> University of Asia Pacific Department of Civil Engineering Final Examination Fall 2018 Program: B. Sc. Engineering (Civil)

Course Title: Project Planning \& Management

Course Code: CE 401
Full Marks: 150

PART - A
Answer all of the following questions.
(Assume reasonable values for any missing data)

1. Construction of the elevated metro rail MRT Line-6 is underway in Dhaka under a fast track priority initiative of the Government of Bangladesh (Figure 1). Once implemented, the MRT Line-6 will run from Uttara to Motijheel serving 16 stations along the way. What challenges can the project manager face in implementing the project.

Figure 1: Construction of the elevated metro rail MRT Line-6 (lefi) and its alignment (right). (Courtesy: The New Age)
2. On March 15, 2017 one construction worker died and several were injured when the precast concrete girders of the then under-construction flyover at Malibagh-Moghbazar in Dhaka collapsed as shown in Figure 2. Perform accident analysis of the incident and prepare a detailed report.

Figure 2: Collapsed portion of the MalibaghMoghbazar flyover (Courtesy: The Daily Star)
3. O'Neill's sells each of its Hammer $3 / 2$ wetsuit for $\$ 180$. The production and procurement cost per suit is $\$ 110$. Marketing department's forecast for sales during the spring season is 3200 units. Unsold inventory at the end of the season can be salvaged for $\$ 90$ per unit. What will be the demand for Hammer $3 / 2$ during the spring season? Also find the order quantity that maximizes expected profit.
4. Write down the modern views of quatity control and the general goals of Six Sigma.
5. What are the elements of a legal contract? What are the best measures for an engineer to take when entering into a contract with a client?

PART - B

Answer all of the following questions.
(Assume reasonable values for any missing data)
6. Project activity status of Mr . X , project manager for a hospital project, is shown below:

Activity	Description	Activity Predecessor	Time (weeks)
A	Select admin staff	--	3
B	Site selection and survey	---	4
C	Select medical equipment	---	4
D	Prepare final construction plan	A	5
E	Bring utilities to sites	B	2
F	Interview for nursing and staff	C	6
G	Purchase and deliver equipment	D, E	3
H	Construct hospital	F, G	1

i. Draw the network diagram
ii. Find ES, EF and LS, LF time for each activity
iii. Find Total float, and Free float for each activity
iv. Find the critical path
v. Find the project completion time
vi. If the time required for activity \mathbf{F} and G are reduced by 1 week each, find the project completion time and critical path as well.
7. a. The sales of a certain product during a 12 year period have been given below:

Period	Sales	Period	Sales
1	1,000	7	1.900
2	1,150	8	2.400
3	1,320	9	2,650
4	1.600	10	3.040
5	1,750	11	3.500
6	2,050	12	4.050

Develop a regression analysis to forecast the demand and find the forecast for the $15^{\text {th }}$ year period.
b. Consider the cash flow of two projects:

Year	Cash Flow of A	Cash Flow of B
0	1,200	1,400
1	1,600	400
2	800	300
3	450	700
4	2,500	600
5	3,500	400

i. Construct the NPV profile for Projects A and B
11. Construct the BCR for Projects A and B
iii. Which project would you choose if r is 12 percent?
8. a. A marketing manager wishes to allocate his annual advertising budget of Tk. 20,000 in two media A and B . The unit cost of a message in Media A is Tk. 1,000 and in B is Tk. 1,500 . Media A is a monthly magazine and not more than one insertion is desired in one issue. At least 5 messages should appear in media B. The expected effective audience for unit messages for media A is 40,000 and for media B is 50,000 . Formulate a LP model.
b. A company produces two types of cow boy hats. Each hat of the first type require twice as much labor time as the second type. If all hats are of the second type only, the company can produce a total of 500 hats a day. The market limits daily sales of the first and second types to 150 and 250 hats. Assuming that the profits per hat are Tk. 8 for type 1 and Tk. 5 for type 2, formulate the problem as a LP model to determine the number of hats to be produced of each type so as to maximize the profit.
c. Name the factors that affect capacity decision.
9. a. What do you understand by SIC? Discuss different SIC system, their basis and uses.
b. What do you understand by 'defender' and 'challenger' in replacement studies? Explain with examples.
c. Write short notes on the following two:
i. IRR
ii. Salvage Value

Standard Normal Probabilities

Table entry for z is the area under the standard normal curve to the left of z.

z	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
-3.4	. 0003	. 0003	. 0003	. 0003	. 0003	. 0003	. 0003	. 0003	. 0003	. 0002
-3.3	. 0005	. 0005	. 0005	. 0004	. 0004	. 0004	. 0004	. 0004	. 0004	. 0003
-3.2	. 0007	. 0007	. 0006	. 0006	. 0006	. 0006	. 0006	. 0005	. 0005	. 0005
-3.1	. 0010	. 0009	. 0009	. 0009	. 0008	. 0008	. 0008	. 0008	. 0007	. 0007
-3.0	. 0013	. 0013	. 0013	. 0012	. 0012	. 0011	. 0011	. 0011	. 0010	. 0010
-2.9	. 0019	. 0018	. 0018	. 0017	. 0016	. 0016	. 0015	. 0015	. 0014	. 0014
-2.8	. 0026	. 0025	. 0024	. 0023	. 0023	. 0022	. 0021	. 0021	. 0020	. 0019
-2.7	. 0035	. 0034	. 0033	. 0032	. 0031	. 0030	. 0029	. 0028	. 0027	. 0026
-2.6	. 0047	. 0045	. 0044	. 0043	. 0041	. 0040	. 0039	. 0038	. 0037	. 0036
-2.5	. 0062	. 0060	. 0059	. 0057	. 0055	. 0054	. 0052	. 0051	. 0049	. 0048
-2.4	. 0082	. 0080	. 0078	. 0075	. 0073	. 0071	. 0069	. 0068	. 0066	. 0064
-2.3	. 0107	. 0104	. 0102	. 0099	. 0096	. 0094	. 0091	. 0089	. 0087	. 0084
-2.2	. 0139	. 0136	. 0132	. 0129	. 0125	. 0122	. 0119	. 0116	. 0113	. 0110
-2.1	. 0179	. 0174	. 0170	. 0166	. 0162	. 0158	. 0154	. 0150	. 0146	. 0143
-2.0	. 0228	. 0222	. 0217	. 0212	. 0207	. 0202	. 0197	. 0192	. 0188	. 0183
-1.9	. 0287	. 0281	. 0274	. 0268	. 0262	. 0256	. 0250	. 0244	. 0239	. 0233
-1.8	. 0359	. 0351	. 0344	. 0336	. 0329	. 0322	. 0314	. 0307	. 0301	. 0294
-1.7	. 0446	. 0436	. 0427	. 0418	. 0409	. 0401	. 0392	. 0384	. 0375	. 0367
-1.6	. 0548	. 0537	. 0526	. 0516	. 0505	. 0495	. 0485	. 0475	. 0465	. 0455
-1.5	. 0668	. 0655	. 0643	. 0630	. 0618	. 0606	. 0594	. 0582	. 0571	. 0559
-1.4	. 0808	. 0793	. 0778	. 0764	. 0749	. 0735	. 0721	. 0708	. 0694	. 0681
-1.3	. 0968	. 0951	. 0934	. 0918	. 0901	. 0885	. 0869	. 0853	. 0838	. 0823
-1.2	. 1151	. 1131	. 1112	. 1093	. 1075	. 1056	. 1038	. 1020	. 1003	. 0985
-1.1	. 1357	. 1335	. 1314	. 1292	. 1271	. 1251	. 1230	. 1210	. 1190	. 1170
-1.0	. 1587	. 1562	. 1539	. 1515	. 1492	. 1469	. 1446	. 1423	. 1401	. 1379
-0.9	. 1841	. 1814	. 1788	. 1762	. 1736	. 1711	. 1685	. 1660	. 1635	. 1611
-0.8	. 2119	. 2090	. 2061	. 2033	. 2005	. 1977	. 1949	. 1922	. 1894	. 1867
-0.7	. 2420	. 2389	. 2358	. 2327	. 2296	. 2266	. 2236	. 2206	. 2177	. 2148
-0.6	. 2743	. 2709	. 2676	. 2643	. 2611	. 2578	. 2546	. 2514	. 2483	. 2451
-0.5	. 3085	. 3050	. 3015	. 2981	. 2946	. 2912	. 2877	. 2843	. 2810	. 2776
-0.4	. 3446	. 3409	. 3372	. 3336	. 3300	. 3264	. 3228	. 3192	. 3156	. 3121
-0.3	. 3821	. 3783	. 3745	. 3707	. 3669	. 3632	. 3594	. 3557	. 3520	. 3483
-0.2	. 4207	. 4168	. 4129	. 4090	. 4052	. 4013	. 3974	. 3936	. 3897	. 3859
-0.1	. 4602	. 4562	. 4522	. 4483	. 4443	. 4404	. 4364	. 4325	. 4286	. 4247
-0.0	. 5000	. 4960	. 4920	. 4880	. 4840	. 4801	. 4761	. 4721	. 4681	. 4641

Standard Normal Probabilities

Table entry for z is the area under the standard normal curve to the left of z.

z	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
0.0	. 5000	. 5040	. 5080	. 5120	. 5160	. 5199	. 5239	. 5279	. 5319	. 5359
0.1	. 5398	. 5438	. 5478	. 5517	. 5557	. 5596	. 5636	. 5675	. 5714	. 5753
0.2	. 5793	. 5832	. 5871	. 5910	. 5948	. 5987	. 6026	. 6064	. 6103	. 6141
0.3	. 6179	. 6217	. 6255	. 6293	. 6331	. 6368	. 6406	. 6443	. 6480	. 6517
0.4	. 6554	. 6591	. 6628	. 6664	. 6700	. 6736	. 6772	. 6808	. 6844	. 6879
0.5	. 6915	. 6950	. 6985	. 7019	. 7054	. 7088	. 7123	. 7157	. 7190	. 7224
0.6	. 7257	. 7291	. 7324	. 7357	. 7389	. 7422	. 7454	. 7486	. 7517	. 7549
0.7	. 7580	. 7611	. 7642	. 7673	. 7704	. 7734	. 7764	. 7794	. 7823	. 7852
0.8	. 7881	. 7910	. 7939	. 7967	. 7995	. 8023	. 8051	. 8078	. 8106	. 8133
0.9	. 8159	. 8186	. 8212	. 8238	. 8264	. 8289	. 8315	. 8340	. 8365	. 8389
1.0	. 8413	. 8438	. 8461	. 8485	. 8508	. 8531	. 8554	. 8577	. 8599	. 8621
1.1	. 8643	. 8665	. 8686	. 8708	. 8729	. 8749	. 8770	. 8790	. 8810	. 8830
1.2	. 8849	. 8869	. 8888	. 8907	. 8925	. 8944	. 8962	. 8980	. 8997	. 9015
1.3	. 9032	. 9049	. 9066	. 9082	. 9099	. 9115	. 9131	. 9147	. 9162	. 9177
1.4	. 9192	. 9207	. 9222	. 9236	. 9251	. 9265	. 9279	. 9292	. 9306	. 9319
1.5	. 9332	. 9345	. 9357	. 9370	. 9382	. 9394	. 9406	. 9418	. 9429	. 9441
1.6	. 9452	. 9463	. 9474	. 9484	. 9495	. 9505	. 9515	. 9525	. 9535	. 9545
1.7	. 9554	. 9564	. 9573	. 9582	. 9591	. 9599	. 9608	. 9616	. 9625	. 9633
1.8	. 9641	. 9649	. 9656	. 9664	. 9671	. 9678	. 9686	. 9693	. 9699	. 9706
1.9	. 9713	. 9719	. 9726	. 9732	. 9738	. 9744	. 9750	. 9756	. 9761	. 9767
2.0	. 9772	. 9778	. 9783	. 9788	. 9793	. 9798	. 9803	. 9808	. 9812	. 9817
2.1	. 9821	. 9826	. 9830	. 9834	. 9838	. 9842	. 9846	. 9850	. 9854	. 9857
2.2	. 9861	. 9864	. 9868	. 9871	. 9875	. 9878	. 9881	. 9884	. 9887	. 9890
2.3	. 9893	. 9896	. 9898	. 9901	. 9904	. 9906	. 9909	. 9911	. 9913	. 9916
2.4	. 9918	. 9920	. 9922	. 9925	. 9927	. 9929	. 9931	. 9932	. 9934	. 9936
2.5	. 9938	. 9940	. 9941	. 9943	. 9945	. 9946	. 9948	. 9949	. 9951	. 9952
2.6	. 9953	. 9955	. 9956	. 9957	. 9959	. 9960	. 9961	. 9962	. 9963	. 9964
2.7	. 9965	. 9966	. 9967	. 9968	. 9969	. 9970	. 9971	. 9972	. 9973	. 9974
2.8	. 9974	. 9975	. 9976	. 9977	. 9977	. 9978	. 9979	. 9979	. 9980	. 9981
2.9	. 9981	. 9982	. 9982	. 9983	. 9984	. 9984	. 9985	. 9985	. 9986	. 9986
3.0	. 9987	. 9987	. 9987	. 9988	. 9988	. 9989	. 9989	. 9989	. 9990	. 9990
3.1	. 9990	. 9991	. 9991	. 9991	. 9992	. 9992	. 9992	. 9992	. 9993	. 9993
3.2	. 9993	. 9993	. 9994	. 9994	. 9994	. 9994	. 9994	. 9995	. 9995	. 9995
3.3	. 9995	. 9995	. 9995	. 9996	. 9996	. 9996	. 9996	. 9996	. 9996	. 9997
3.4	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9998

University of Asia Pacific
 Department of Civil Engineering
 Final Examination Fall 2018
 Program: B.Sc. Engineering (Civil)

ANSWER ALL THE OUESTIONS

1. Frame structure $a b c$ shown in Fig. I is subjected to a dynamic load, $w=10 t^{2}(k / f t)$. Use Constant Average Acceleration (CAA) Method to calculate the rotation of joint a at time $t=0.10 \mathrm{sec}$
[Given: $E I=10^{+} k-f t^{2}, \mu=0.004 k-\sec ^{2} / f t^{2}$, Damping ratio of the system $=6 \%$].
2. Ignore zero-force members and apply boundary conditions to form the stiffness matrix of the space truss abcdefghij shown in Fig. 2
[Given: $S_{x}=$ constant $=500 \mathrm{kip} / f$, , Nodal Coordinates $(f t)$ are $a(5,12,-5), b(5,12,0), c(2.5,6,0)$, $d(2.5,6,-5), e(7.5,6,-5), f(7.5,6,0), g(0,0,-5), h(0,0,0), i(10,0,-5), j(10,0,0)]$.
3. Calculate $1^{\text {st }}$ natural frequency of the frame $A B C$ as shown in Fig. 3 using lumped mass matrices (neglecting axial deformation).

4. Use the stiffness method (neglect axial deformation) to calculate the rotation at joint \boldsymbol{B} and \boldsymbol{C} of the frame loaded as shown in Fig.3, if the hinge support at C is replaced by a circular foundation of radius 3.5 ft on the surface of subsoil (half-space) with shear wave velocity $\left(v_{s}\right)$ equal to $1200 \mathrm{ft} / \mathrm{sec}$
[Given: $E I=80 \times 10^{3} k-f t^{2}$. Unit weight of soil $=120 p c f$, Poisson's ratio $=0.25$]
5. Use Stiffness Method considering flexural deformations only to calculate the unknown rotations at joint c and \boldsymbol{d} of the frame abcdef lo aded as shown in Fig. 4
[Given: $E I=60 \times 10^{3} k-f i^{2}$].
6. Determine the degree of kinematic indeterminacy (doki) and show the corresponding deflections and rotations of the 2D frame (Fig.4) and 3D frame (Fig.5), for the following cases (i) Not considering boundary conditions, (ii) Considering boundary conditions, (iii) Neglecting axial deformations.
7. Use Energy method to calculate the plastic moment $\left(M_{p}\right)$ needed to prevent the development of plastic hinge mechanism loaded frame $\boldsymbol{A B C D}$ as shown in Fig. 6 considering beam mechanism for $\boldsymbol{A B}, \boldsymbol{B C}$ and sidesway mechanism for column $B D$.
8. Use Stiffness Method (neglecting axial deformations) to calculate the value of \boldsymbol{F} required to cause buckling of the frame $a b c$ def loaded as shown in Fig. 7
[Given: $E I=30 \times 10^{3} k-{f t^{2}}^{2}$.

9. Identify zero-force members of the 2D truss $\boldsymbol{A B C D}$ loaded as shown in Fig. $\boldsymbol{8}$.

Determine the displacements of joint \boldsymbol{D} considering the settlement of support \boldsymbol{B} is 0.10 ft . Also calculate member forces. [Given: $E A / L=1000 \mathrm{k} / \mathrm{fi}$].
10. Use Stiffness Method considering flexural deformations and geometric nonlinearity to calculate unknown rotations at \mathbf{A} and \boldsymbol{C} of the frame $A B C D E F$ loaded as shown in Fig. 9
[Given: $E I=30 \times 10^{3} k-f I^{2}$].

List of Useful Formulae for CE 411

* The stiffness matrix $\mathbf{K}_{\mathbf{m}}{ }^{\mathbf{G}}$ of a 2D truss member in the global axis system is given by

Fixed End Reactions for One-dimensional Prismatic Members under Typical Loadings

* The stiffness matrix of a 3D truss member in the global axes system [using $C_{x}=\cos \propto, C_{y}=\cos \beta, C_{z}=\cos \gamma$] is

$$
K_{m} \mathbf{G}=S_{x}\left(\begin{array}{llllll}
C_{x}^{2} & C_{x} C_{y} & C_{x} C_{z} & -C_{x}{ }^{2} & -C_{x} C_{y} & -C_{x} C_{z} \\
C_{y} C_{x} & C_{y}{ }^{2} & C_{y} C_{z} & -C_{y} C_{x} & -C_{y}^{2} & -C_{y} C_{z} \\
C_{z} C_{x} & C_{z} C_{y} & C_{z}^{2} & -C_{z} C_{x} & -C_{z} C_{y} & -C_{z}^{2} \\
-C_{x}{ }^{2} & -C_{x} C_{y} & -C_{x} C_{z} & C_{x}{ }^{2} & C_{x} C_{y} & C_{x} C_{z} \\
-C_{y} C_{x} & -C_{y}^{2} & -C_{y} C_{z} & C_{y} C_{x} & C_{y}{ }^{2} & C_{y} C_{z}
\end{array}\right] \quad \begin{aligned}
& C_{x}=L_{x} / L, C_{y}=L_{y} \Omega, C_{z}=L_{y} / L \\
& \text { where } L=V^{2}\left[L_{x}{ }^{2}+L_{y}{ }^{2}+L_{z}^{2}\right]
\end{aligned}
$$

* Member force $P_{A B}=S_{x}\left[\left(u_{B}-u_{A}\right) C_{x}+\left(v_{B}-v_{A}\right) C_{y}+\left(w B-w_{A}\right) C_{z}\right]$
* Torsional stiff ness $\mathrm{T}_{1}=\mathrm{GJ} / \mathrm{L}$
* Ignoring axial deformations, the matrices $\mathbf{K}_{\mathbf{m}}{ }^{\mathbf{L}}$ and $\mathbf{G}_{\mathbf{m}} \mathbf{L}$ of a frame member in the local axis system are

$$
\mathbf{K}_{\mathbf{m}}{ }^{\mathbf{L}}=\left(\begin{array}{rrrr}
\mathrm{S}_{1} & \mathrm{~S}_{2} & -\mathrm{S}_{1} & \mathrm{~S}_{2} \\
\mathrm{~S}_{2} & \mathrm{~S}_{3} & -\mathrm{S}_{2} & \mathrm{~S}_{4} \\
-\mathrm{S}_{1} & -\mathrm{S}_{2} & \mathrm{~S}_{1} & -\mathrm{S}_{2} \\
\mathrm{~S}_{2} & \mathrm{~S}_{4} & -\mathrm{S}_{2} & \mathrm{~S}_{3}
\end{array}\right) \quad \mathbf{G} \mathrm{m}^{\mathbf{L}}=(\mathrm{P} / 30 \mathrm{~L})\left(\begin{array}{cccc}
36 & 3 \mathrm{~L} & -36 & 3 \mathrm{~L} \\
3 \mathrm{~L} & 4 \mathrm{~L}^{2} & -3 \mathrm{~L} & -\mathrm{L}^{2} \\
-36 & -3 \mathrm{~L} & 36 & -3 \mathrm{~L} \\
3 \mathrm{~L} & -\mathrm{L}^{2} & -3 \mathrm{~L} & 4 \mathrm{~L}^{2}
\end{array}\right)
$$

where $S_{1}=12 E I / L^{3}, S_{2}=6 E I / L^{2}, S_{3}=4 E L / L, S_{4}=2 E I / L$
${ }^{*} \mathbf{K}_{\text {total }}=\mathbf{K}+\mathbf{G}$, buckling occurs (i.e., $\mathrm{P}=\mathrm{P}_{\mathrm{cf}}$) when $\left|\mathbf{K}_{\text {totas }}\right|=0$

* For sections of Elastic-Fully-Piastic material, $A_{t}=A_{c}=A / 2$, and $M_{p}=A_{c} \bar{y}_{c}+A_{t} \bar{y}_{t}$
* For RC sections, $\mathrm{M}_{\mathrm{p}}=\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}}(\mathrm{d}-\mathrm{a} / 2)$, where $\mathrm{a}=\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}} /\left(0.85 \mathrm{f}_{\mathrm{c}}{ }^{\prime} \mathrm{b}\right)$
* Virtual work done by external forces $\left(\delta W_{E}\right)=$ Virtual work done by internal forces ($\delta \mathrm{W}_{1}$)
* For simply supported beams under (i) concentrated midspan load $P_{u}=4 M_{p} / L$, and (ii) UDL $w_{u}=8 M_{p} / L^{2}$
* For fixed-ended beams under (i) concentrated midspan load $P_{u}=8 M_{p} / L$, and (ii) UDL $w_{u}=16 M_{p} / L^{2}$
* For hinged-fixed ended beams under UDL $w_{\nu}=11.66 \mathrm{M}_{\downarrow} / \mathrm{L}^{2}$
* Using CAA Method, $\left(m+c \Delta t / 2+k \Delta t^{2} / 4\right) a_{i+1}=f_{i+1}-k u_{i}-(c+k \Delta t) v_{i}-\left(c \Delta t / 2+k \Delta t^{2} / 4\right) a_{i}$ [$\mathrm{m}=$ Total mass, $\mathrm{c}=$ Damping $=2 \xi \sqrt{ }(\mathrm{~km})$, where $\xi=$ Damping Ratio] Also $v_{i+1}=v_{i}+\left(a_{i}+a_{i+1}\right) \Delta t / 2$, and $u_{i+1}=u_{i}+v_{i} \Delta t+\left(a_{i}+a_{i+1}\right) \Delta t^{2} / 4$, starting with $a_{0}=\left(f_{0}-c v_{0}-k u_{0}\right) / m$
* Lumped- and Consistent-Mass matrix for axial rod
$\mathbf{M}_{\mathrm{nt}}=(\mu \mathrm{L} / 2)\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \quad \mathbf{M}_{\mathrm{m}}=(\mu \mathrm{L} / 3)\left(\begin{array}{cc}1 & 0.5 \\ 0.5 & 1\end{array}\right)$

Consistent-Mass matrix for beam [$\mu=$ Mass per unit length]
$\mathbf{M}_{\mathbf{m}}=(\mu \mathrm{L} / 420)\left(\begin{array}{rrrr}156 & 22 \mathrm{~L} & 54 & -13 \mathrm{~L} \\ 22 \mathrm{~L} & 4 \mathrm{~L}^{2} & 13 \mathrm{~L} & -3 \mathrm{~L}^{2} \\ 54 & 13 \mathrm{~L} & 156 & -22 \mathrm{~L} \\ -13 \mathrm{~L} & -3 \mathrm{~L}^{2} & -22 \mathrm{~L} & 4 \mathrm{~L}^{2}\end{array}\right)$

* At natural frequency (i.e., $\omega=\omega_{n}$), $\left|\mathbf{K}-\omega_{n}^{2} \mathbf{M}\right|=0$
* Stiff ness of Circular Surface Foundations on Half-Space

| Motion | Horizontal | Vertical | Rotational | Torsional |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{K}_{\text {Hallispace }}$ | $8 \mathrm{G}_{s} \mathrm{R} /(2-\mathrm{v})$ | $4 \mathrm{G}_{5} \mathrm{R}^{\prime}(1-\mathrm{v})$ | $8 \mathrm{G}_{3} \mathrm{R}^{3} /(3-3 \mathrm{v})$ | $16 \mathrm{G}_{s} \mathrm{R}^{3} / 3$ |

University of Asia Pacific
 Department of Civil Engineering
 Final Examination Fall 2018
 Program: B.Sc. Engineering (Civil)

Answer the following questions.

1. (a) Recommend a type of sampler that can be used for sampling sand

With these samples, which laborat ory tests c an be carried out?
(b) During soil exploration, st andard penetration test swere carried out at a test site. Given that $\gamma_{\text {sat }}=18.5 \mathrm{kN} / \mathrm{m}^{3}$. Wat er table is at the ground level.
Calculate $\left(N_{1}\right)_{60}$ at depth of 5 m , if $\mathrm{N}_{60}=12$.
(c) Compare the advantage of c one penetration test over vane shear test.
2. (a) Calculate the settlement of the rectangular footing (dimension $2 \mathrm{~m} \times 3 \mathrm{~m}$) in the soil profile sh own in Figure 1, due to primary consolidation settlement of the soft clay layer. Use $2: 1$ pressure distribution. The depth of foun dation is 2 m .

Figure 1
2. (b) Calculate the settlement of a group of 9 piles in the soil profile sh own in Figure 1, due to primary consolidation settlement of the soft clay layer.
Given that
Pile length $=10 \mathrm{~m}$,
Pile diamet er $=0.75 \mathrm{~m}$, and $\mathrm{c} / \mathrm{csp}$ acing $=3 \mathrm{D}$.
3. The arrangement of 12 piles (in a group) and the soil profile are sho wn in Fi gure 2. Center-to-center pile spacing is 0.9 m .
(a) Calculate the capacity of an individual pile.

Given th at $\alpha=0.5, K_{s}=0.8 \mathrm{~K}_{0}, \delta / \varphi=0.8$.
(b) The group of vertic al piles are subject ed to an eccentric force Q, magnitude of 2600 kN .

Q is located 0.2 m from the x -axis and 0.15 m from the z -axis.
Determine the maximum and the minimum forces on the piles.

Figure 2
4. According to the soil exploration report, the upper loose sand layer is found homogeneous and overlying medium dense sand. The ground water table is locat ed at EGL.

Estimate the net allowable bearing capacity of a 2 m wide strip footing, placed at a depth
1.5 m belo w the ground level. Given that $\mathrm{Z}=2 \mathrm{~m}$.

Provide a factor of safety equal 2 .

Figure 3
5. (a) Design a rectangular shallow foundation (placed at a depth 1.5 m bel ow the ground level) to support 400 kN load for the following soil data. Provide a fact or of safety equal 3. According to the soil exploration report, the upper layer is found hom ogene ous and extends up to 8 m bel ow the ground level. The ground water table is loc ated at GL. Use Meyerhof's the ory of bearing cap acit y. Assume that $L=2 B$.

The data of th is soil layer is as follows:
Given data: $\gamma_{\mathrm{sat}}=18.2 \mathrm{kN} / \mathrm{m}^{3} ; \mathrm{c}=10 \mathrm{kPa} ; \varphi=35^{\circ}$
(b) Determine the depth of a partially compen sated mat foundation with a dimen sion of 25 $\mathrm{m} \times 18 \mathrm{~m}$. The m at will be constructed on a deep bed of saturated clay w ith $c_{v}=65 \mathrm{kPa}$ and $\gamma_{\text {sat }}=16.5 \mathrm{kN} / \mathrm{m}^{3}$. Assume a reason able fact or of safe ty.
6. Detemine the factor of safety for the trial sl ip surface (Figu re 4) applying ord inary meth od of sl ices for the given data.
The α an gles, width of the slices, pore-water pressure and we ight of the slices are given in Table 1.

Figure 4

Table 1

Slice No.	$\boldsymbol{0}\left({ }^{\circ}\right)$	$\mathbf{b}(\mathbf{m})$	$\mathbf{u}(\mathbf{k P a})$	$\mathbf{W}(\mathbf{k N} / \mathbf{m})$
1	-18	2.5	5	68
2	-10	2.5	10	160
3	0	2.5	14	204
4	15	2.5	12	221
5	21	2.5	12	238
6	27	2.5	10	229
7	33	2.5	7	221
8	48	2.5	6	221
9	53	2.5	5	204
10	65	1.6	0	108

Table: Shape, Depth and Inclination Factors

Factor	Condition	Equation
Shape	$\varphi=0^{\circ}$	$\begin{gathered} F_{c s}=1+0.2\left(\frac{B}{L}\right) \\ F_{q s}=F_{y s}=1 \end{gathered}$
	$\varphi \geq 10^{\circ}$	$\begin{gathered} F_{c s}=1+0.2\left(\frac{B}{L}\right) \tan ^{2}\left(45^{\circ}+\frac{\varphi}{2}\right) \\ F_{q s}=F_{\gamma s}=1+0.1\left(\frac{B}{L}\right) \tan ^{2}\left(45^{\circ}+\frac{\varphi}{2}\right) \end{gathered}$
Depth	$\varphi=0^{\circ}$	$\begin{gathered} F_{c d}=1+0.2\left(\frac{D_{f}}{B}\right) \\ F_{a d}=F_{v d}=1 \end{gathered}$
	$\varphi \geq 10^{\circ}$	$\begin{gathered} F_{c d}=1+0.2\left(\frac{D_{f}}{B}\right) \cdot \tan \left(45^{\circ}+\frac{\varphi}{2}\right) \\ F_{q d}=F_{\gamma d}=1+0.1\left(\frac{D_{f}}{B}\right) \cdot \tan \left(45^{\circ}+\frac{\varphi}{2}\right) \end{gathered}$
Inclination	Any φ	$F_{c i}=F_{q i}=\left(1-\frac{\alpha^{\circ}}{90^{\circ}}\right)^{2}$
	$\varphi>0^{\circ}$	$F_{\gamma i}=\left(1-\frac{\alpha^{\top}}{\varphi^{\circ}}\right)^{2}$
	$\varphi=0^{\circ}$	$F_{\gamma i}=0$

Ordinary Slice Method

$$
\mathrm{F}_{\mathrm{s}}=\frac{\mathbb{E}\left[\mathrm{c}^{\prime} \Delta \mathrm{L}_{\mathrm{n}}+\left(\mathrm{W}_{\mathrm{n}} \cos \alpha_{\mathrm{n}}-\mathrm{u}_{\mathrm{n}} \Delta \mathrm{~L}_{\mathrm{n}}\right) \tan \varphi^{\prime}\right.}{\mathrm{W}_{\mathrm{n}} \operatorname{Sin} \alpha_{\mathrm{n}}}
$$

Design Charts for \mathbf{N}_{4} and \mathbf{N}_{y} (applicable to weak sand over strong sand)

Table: Bearing Capacity Factors (Meyerhof's Chart)

ϕ	N_{c}	N_{0}	$\begin{gathered} \mathrm{N}_{4} \\ \text { Aleverbon? } \end{gathered}$	ϕ	N_{c}	N_{4}	Aleyesbof)	ϕ	N_{s}	N_{4}	Mevertof
0°	5.10	1.00	0.00	17	12.34	4.77	1.66	$3+$	$4: 16$	294	31.5
1	5.38	1.09	0.00	18°	13.10	5.26	2.00	35°	46.12	3330	3715
?	5.63	1.20	0.01	19°	13.03	5.80	240	36°	50.50	37.75	4443
3	5.90	1.31	0.02	20°	14.83	640	2.87	37	5563	429	3327
4	6.19	1.43	0.04	21°	15.81	7.07	3.42	38.	61.35	48.93	6407
5	6.49	1.57	007	22°	16.88	782	4.07	39°	67.87	596	7733
6	6.81	1.72	0.11	23°	18.05	8.66	4.3?	40°	7531	64.20	9369
$7{ }^{\circ}$	7.16	1.88	0.15	24	19.32	9.60	5.72	41°	93.96	73.90	11309
$\$^{\circ}$	7.53	206	0.21	25°	20.72	1066	6.77	42°	93.71	55.37	$1393 ?$
$9{ }^{\circ}$	702	25	0.28	26°	22.25	1185	800	43°	10511	9901	17114
10°	8.34	2.47	0.37	27	23.94	13.20	0.46	H°	118.37	11531	21141
11^{\prime}	8.50	2.71	0.47	38°	25.80	14.72	11.19	45°	133.87	134.87	26274
12°	9.38	2.97	0.60	29°	27.86	16 tt	13.24	46°	152.10	188.50	32873
13°	9.81	3.26	0.74	30°	3014	15.10	1567	47°	173.64	187.21	414.33
14°	10.37	3.59	0.92	31°	32.67	20.63	18.56	45°	10926	22230	52646
15°	10.98	3.94	1.13	32°	35.49	23.18	2302	49°	22993	26550	674.9?
16°	11.63	4.34	1.37	33°	38.64	2609	26.17				

Design chart: $\mathbf{N c}{ }^{*}$ and $\mathbf{N q}^{*}{ }^{*}$ vs ϕ

University of Asia Pacific

Department of Civil Engineering
Final Examination Spring 2017
Program: B.Sc. Engineering (Civil)
Course Title: Transp ortation Engineering II

There are Six quest ions. Answer any Five.
 [Assume Reasonalde Values for Any Missing Data]

1. (a) Figure 1 is a pavement system with the residient moduli, layer coefficients, and drainage coefficients as shown. If predicted $\mathrm{ESAL}=18.6 \times 10^{6}, \mathrm{R}=95 \%, \mathrm{~S}_{0}=0.35$, and $\mathrm{PSI}=2.1$, calculate thicknesses DI, D2, a nd D3.

Figure 1

(b) What are the desirable properties of soil?
(c) You are a pavement engineer after lab examination, calculation and analysis you found that Group index value of your soil sample is -20 , give comment on your soil sample.
(a) What is the classification and group index of soil sample (AASHTHO Method) with 84% passing No. 10 sieve, 58% passing No. 40 sieve, and 8% passing No. 200 sieve? The sample is non-plastic. Also comment whether that can be used as subbase or base course.
(b) Design size and spacing of dowel bars at an expansion joint of concrete pavement of thickness 20 cm . Given the radius of relative stiffness of 90 cm . Dcsign wheel load 4000 kg . Load capacity of dowel system 40 percent of design load. Joint width is 3.0 cm and the permissible stress in shear, bending and bearing stress in dowel bars are 1000,1500 and $100 \mathrm{~kg} / \mathrm{cm}^{2}$ respect ively.
3. (a) Clarify the importance of i) penetration test, ii) duct ility test, iii) $(2 \times 5=10)$ Softening point test, iv) flash and fire point test, v) loss on heating test of bitumen for pavement design and construction.
(b) What are the facilities required for: i) station where lines from 3 or more direction meet, and ii) station where a rail way line or one of its branches terminates.
4. (a) If the sleeper den sity is $M+7$ on a broad gauge route and the length of the rail is 13 m and width of sleeper is 25.4 cm . then calculate balla st density.
(b) Explain the importance of Westergaard's Modulus of Subgrade Reaction (k) in ri gid pavement design and the state factors upon which k value depends
(c) Summarize the application of Fqui valent Single A de I oad.
(a) A six-lane divided highway is to be designed to replace an existing highway. The present AADT (both directions) of 6000 vehicles is expected to grow at 5% per annum. The percent of traffic on the desi gn lane is 45%. Determine the design ESAL if the design life is 20 years and the vehicle mix is: Passen ger cars ($1000 \mathrm{lb} / \mathrm{axle})=60 \%$ 2-axle single-unit trucks ($5000 \mathrm{lb} / \mathrm{axle}$) $=30 \%$ 3 -axle single-unit trucks ($7000 \mathrm{lb} / \mathrm{axle}$) $=10 \%$
(b) A section of a two-lane rural highway is to be realigned and replaced by a four-lane highway with a frall-depth asphalt pavement. The AADT (both ways) on the existing section can be represented by 500 ESAL. It is expected that construction will be completed five years from now. If the traffic growth rate is 5% and the effective CBR of the subgradc on the new alignment is 85 , determine a suitable depth of the asphalt pavement using the AASHTO method and briefly explain. Take the design life of the pavement as 20 years. The resilient modulus of the asphalt is $400,000 \mathrm{lb} / \mathrm{in}^{2}$. Assume m_{1} for the as I and the percentage of traffic on the design lane is 45%. Assume the design serviceability loss is 2.0, a reliability level of 90% and a standard deviation of 2.0 .
6. (a) A 15 cm layer of cement treated granular material is to be used as subbase for a ri gid pavement. The monthly values for the roadbed soil resilient modulus and the subbase elastic (resilient) modulus are given in Table 1. If the rock depth is located 1.5 m below the subgrade surface and the projected slab thickness is 22.5 cm , estimate the effective modulus of subgrade reaction using the AASHTO method.

Table 1

Month	Ruadbed $\mathbf{M o d u l u s}$ $\left(\mathbf{k N} / \mathbf{m}^{\mathbf{2}} \mathbf{2} \mathbf{X 1} \mathbf{0}^{\mathbf{3}}\right.$	Subbase $\mathbf{M o d u l u s}$ $\left(\mathbf{k N} / \mathbf{m}^{\mathbf{2}}\right) \mathbf{X 1 0} \mathbf{0}^{3}$
Januar!	1.38	345
Feb	1.38	345
March	17.25	103.5
April	27.60	103.5
May	27.60	103.5
June	48.3	138
July	48.3	138
August	48.3	138
September	48.3	138
October	48.3	138
November	27.6	103.5
December	1.38	345

(b) Given $\mathrm{k}=100 \mathrm{pci}\left(19.5 \mathrm{MN} / \mathrm{m}^{3}\right), \mathrm{E}_{\mathrm{c}}=10 \times 10^{6} \mathrm{psi}(34.5 \mathrm{GPa})$, $\mathrm{S}_{\mathrm{c}}=650 \mathrm{psi} \quad(4.5 M P a) . \quad \mathrm{J}=3.2, \quad \mathrm{C}_{\mathrm{d}}=1.0, \quad \mathrm{PSI}=2, \quad \mathrm{R}=99 \%$, $S_{0}=0.4$, and $W_{18}=5.1 \times 10^{6}$, determine thickness (briefly explain).

University of Asia Pacific
 Department of Civil Engineering

Final Examination Fall 2018
Program: B.Sc. Engineering (Civil)
Course title: Irrigation and Flood Control
Course code: CE 461
Time: 3 Hours
Full marks: 100
There are TWO sections in the question paper namely "SECTION A" and "SECTION B". You have to answer from both sections according to the instruction mentioned on each section.

```
SECTION A
MARKS: 72
```

There are FIVE (5) questions. Answer question no. 01 (COMPULSORY) and any THREE (3) from the rest $(18+3 \star 18=72)$. (Assume any missing data.)

1. Based on the data and information provided in the figure 1 and table $\mathbf{1}$ below, calculate the following for the period from January to March:

- Consul mot ive W at er Use (Cu);
- Consumptive Irrigation Requirement (C.IR.);
- Net Irrigation Requirement (NI.R.);
- Field Irrigation Requirement (F.I.R.);
- Gross Irrigation Requirement (G.I.R.).

Figure 1

Table 1

Month	Monthly temperat ure (${ }^{\circ} \mathrm{C}$) averaged over the last 5 years	Monthly percent of day ti me hour of the year computed from the Sunshine	Useful rainfall in cm averaged over the last 5 years	Crop fact or
Janu ary	19.0	7.45	1.45	0.75
February	15.6	7.10	2.05	0.70
March	15.5	7.20	2.30	0.65

2. a) Explain irrigation and its necessity in Banglades h.
b) Do you agree that furrow irrigation method is more appropriate than sprinkler irrigation method? Justi fy your answ er.
c) In a rural village of Banglades h, the farmers together decid ed to install a centrifugal pump to supply irrigation water to the agricultural fields at a rate of 149 liters/sec ond through an existing earthen canal network. Calculate the brake horse power of the pu mp from the following data:

- Suction head $=5 \mathrm{~m}$
- Delivery head $=2 \mathrm{~m}$
- Coefficient of friction $=0.01$
- Efficiency of pump $=70 \%$
- Diamet er of pipe $=18 \mathrm{~cm}$

3. a) Expl ain the following with neat sketch: i) Sup er pass age ii) Level crossing.
b) An irrigation project is located in an area formed by alluvial soil. The resp onsible engineering department is planning to construct a new irrigation canal to provide sufficient water in the agricultural plots located in the project area The engineering depart ment decided to c onstruct an unlined canal.

As a newly recr uited engineer, you need to design that canal having the following data (two trials are required):

- Full supply discharge $=7 \mathrm{~m}^{3} / \mathrm{sec}$
- Rugosity coefficient $(\mathrm{n})=0.0224$
- Critical velocity ratio (C.V.R) (m) $=1$
- Bed slope $=1$ in 5000

Assume other reasonable data for the design.
4. a) Explain the following: i) Berms ii) Spoil Bank s
b) By analyzing the data and information provided in figure 2, find out the follo wing:

- water conveyance efficiency
- water application efficiency
- water stor age efficiency
- water distribution efficiency

Figure 2
5. a) What is meant by C2-S2 water? Discuss its usefulness for irrigating fine $2+2$ textured soil.
b) Find out the following by analyzing the data and information provided in
figure 3 below:

- Discharge required at the head of the distributary can al (\mathbf{Q});
- Discharge required at the potato field $\left(\mathbf{Q}_{1}\right)$;
- Di scharge requir ed at the wheat field $\left(\mathbf{Q}_{\mathbf{2}}\right)$;
- Di sch arge requir ed at rice field $\left(\mathbf{Q}_{3}\right)$.

Figure 3

SECTION B

MARKS: 28

There are THREE (3) questions. Answer question no. 06 (COMPULSORY)'and any ONE (1) from the rest ($16+12=28$). (Assume any missing data.)
6. a) Summarize delta formation process and how delta formation process relat es to

6
fl ood.
b) Figure 4 shows an area located in eastern part of Dhaka city that is regul arly affect ed by waterlogging. Based on the land use patern shown in figure, ident ify four reason s of waterlogging in this area with justification.

Figure 4 (Source: Prothom Alo, 10 August 2016)
7. a) Select three structural and three non-structural measures of flood management in Bangladesh that are most import ant in your opinion. Justify your answ er.
b) Explain different comp on ents of flood risk management.
8. a) Explain the procedures for determin ing the required discharge capacity and number of spillways.
b) Expl ain the following (any two):
i. Int egrated water res ources management
ii. Chang ing parad igms of flood management
iii. River train ing works

