravitational radiation emission from various astrophysical 

sources has been the focus of many researches ( Zimmermann 

and Szedenits Jr 1999; Beltrami and Chau 1985; Dionysiou 1986; 

Shibata 1993; Moreno-Garrido, Buitrago and Mediavilla 1994; 

Moreno-Garrido, Buitrago and Mediavilla 1995; Blanchet 1996 ). Let 

us consider a source of gravitational radiation characterized by a 

mass quadrupole moment tensor D αβ with the six elements D xx , 

D yy , D zz , D xy , D yz , D zx , with respect to a set of fixed inertial axes 

( x,y,z ). We define D αβ as by Landau and Lifshitz (1975 ), that is, 

D αβ = ∫ ρ
(
3 x αx β − δαβr 2 

)
dV (1) 

where ρ is the mass density, and r 2 = x 2 + y 2 + z 2 , d V = d xd yd z. 

The waves can be taken to be plane in view of the typically large 

distance between the source and the observer. The two indepen- 

dent polarization states of the gravitational wave can be repre- 

sented by the three-dimensional symmetric, unit polarization ten- 

sor e αβ satisfying the relations 

e αα = 0 , e αβ n β = 0 , e αβe αβ = 1 , (2) 

where ˆ n is a unit vector in the direction of propagation of the 

wave. Let us label the two polarizations by ( Peters and Mathews 

1963 ) 

e + = 

1 √ 

2 

(
ˆ θ ˆ θ − ˆ ϕ ̂  ϕ 

)
, e × = 

1 √ 

2 

(
ˆ θ ˆ ϕ + ˆ ϕ ̂

 θ
)
, (3) 

where θ and ϕ are conventional polar coordinates. In this basis, 

the waveform can be written as ( Kochanek et al. 1990 ) 

rh = ( ̈D θθ − D̈ ϕ ϕ ) e + + 2 ̈D θϕ e ×, (4) 

where h is the metric perturbation or the GW waveform, and D θθ , 

D θϕ , D ϕϕ are the physical components of D ij (the Cartesian compo- 

nents of quadrupole tensor) projected along the directions of the 

spherical unit vectors ˆ θ and ˆ ϕ . There exists canonical procedure 

for obtaining these components, but we simply quote the results 

from Kochanek et al. (1990) : 

D θθ = 

(
D xx co s 

2 ϕ + D yy si n 
2 ϕ + D xy sin 2 ϕ 

)
co s 2 θ

+ D zz si n 
2 θ − ( D xz cosϕ + D yz sinϕ ) sin 2 θ, 

D ϕϕ = D xx si n 
2 ϕ + D yy co s 

2 ϕ − D xy sin 2 ϕ, 

D θϕ = −1 

2 
( D xx − D yy ) cosθsin 2 ϕ + D xy cosθcos 2 ϕ 

+ ( D xz sinϕ − D yz cosϕ ) sinθ . (5) 

The expressions for the intensity of radiation of a given polar- 

ization into solid angle d � are ( Landau and Lifshitz 1975 ) 

d I = 

G 

72 πc 5 

(
d 3 D αβ

d t 3 
e αβ

)2 

d � (6) 

where G is the Newton’s gravitational constant and c is the speed 

of light in free space. Using Eqs. (3) and ( 4 ), we can write for the 

intensity of GW in ( ×) polarization as 

d I 1 
d�

= 

G 

72 πc 5 

(
2 
d 3 D θϕ 

d t 3 
1 √ 

2 

)2 

= 

G 

36 πc 5 

(
d 3 D θϕ 

d t 3 

)2 

, (7) 

and that in ( + ) polarization as 

d I 2 
d�

= 

G 

72 πc 5 

[(
d 3 D θθ

d t 3 
− d 3 D ϕϕ 

d t 3 

)
1 √ 

2 

]2 

= 

G 

144 πc 5 

(
d 3 D θθ

d t 3 
− d 3 D ϕϕ 

d t 3 

)2 

(8) 

Next we apply these formulae to find out the intensity of gravi- 

tational wave emitted by a Keplerian binary whose orbital plane is 

oscillating about the equilibrium x-y plane. 

3. Intensity of gravitational wave from a binary with 

oscillating orbital plane 

In many astrophysical binary star systems, the orbit of the 

stars undergoes precession and oscillation due to many perturb- 

ing forces, such as, spin-orbit, spin-spin interactions. Specifically, 

the spin-orbit force drives the orbital plane to oscillate about the 

equilibrium plane in a quite complicated manner. One typical case 

is analyzed by Mashhoon and Singh ( 2006 ). 

We consider a simplified situation defined by an almost fixed 

orbital plane confined to the x-y plane, but the orbital plane un- 

dergoes very small angular oscillation about the equilibrium x-y 

plane. This situation simulates some of the characteristics of or- 

bital motion of a Keplerian binary with one particle having small 

spin. Now, we define the orbit by the following orbital variables: 

r = constant , θ = 

π

2 
− bsin 

ω 

n 
t , ϕ = ωt (9) 

where ω is the Newtonian angular frequency of the orbit in the 

x-y plane, r = | −→ 

r 1 − −→ 

r 2 | ; −→ 

r 1 , 
−→ 

r 2 being the positions of the particles 

of mass m 1 and m 2 , respectively, and b is a very small parameter 

( b � 1) characterizing the angular oscillation about the x-y plane. 

Now to simplify, let us consider the frequency of oscillation of the 

orbital plane is same as the frequency of orbital motion ( Mashhoon 

and Singh 2006 ). That is the time taken for one complete orbital 

motion is the same as the time taken for a complete oscillation of 

the plane. So ω is same for both. The complicated wobble motion 

can be represented by a single ω. But when the frequencies are 

not same, the resulted frequency of the complicated motion can 

be presented by ω 
n where n is a parameter that relates the two 

frequencies. That is when n = 1 , the two frequencies are same. 

Now, we approximate the Cartesian components of the vector � r 

as: 

x ∼= 

rcosωt 

y ∼= 

rsinωt 

z ∼= 

rbsin 
ω 

n 
t (10) 

Then, the quadrupole moments are: 

D xx = μr 2 
(
3 co s 2 ωt − 1 

)
, D yy = μr 2 

(
3 si n 2 ωt − 1 

)
, 

D xy = 

3 

2 
μr 2 sin 2 ωt, D zz = μr 2 

(
3 b 2 si n 2 

ω 

n 
t − 1 

)
, 

D xz = 3 μb r 2 
(
cosωtsin 

ω 

n 
t 

)
, D yz = 3 μb r 2 

(
sinωtsin 

ω 

n 
t 

)
(11) 

where μ = 

m 1 m 2 
m 1 + m 2 

is the reduced mass of the binary. Now, since 

the system is rapidly rotating about the z-axis, average over the 

angle ϕ is appropriate. Next, we take an average over the orbital 
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period. Using Eqs. (5) and ( 7 ) and after doing a somewhat lengthy 

calculation we obtain 〈
d I 1 
d�

〉
= 

G μ2 r 4 ω 

6 

8 πc 5 

×
[ 

16 co s 2 θ + b 2 

{ (
3 + n 2 

n 2 

)2 (
1 
2 

− n 
8 π sin 4 π

n 

)
+ 

(
1+3 n 2 

n 3 

)2 (
1 
2 

+ 

n 
8 π sin 4 π

n 

)
} 

si n 2 θ

] 

(12) 

This equation gives the average intensity of gravitational radi- 

ation per unit solid angle which is dependent on the oscillation 

parameters b and n . Moreover, the result correctly reduces to the 

classic result of Landau and Lifshitz (1975) for circular orbit with 

invariant orbital plane, i.e. when we put b = 0 and n = 1. Similarly, 

for ( + ) polarization 〈
d I 2 
d�

〉
= 

G μ2 r 4 ω 

6 

8 πc 5 
×

(
co s 4 θ

[
4 + 8 

b 4 

n 6 

(
1 

2 
− n 

16 π
sin 

8 π

n 

)

− b 2 
{

( 3+ n 2 
n 2 

) 
2 
( 1 
2 

− n 
8 π sin 4 π

n 
) 

+ ( 1+3 n 2 

n 3 
) 
2 
( 1 
2 

+ 

n 
8 π sin 4 π

n 
) 

}]

+ co s 2 θ

[
8 − 16 

b 4 

n 6 

(
1 

2 
− n 

16 π
sin 

8 π

n 

)

+ b 2 
{

( 3+ n 2 
n 2 

) 
2 
( 1 
2 

− n 
8 π sin 4 π

n 
) 

+ ( 1+3 n 2 

n 3 
) 
2 
( 1 
2 

+ 

n 
8 π sin 4 π

n 
) 

}]

+ 4 + 8 
b 4 

n 6 

(
1 

2 
− n 

16 π
sin 

8 π

n 

))
(13) 

This result also reduces to the classic result of Landau and Lif- 

shitz (1975) in the b = 0 and n = 1 limit. The total intensity of GW 

radiation in the present context is found by summing Eqs. (12) and 

( 13 ). Let us consider 

P = 

(
3 + n 2 

n 2 

)2 (
1 

2 
− n 

8 π
sin 

4 π

n 

)
+ 

(
1 + 3 n 2 

n 3 

)2 

×
(
1 

2 
+ 

n 

8 π
sin 

4 π

n 

)
, Q = 

(
1 

2 
− n 

16 π
sin 

8 π

n 

)
Using this, we obtain the total intensity as 〈
dI 

d�

〉
= 

G μ2 r 4 ω 

6 

8 πc 5 

[
4 + b 2 P + 8 

b 4 

n 6 
Q + 

(
24 − 16 

b 4 

n 6 
Q 

)
co s 2 θ

+ 

(
4 + 8 

b 4 

n 6 
Q − b 2 P 

)
co s 4 θ

]
(14) 

Integrating this expression over all directions, we get the en- 

ergy radiated in gravitational wave in all directions per unit time 

or intensity as 

−dE 

dt 
= I = 

2 G μ2 r 4 ω 

6 

5 c 5 

[
16 + b 2 P + 

16 

3 

b 4 

n 6 
Q 

]
(15) 

which reduces to the classic result of Landau and Lifshitz (1975 ), 

for the case of circular binary orbit fixed in the x-y plane, using 

b = 0 and n = 1 , to 

I = 

32 G μ2 r 4 ω 

6 

5 c 5 
(16) 

We see that the total energy radiated in gravitational wave by 

a Keplerian binary system which is undergoing small oscillation of 

the orbital plane is dependent on the values of b and P, Q that 

is in fact on the value of n . Since b and n cannot have negative 

value, the amount of radiated energy is more than that emitted by 

a binary system with invariant orbital plane. Hence, we found an 

important result, namely, the intensity of GW emitted by an astro- 

physical binary that is undergoing small orbital plane oscillation 

about the equilibrium x-y plane, given by Eq. (15) . 

We now extend the calculation of the GW intensity to the case 

of elliptic binary orbit. In reality, astrophysical binary orbits are el- 

liptic. The orbit may also undergo oscillation. Therefore, a calcu- 

lation of the GW intensity from such binaries will be worthwhile 

to be carried out. With this motivation, we proceed with the as- 

sumption that the orbital plane undergoes small oscillation similar 

to what we have considered in the previous chapter. For this, we 

consider the same parameters ‘ n ’ and ‘ b ’ as we did in the previous 

chapter. Also, here we use the same notations of the former chap- 

ter. We define the orbital elements as that of a Keplerian elliptic 

orbit. In particular, we assume the following orbital parameters: 

θ = 

π

2 
− bsinϕ, r = 

a 
(
1 − e 2 

)
1 + ecosϕ 

, 

dϕ 

dt 
= 

[
G ( m 1 + m 2 ) a 

(
1 − e 2 

)] 1 
2 

n r 2 
(17) 

where a and e are the semi-major axis and eccentricity respectively 

of an elliptic binary orbit. The quadrupole moments are 

D xx = μr 2 
(
3 co s 2 ϕ − 1 

)
, D yy = μr 2 

(
3 si n 2 ϕ − 1 

)
D zz = μr 2 

(
3 b 2 si n 2 ϕ − 1 

)
, D xy = 

3 
2 
μr 2 sin 2 ϕ 

D xz = 

3 
2 
μb r 2 sin 2 ϕ, D yz = 3 μb r 2 si n 2 ϕ 

(18) 

We obtain the intensity of ( ×) polarization component of gravi- 

tational wave from elliptical and oscillating binary, after a long cal- 

culation as 〈
d I 1 
d�

〉
= 

G 

4 m 

2 
1 m 

2 
2 ( m 1 + m 2 ) 

n 5 πc 5 a 5 
(
1 − e 2 

)7 / 2 
[(

2 + 

97 
16 
e 2 + 

49 
64 
e 4 

)
cos 2 θ

+ b 2 
(
2 + 

111 
16 

e 2 + 

29 
32 
e 4 

)
sin 

2 θ

]
(19) 

This equation gives the average intensity of gravitational wave 

per unit solid angle which depends on the oscillation parameters 

b, n and eccentricity e . If e = 0 , i.e., for circular orbit, this equa- 

tion reduces to Eq. (12) . Note that ω in Eq. (12) is now given by 
dϕ 
dt 

of Eq. (17) with e = 0 . The exactness of Eqs. (12) and ( 19 ) for 

e = 0 is clearly evident. For the ( + ) polarization the calculations 

are more involved and lengthy. One would find the following re- 

sult, (we have neglected terms of order higher than b 2 ): 〈
d I 2 
d�

〉
= 

G 

4 m 

2 
1 m 

2 
2 ( m 1 + m 2 ) 

n 5 πc 5 a 5 
(
1 − e 2 

)7 / 2 
×

⎡ 

⎣ 

(
1 
2 

+ 

99 
64 
e 2 + 

51 
256 

e 4 − 2 b 2 − 131 
16 

e 2 b 2 − 63 
64 
e 4 b 2 

)
co s 4 θ

+ 

(
1 + 

95 
32 
e 2 + 

47 
128 

e 4 + 2 b 2 + 

63 
8 
e 2 b 2 + 

17 
16 
e 4 b 2 

)
co s 2 θ

+ 

1 
2 

+ 

99 
64 
e 2 + 

51 
256 

e 4 − 15 
48 
e 2 b 2 − 5 

64 
e 4 b 2 

⎤ 

⎦ 

(20) 

For e = 0 , this equation correctly gives formula ( 13 ) for circular 

orbit (note that in ( 20 ) no b 4 terms are included, however, in ( 13 ) 

there are). The results we have obtained here coincide with the 

results of Peters and Mathews (1963) when we put b = 0 and n = 1 

in the formulae ( 19 ) and ( 20 ). 

Next, we calculate the total energy radiated in GW in all direc- 

tions per unit time or intensity as 

−dE 

dt 
= I = 

32 G 

4 m 

2 
1 m 

2 
2 ( m 1 + m 2 ) 

5 n 5 c 5 a 5 
(
1 − e 2 

)7 / 2 
×
[ 
1 + 

73 

24 
e 2 + 

37 

96 
e 4 + b 2 

(
1 + 

53 

16 
e 2 + 

41 

72 
e 4 

)] 
(21) 

This is the generalization of the result of Landau and Lifshitz 

(1975) from a Keplerian binary in elliptic orbit because we take 
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into account the oscillation of the plane. The presence of small 

oscillation is evident from theoretical investigation performed by 

Mashhoon and Singh (2006) . The amount of radiated energy can 

be calculated by putting the values of corresponding parameters. 

From the equation we can see that the amount of radiated energy 

varies greatly with n since n has power of 5. Though the exact val- 

ues of b and n are not known yet, we hope in near future the val- 

ues can be obtained by observing the astrophysical binaries more 

acutely. 

4. Conclusion 

The energy radiated in gravitational wave by a Keplerian astro- 

physical binary system has been discussed earlier in the context 

of a binary in circular or elliptical orbit with the plane of the or- 

bit invariant ( Peters and Mathews 1963; Landau and Lifshitz 1975 ). 

But it is seen in literature ( Mashhoon and Singh 2006 ) that due 

to spin-orbit interaction, the orbital plane in a physical binary may 

undergo oscillation. Here we consider the whole scenario, that is 

the orbital plane of the binary undergoes small oscillation about 

the equilibrium x-y plane. Our problem is the canonical problem of 

GW radiation from a circular or elliptic binary, but with additional 

parameters b and n where b is the amplitude of angular oscilla- 

tion of the orbital plane and n compares the angular frequency of 

oscillation to the actual orbital frequency [see, Eqs. (9) and ( 10 )]. 

Our final results are depicted in Eqs. (15) and ( 21 ), which give the 

intensity or total energy radiated in all directions in GW per unit 

time averaged over the orbital period. The formulae we obtain, in 

Eqs. (15) and ( 21 ), are an extension of the classic results of Landau 

and Lifshitz (1975) for the case of GW from circular or elliptic bi- 

nary with fixed orbital plane. The oscillation we considered is sim- 

ply dependent on the parameters b and n. We consider our simple 

calculation presented here as a valuable addition to gravitational 

wave phenomenology that can arouse interest in practical GW re- 

searchers. 
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