University of Asia Pacific

Department of Basic Sciences and Humanities
 Mid Semester Examination, Fall 2017
 Frogramme: B.Sc. Engineering (Civil)
 (2 ${ }^{\text {nd }}$ Year $1^{\text {st }}$ Semester)

Course Titie: Bangladesh Studies: Society and Culture
Credit: 2
Time: 1 Hour Fourse Code: HSS 211(a)

Answer any 4 (FOUR) questions of the following (4x10)

1. Define Sociology. Can you find any connection between Sociology and Civil

Engineering? Explain.
2. What was Auguste Comte's understanding about Sociology? Discuss the 'Law of the three stages' developed by him.10

3. Define culture in the context of Bangladesh. Is there any difference between
urban and rural culture in Bangladesh? Explain. 10
4. Critically discuss Durkheim's views about 'Suicide'. 10
5. Write short notes on the following topics: 2×5
a. Material and Non-material culture.
b. Feudalism and capitalism.

University of Asia Pacific
 Department of Basic Sciences and Humanities
 Mid Semester Examination, Fall 2017
 Program: B.Sc. Engineering (Civil)
 $2^{\text {nd }}$ year $1^{\text {st }}$ semester

Course Title: Bangladesh Studies: History Course Code: HSS 211 (b)
Credit: 2.00
Total Tine: 1 Hour
Full Marks: 40

There are Five Questions. Answer any Four. All questions are of equal value. Figures in the right margin indicate marks.

1. Identify the origin of the name Bangladesh describing its transformation in different ages. 10
2. Locate the present locations of the different janapadas of ancient Bengal. 10
3. a. Difine Matsyannayam. 2
b. Explain its endind process. 8
4. Describe the process of Bakhtiar Khilji's occupation of Nadia in $1204 . \quad 10$
5. Identify the groups that resisted the Mughals in Bengal during the time of Emperor 10 Akbar and Jahangir.

University of Asia Pacific
 Department of Basic Sciences \& Humanities
 Mid Examination, Fall-2017
 Program: B.Sc. in Civil Engineering

Course Title: Mathematics III
Course Code: MTH 201
Time: 1.00 Hour
Credit: 3.0 §
Full Marks: 60
There are Four questions. Answer any Three. All questions are of equal values, indicated in the right margin.

1. (a) Define rectangular matrix, diagonal matrix, transpose matrix, symmetric matrix with example.
(b) If $A=\left[\begin{array}{ccc}1 & 2 & 1 \\ 0 & 1 & -1 \\ 3 & -1 & 1\end{array}\right]$, then show that $A^{3}-3 A^{2}-A+9 I=0$
2. (a) Prove that $\left|\begin{array}{cccc}1+a_{1} & a_{2} & a_{3} & a_{4} \\ a_{1} & 1+a_{2} & a_{3} & a_{4} \\ a_{1} & a_{2} & 1+a_{3} & a_{4} \\ a_{1} & a_{2} & a_{3} & 1+a_{4}\end{array}\right|=1+a_{1}+a_{2}+a_{3}+a_{4}$
(b) Find the rank of the following matrix using normal form

$$
A=\left[\begin{array}{ccc}
1 & 2 & -1 \\
-1 & 1 & 1 \\
0 & 5 & 0
\end{array}\right]
$$

3. Find the eigenvalues and eigenvectors of the matrix $A=\left(\begin{array}{ccc}4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -4 & -3\end{array}\right)$. Also find 20 the matrix P which diagonalizes the matrix A. Determine $P^{-1} A P$.
4. (a) If $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right)$ then find $A^{-1}, A^{-2}, \quad A^{-3}$ using Cayley Hamition Theorem.
(b) Show that the following homogeneous system of linear equations has non-zero 10 solution. Find any one non-zero solution

$$
\begin{aligned}
& x_{1}-3 x_{2}-2 x_{3}=0 \\
& 2 x_{1}+x_{2}+3 x_{3}=0 \\
& 3 x_{1}-2 x_{2}+x_{3}=0
\end{aligned}
$$

University of Asia Pacific
 Department of Civil Engineering
 Mid-Semester Examination, Fall-2017
 Program: B.Sc Engineering ($\mathbf{2}^{\text {nd }}$ Year/1 ${ }^{\text {st }}$ Semester)

Course Title: Basic Electrical Engineering
Course No. ECE201
Credits: 3.00

Time: 1.00 Hour

Full Marks: 60
[There are Four questions. Answer any Three. All questions are of equal value. Figures in the right margin indicate marks.

1. (a) Defme voltage, current, resistance, capacitance and inductance with diagram 10
(b) Find V1 and V2 in the following circuit (Figure 1). 10

2. (a) What is Ohm's law? Explain linearity and non-linearity of resistance through diagram. Explain short circuit and open circuit in the electricity system with necessary diagram.
(b) Find the mesh currents and the branch currents in the following figure 2 circuit. 10

Figure 2
3. (a) Draw a diagram to define nodes, loops, elements, and branch. Develop an equation to relate n, l, and b .
(b) Explain Super Mesh and Super Node in an electricaI circuit.
(c) In figure 3, find the node voltages V 1 and V 2 at node 1 and 2 respectively.

Figure 3
4. (a) Define First Order Circuit. Explain Source-Free RC circuit.
(b) Refer to the circuit in figure 4. Let $\mathrm{V}_{\mathrm{c}}(0)=60 \mathrm{~V}$. Determine $\mathrm{V}_{\mathrm{c}}, \mathrm{V}_{\mathrm{x}}$ and i_{0} for $\mathrm{t} \geq 0.12$

Figure 4

University of Asia Pacific
 Department of Civil Engineering
 Mid-Term Examination Fall 2017

Time: 1 (one) Hour
Course Title: Mechanics of Solids I
Full Marks: $(3 \times 20)=60$

Answer all questions.
 Each question carries equal marks

1. Draw Shear Force and Bending Moment Diagran for the following beain loading.

2. Determine the functions for loading, shear and bending moment for the following beam.

3. Find the weight of the stock of blocks being carried by the crane boom with two inetal wires AB (area: $800 \mathrm{~mm}^{2}$ and allowable stress: 110 MPa) and AC (area: $400 \mathrm{~mm}^{2}$ and allowable stress: 120 MPa).

Course No: CE 201
Time: 1 Hour
Course Title: Engineering Materials
Full Marks: 60
There are FOUR questions. Question No. 1 is compulsory. Answer any TWO questions from the rest.

1. For a building construction, the recommended FM for sand is 2.3 . From a market, two sand samples (Sand-X and Sand-Y) were collected and were sent to UAP for sieve analysis. The sieve analysis data are given below:

ASTM Sieve	Sieve opening $(\mathbf{m m})$	Amount Retained (gm)	
		Sand - Y	
3 inch	76.20	0	0
1.5 inch	38.10	0	0
$3 / 4$ inch	19.05	0	0
$3 / 8$ inch	9.50	0	0
$\# 4$	4.75	0	0
$\# 8$	2.36	60	0
$\# 12$	1.70	60	80
$\# 16$	1.19	0	80
$\# 30$	0.59	90	50
$\# 40$	0.425	90	70
$\# 50$	0.30	0	45
$\# 100$	0.15	100	25
$\# 200$	0.075	50	100
Pan	-	50	0

(i) Calculate FM of the sand samples,
(ii) Draw the grading curve of the sand samples and make comments on the grading curves,
(iii) In what proportions, the sand samples are to be mixed to get the recommended FM?
2. (a) Write short notes on: (i) Share strain, (ii) Modulus of Resilience, and (iii) Offset Yield Point (Proof Stress).
(b) Draw stress-strain curves of concrete, mild steel, glass, and rubber.
(c) Explain instantaneous strain and creep of concrete.
(d) How to reduce the emission of CO_{2} making by cement industry?
(e) What are the advantages and disadvantage of high fineness cement?
(f) Why setting time of cement is important?
3. (a) Brick get strength during burning"-how?
(b) What causes efflorescence of brick and how to remove it?
(c) What is the function of frog mark of brick?
(d) Why is drying of brick important?
(e) Explain the functions of Alumina in clay brick.
(f) What is flash setting of cement and how to control it?
(g) Draw the development of strength of pure compounds: $\mathrm{C}_{2} \mathrm{~S}, \mathrm{C}_{3} \mathrm{~S}, \mathrm{C}_{3} \mathrm{~A}$, and $\mathrm{C}_{4} \mathrm{AF}$. Explain hydration of Silicate with chemical reaction. Who is the main strength giving compound and what is the shape and size of that compound?
4. (a) Explain bulking of sand? How water content and aggregate fineness affects the Bulking of sand?
(2.5+2.5 = 5)
(b) Mix design of mortar is necessary for plastering work of a brick masonry wall of 30 ft long and 10 ft height. The following data are provided:
Sand to cement ratio (weight basis) $=3$
Water to cement ratio $=0.45$
Specific gravity of sand $=2.6$
Cement type $=$ Ordinary Portland cement
Air content $=2 \%$
Mortar thickness $=5 \mathrm{~mm}$
(i) Calculate the unit contents of sand, cement, and water,
(ii) Calculate the unit weight of mortar,
(iii) Estimate the amount of each ingredient of mortar necessary for the plastering work of both surfaces of the wall. Assume 10% extra volume of material is necessary due to the loss of mortar during application on the wall.
(iv) What adjustment in sand volume is necessary, if the bulking of sand is 20% ? [Unit weight of sand $($ with void $)=1500 \mathrm{~kg} / \mathrm{m}^{3}$]

