University of Asia Pacific
 Department of Civil Engineering
 Midterm Examination Fall 2019
 Program: B.Sc. Engineering (Civil)

There are Three Questions. Answer all questions. Assume any data if required.

1. Design: (a) rectangular sedimentation tank and (b) circular tank employing the following dataset.

- Average flow rate, $\mathrm{Q}_{\mathrm{av}}=20,000 \mathrm{~m}^{3} / \mathrm{d}$.
- Peak hourly flow rate, $\mathrm{Q}_{\mathrm{p}}=40,000 \mathrm{~m}^{3} / \mathrm{d}$.
- Specific gravity of the particles to be removed, $\mathrm{s}=1.25$.
- Diameter of the particles, $\mathrm{d}=150 \mu \mathrm{~m}$.
- Darcy-Weisbach fraction factor, $\mathrm{f}=0.025$.
- Scouring material constant, $\mathrm{k}=0.05$

Use the following equations if required:
$V_{H}=\left[\frac{8 k(s-1) g d}{f}\right]^{1 / 2} \quad \mathrm{BOD} / \mathrm{TSS}$ removal $=\frac{t}{a+b t}$
2. a. What are the benefits of improving sanitation access?
b. What is the difference between Septic and SBS systems?
3. a. Calculate the velocity through a rack, when approach velocity is $0.70 \mathrm{~m} / \mathrm{s}$, flow open area through clean bar rack is $0.20 \mathrm{~m}^{2}$ and headloss across the rack is 40 mm . Also estimate the headloss, when 50% area of the flow area is blocked off due to coarse solids accumulation.
b. Write short note on microstrainers employed for wastewater treatment.

University of Asia Pacific
 Department of Civil Engineering
 Mid Term Examination Fall 2019

Course: CE 363
Full Marks: 60

Course Title: Engineering Hydrology Time: 1 hour

Assume any reasonable value, if not given

Answer All the Questions

All students must attach the question paper with the answer script

1. Define the followings:
Φ Index, Residence Time, Field Capacity, Vapor Pressure, Potential Evapotranspiration and Infiltration Capacity.
($6 * 2=12$)
2. Describe the Climate of Bangladesh.
3. Fill in the boxes shown in figure-1 and also write the water budget equation for the situation mentioned in the figure.

4. Calculate in one step, the perceptible water in a saturated air column of 3500 m high above $2 \mathrm{~m}^{2}$ of ground surface. The surface pressure is 101.325 kPa , the surface air temperature is $30^{\circ} \mathrm{C}$ and the lapse rate is $6.5^{\circ} \mathrm{C} / \mathrm{Km}$.
5. A storm with 200 mm precipitation produced a direct runoff of 120 mm . The time distribution of storm is given below. Estimate the Φ index of the storm.

Time from start (hr.)	1	2	3	4	5	6	7	8
Incremental rainfall in each hour (mm)	9	26	30	8	36	32	20	7

6. Find the infiltration capacity of a catchment at $6^{\text {th }}$ hour of an 8 -hour rainfall using Horton's
equation. Initial infiltration capacity of that catchment is 6.5 cm and final steady state value
is 1.4 cm . Assume value of the constant Kh as 0.33
Horton's equation: $\quad \mathrm{fct}=\mathrm{fcf}+(\mathrm{fco}-\mathrm{fcf}) \mathrm{e}^{-\mathrm{Kht}}$
7. Draw only the polygons using Thiessen polygon method to find the average rainfall for the catchment shown in Figure-2.

Figure-2

$$
\begin{gathered}
p_{2}=p_{1}\left(\frac{T_{2}}{T_{1}}\right)^{g / \alpha R_{a}} \\
T_{2}=T_{1}-\alpha\left(z_{2}-z_{1}\right) \\
p=\rho_{a} R_{a} T \\
e=611 \exp \left(\frac{17.27 T}{237.3+T}\right) \\
q_{v}=0.622 \frac{e}{p} \\
\Delta m_{p}=\bar{q}_{v} \bar{\rho}_{a} A \Delta z
\end{gathered}
$$

University of Asia Pacific
 Department of Civil Engineering
 Mid Term Examination, Fall 2019
 Program: B.Sc in Civil Engineering

Course Title: Principles of Management Course Code: IMG 301
Credit: 2
Time: 1 Hour
Full Marks: 20

(Answer all questions sequentially.)

1. Some laptops are needed for sales representative. How will a manager choose the laptop brand?

Weighted Criteria:

Memory and storage	40
Battery life	30
Carrying weight	15
Warranty	10
Display quality	5

Possible Alternatives:

Brand	Memory and storage	Battery life	Carrying weight	Warranty	Display quality
HP	35	25	15	8	2
Acer	40	30	10	8	3
Sony	40	35	14	8	4
Lenovo	32	25	12	7	4
Toshiba	30	28	8	8.5	4
Apple	35	25	15	8	5
Asus	32	28	14	6	4.5
Samsung	35	27	11	5.5	4
Huawei	20	21	9	9	4
Dell	26	23	10	8	3

2. Briefly discuss the managerial skills with appropriate examples.
3. Explain different approaches to social responsibility with examples.
4. Explain Maslow's hierarchy of needs theory with examples.

University of Asia Pacific Department of Civil Engineering Mid Term Examination Fall 2019

 Program: B.Sc. in Civil Engineering

 Program: B.Sc. in Civil Engineering}

Time: 1 (one) Hour
Full Marks:($30+18+12$) $=60$

Answer all the QUESTIONS
Use f_{c}^{\prime} is $24 \mathrm{~N} / \mathrm{mm}^{2}, f_{y}$ is $420 \mathrm{~N} / \mathrm{mm}^{2}$ and γ_{c} is $24 \mathrm{kN} / \mathrm{m}^{3}$ for design

OUESTION 1 [30 MARKS]

The floor slab of a storage warehouse of garments building (live load $6 \mathrm{kN} / \mathrm{m}^{2}$) is constructed with reinforced concrete beam ($250 \mathrm{~mm} \times 600 \mathrm{~mm}$) supported slabs. The floor carries $2 \mathrm{kN} / \mathrm{m}^{2}$ dead load due to finishes and partition wall (excluding self-weight of slab). The thickness of slab could be assumed as 150 mm . Apply concept to design the short span of side panel of slab as shown in Figure 1. The moment coefficients of side panel are listed in Table 1.
[30 Marks]

Table 1:Moment coefficients of Interior slab			
Span Ratio	Positive Moment		Negative
	Live load	Dead Load	Moment
0.8	0.044	0.032	0.055

Figure 1. Side panel
(case 8) of warehouse

QUESTION 2 [18 MARKS]

The interior column "C" (shown in Figure 2) of 8-storeyed office building (live load $2.4 \mathrm{kN} / \mathrm{m}^{2}$) is required to design. The floor is constructed with flat slab and carries $2 \mathrm{kN} / \mathrm{m}^{2}$ load due to random wall (without self-weight of slab). Design the ground floor column of "C" as tie column for gravity load only. Assume required data to design the column. Arbitrary area method of floor could be used to calculate the column load. As per ACI 318, the minimum thicknesses of interior and exterior slabs are $l_{n} / 33$ and $l_{n} / 30$ respectively to control deflection

[18 marks]

OUESTION 3 [12 MARKS]

Synthesis the optimal thickness of flat slab of the office building of Question 2 (Figure 2), considering all critical parameters (deflection and punching shear). The dimension of all columns could be as assumed as $500 \mathrm{~mm} \times 500 \mathrm{~mm}$ equally spaced square column. Assume required data to obtain optimal thickness of slab.
[12 marks]

University of Asia pacific
 Department of Civil Engineering
 Midterm Examination
 Fall 2019
 Program: B.Sc Engineering (Civil)

Course Title: Transportation Engineering 1
Full Marks: 60

Course Code: CE 351
Time: 1hour

There are Two questions. Answer all of them

1. a) Differentiate between simple trip chain and complex trip chain.
b) Calculate the AADT for the following data. Data collection was conducted on 12 Wednesday in May. MEF for May is 1.395 .

Hour	Volume
8:00-9:00 a.m.	1450
9:00-10:00 a.m.	1370
10:00-11:00 a.m.	1260
11:00-12:00 p.m.	1690
12:00-1:00 p.m.	1370
1:00-2:00 p.m.	1550

c) Compute the time-mean speed and space-mean speed of 7 vehicles traversing a 2500 m segment of a highway presented in following table:

Vehicle no.	Distance (m)	Travel time (sec)
1	2500	58
2	2500	79
3	2500	86
4	2500	58
5	2500	64
6	2500	80
7	2500	62

2. a) Design a two-phase signal of a cross-junction for the data given below:

Amber	3 sec
Red-amber	2 sec

	$\mathrm{N}-\mathrm{S}$	$\mathrm{E}-\mathrm{W}$
Inter green	9	8
Lost time	5	4

	Approaches			
	North	South	East	West
Flow, pcu/hr	1470	1190	770	1220
Saturation flow pcu/hr	3970	3550	2350	3690

Draw the phase diagram.
b) Enumerate the objectives of Origin-Destination (O-D) survey.
c) Define (any three):
(i) VMS
(ii) Forced flow
(iii) Mandatory traffic sign
(iv) Park and ride

Table for Question 1 b)

Table 1 Hourly Expansion Factors for a Rural Primary Road

Hour	Vol.	HEF	Hour	Vol. HEF
6:00-7:00 a.m.	294	42.01	6:00-7:00 p.m.	$\begin{array}{llll}743 & 16.6\end{array}$
7:00-8:00 a.m.	426	28.99	7:00-8:00 p.m.	70617.5
8:00-9:00 a.m	560	22.05	8:00-9:00 p.m.	606. 20.4
9:00-10:00 a.m.	657	18.8	9:00-10:00 p.m.	48925.3
10:00-11:00 a.m.	722	17.11	10:00-11:00 p.m.	39631.2
11:00-12:00 p.m.	667	18.52	11:00-12:00 a.m.	36034.3
12:00-1:00 p.m.	660	18.71	12:00-1:00 a.m.	24151.2
1:00-2:00 p.m.	739	16.71	1:00-2:00 a.m.	15082.3
2:00-3:00 p.m.	832	14.84	2:00-3:00 a.m.	$100 \quad 124$
3:00-4:00 p.m.	836	14.77	3:00-4:00 a.m.	90137
4:00-5:00 p.m.	961	12.85	4:00-5:00 a.m.	86144
5:00-6:00 p.m.	892	13.85	5:00-6:00	13790.2
Total daily volume $=12350$				

Table 2 Daily Expansion Factors for a Rural Primary Road

Day of Week	Volume	DEF
Sunday	7,895	9.515
Monday	10,714	7.012
Tuesday	9,722	7.727
Wednesday	11,413	6.582
Thusrday	10,714	7.012
Friday	13,125	5.724
Saturday	11,539	6.51
Total weekly volume $=$	75,122	

University of Asia Pacific
 Department of Civil Engineering
 Midterm Examination Fall 2019
 Program: B.Sc. Engineering (Civil)

Course Title: Structural Engineering II
Course Code: CE 313
Time: 1 hour
Credit Hour : 3.0
Full Marks: 40
ANSWER ALL QUESTIONS. Any missing data can be assumed reasonably.

Part A

1. Use Method of Virtual Work to calculate the horizontal deflection at \mathbf{C} and rotation at \mathbf{B} of the plane frame shown in Fig. 1
[Given: $\mathrm{EI}=$ Constant].

Fig. 1

Fig. 2
2. Use Method of Virtual Work to calculate vertical deflection at \mathbf{P} and rotation at \mathbf{Q} in the beam shown in Fig. 2
[Given: EI= Constant].

Part B

3. Use Portal Method to draw the axial force, shear force and bending moment diagrams of the structure shown in Fig.3. All columns have the same cross-sectional area.

4. Use (i) Approximate Method 1 (tension and compression diagonals each carry half the panel shear) to calculate the member forces AE, DB and
ii) Approximate Method 2 (Diagonal members can take tension only (i.e., they cannot take any compression)) for member BF and CE of the truss shown in Fig. 4.
